Updated documentation of SCHEDULER and ZONE and FSM

This commit is contained in:
FlightControl
2017-04-17 07:49:11 +02:00
parent 0e7ebff9a2
commit a89c469130
10 changed files with 532 additions and 233 deletions

View File

@@ -5,6 +5,8 @@
--
-- ===
--
-- A Finite State Machine (FSM) models a process flow that transitions between various **States** through triggered **Events**.
--
-- A FSM can only be in one of a finite number of states.
-- The machine is in only one state at a time; the state it is in at any given time is called the **current state**.
-- It can change from one state to another when initiated by an **__internal__ or __external__ triggering event**, which is called a **transition**.
@@ -90,8 +92,43 @@ do -- FSM
-- @extends Core.Base#BASE
--- # 1) FSM class, extends @{Base#BASE}
--- # FSM class, extends @{Base#BASE}
--
-- A Finite State Machine (FSM) models a process flow that transitions between various **States** through triggered **Events**.
--
-- A FSM can only be in one of a finite number of states.
-- The machine is in only one state at a time; the state it is in at any given time is called the **current state**.
-- It can change from one state to another when initiated by an **__internal__ or __external__ triggering event**, which is called a **transition**.
-- An **FSM implementation** is defined by **a list of its states**, **its initial state**, and **the triggering events** for **each possible transition**.
-- An FSM implementation is composed out of **two parts**, a set of **state transition rules**, and an implementation set of **state transition handlers**, implementing those transitions.
--
-- The FSM class supports a **hierarchical implementation of a Finite State Machine**,
-- that is, it allows to **embed existing FSM implementations in a master FSM**.
-- FSM hierarchies allow for efficient FSM re-use, **not having to re-invent the wheel every time again** when designing complex processes.
--
-- ![Workflow Example](..\Presentations\FSM\Dia2.JPG)
--
-- The above diagram shows a graphical representation of a FSM implementation for a **Task**, which guides a Human towards a Zone,
-- orders him to destroy x targets and account the results.
-- Other examples of ready made FSM could be:
--
-- * route a plane to a zone flown by a human
-- * detect targets by an AI and report to humans
-- * account for destroyed targets by human players
-- * handle AI infantry to deploy from or embark to a helicopter or airplane or vehicle
-- * let an AI patrol a zone
--
-- The **MOOSE framework** uses extensively the FSM class and derived FSM\_ classes,
-- because **the goal of MOOSE is to simplify mission design complexity for mission building**.
-- By efficiently utilizing the FSM class and derived classes, MOOSE allows mission designers to quickly build processes.
-- **Ready made FSM-based implementations classes** exist within the MOOSE framework that **can easily be re-used,
-- and tailored** by mission designers through **the implementation of Transition Handlers**.
-- Each of these FSM implementation classes start either with:
--
-- * an acronym **AI\_**, which indicates an FSM implementation directing **AI controlled** @{GROUP} and/or @{UNIT}. These AI\_ classes derive the @{#FSM_CONTROLLABLE} class.
-- * an acronym **TASK\_**, which indicates an FSM implementation executing a @{TASK} executed by Groups of players. These TASK\_ classes derive the @{#FSM_TASK} class.
-- * an acronym **ACT\_**, which indicates an Sub-FSM implementation, directing **Humans actions** that need to be done in a @{TASK}, seated in a @{CLIENT} (slot) or a @{UNIT} (CA join). These ACT\_ classes derive the @{#FSM_PROCESS} class.
--
-- ![Transition Rules and Transition Handlers and Event Triggers](..\Presentations\FSM\Dia3.JPG)
--
-- The FSM class is the base class of all FSM\_ derived classes. It implements the main functionality to define and execute Finite State Machines.
@@ -114,13 +151,13 @@ do -- FSM
-- As explained above, a FSM supports **Linear State Transitions** and **Hierarchical State Transitions**, and both can be mixed to make a comprehensive FSM implementation.
-- The below documentation has a seperate chapter explaining both transition modes, taking into account the **Transition Rules**, **Transition Handlers** and **Event Triggers**.
--
-- ## 1.1) FSM Linear Transitions
-- ## FSM Linear Transitions
--
-- Linear Transitions are Transition Rules allowing an FSM to transition from one or multiple possible **From** state(s) towards a **To** state upon a Triggered **Event**.
-- The Lineair transition rule evaluation will always be done from the **current state** of the FSM.
-- If no valid Transition Rule can be found in the FSM, the FSM will log an error and stop.
--
-- ### 1.1.1) FSM Transition Rules
-- ### FSM Transition Rules
--
-- The FSM has transition rules that it follows and validates, as it walks the process.
-- These rules define when an FSM can transition from a specific state towards an other specific state upon a triggered event.
@@ -145,7 +182,7 @@ do -- FSM
-- * It can be switched **Off** by triggering event **SwitchOff**.
-- * Note that once the Switch is **On** or **Middle**, it can only be switched **Off**.
--
-- ### Some additional comments:
-- #### Some additional comments:
--
-- Note that Linear Transition Rules **can be declared in a few variations**:
--
@@ -156,7 +193,7 @@ do -- FSM
--
-- FsmSwitch:AddTransition( { "On", "Middle" }, "SwitchOff", "Off" )
--
-- ### 1.1.2) Transition Handling
-- ### Transition Handling
--
-- ![Transition Handlers](..\Presentations\FSM\Dia4.JPG)
--
@@ -178,7 +215,7 @@ do -- FSM
--
-- On top, each of these methods can have a variable amount of parameters passed. See the example in section [1.1.3](#1.1.3\)-event-triggers).
--
-- ### 1.1.3) Event Triggers
-- ### Event Triggers
--
-- ![Event Triggers](..\Presentations\FSM\Dia5.JPG)
--
@@ -216,7 +253,7 @@ do -- FSM
--
-- Because ... When Event was asynchronously processed after 5 seconds, Amount was set to 2. So be careful when processing and passing values and objects in asynchronous processing!
--
-- ### 1.1.4) Linear Transition Example
-- ### Linear Transition Example
--
-- This example is fully implemented in the MOOSE test mission on GITHUB: [FSM-100 - Transition Explanation](https://github.com/FlightControl-Master/MOOSE/blob/master/Moose%20Test%20Missions/FSM%20-%20Finite%20State%20Machine/FSM-100%20-%20Transition%20Explanation/FSM-100%20-%20Transition%20Explanation.lua)
--
@@ -298,7 +335,7 @@ do -- FSM
-- So... When FsmDemo:Stop() is being triggered, the state of FsmDemo will transition from Red or Green to Stopped.
-- And there is no transition handling method defined for that transition, thus, no new event is being triggered causing the FsmDemo process flow to halt.
--
-- ## 1.5) FSM Hierarchical Transitions
-- ## FSM Hierarchical Transitions
--
-- Hierarchical Transitions allow to re-use readily available and implemented FSMs.
-- This becomes in very useful for mission building, where mission designers build complex processes and workflows,

View File

@@ -4,31 +4,30 @@
--
-- ===
--
-- # 1) @{Scheduler#SCHEDULER} class, extends @{Base#BASE}
-- SCHEDULER manages the **scheduling of functions**:
--
-- The @{Scheduler#SCHEDULER} class creates schedule.
--
-- ## 1.1) SCHEDULER constructor
--
-- The SCHEDULER class is quite easy to use, but note that the New constructor has variable parameters:
--
-- * @{Scheduler#SCHEDULER.New}( nil ): Setup a new SCHEDULER object, which is persistently executed after garbage collection.
-- * @{Scheduler#SCHEDULER.New}( Object ): Setup a new SCHEDULER object, which is linked to the Object. When the Object is nillified or destroyed, the SCHEDULER object will also be destroyed and stopped after garbage collection.
-- * @{Scheduler#SCHEDULER.New}( nil, Function, FunctionArguments, Start, ... ): Setup a new persistent SCHEDULER object, and start a new schedule for the Function with the defined FunctionArguments according the Start and sequent parameters.
-- * @{Scheduler#SCHEDULER.New}( Object, Function, FunctionArguments, Start, ... ): Setup a new SCHEDULER object, linked to Object, and start a new schedule for the Function with the defined FunctionArguments according the Start and sequent parameters.
--
-- ## 1.2) SCHEDULER timer stopping and (re-)starting.
--
-- The SCHEDULER can be stopped and restarted with the following methods:
--
-- * @{Scheduler#SCHEDULER.Start}(): (Re-)Start the schedules within the SCHEDULER object. If a CallID is provided to :Start(), only the schedule referenced by CallID will be (re-)started.
-- * @{Scheduler#SCHEDULER.Stop}(): Stop the schedules within the SCHEDULER object. If a CallID is provided to :Stop(), then only the schedule referenced by CallID will be stopped.
--
-- ## 1.3) Create a new schedule
--
-- With @{Scheduler#SCHEDULER.Schedule}() a new time event can be scheduled. This function is used by the :New() constructor when a new schedule is planned.
-- * optionally in an optional specified time interval,
-- * optionally **repeating** with a specified time repeat interval,
-- * optionally **randomizing** with a specified time interval randomization factor,
-- * optionally **stop** the repeating after a specified time interval.
--
-- ===
--
-- # Demo Missions
--
-- ### [SCHEDULER Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/SCH%20-%20Scheduler)
--
-- ### [SCHEDULER Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/SCH%20-%20Scheduler)
--
-- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases)
--
-- ====
--
-- # YouTube Channel
--
-- ### [SCHEDULER YouTube Channel (none)]()
--
-- ====
--
-- ### Contributions:
--
@@ -38,10 +37,6 @@
--
-- * FlightControl : Design & Programming
--
-- ### Test Missions:
--
-- * SCH - Scheduler
--
-- ===
--
-- @module Scheduler
@@ -51,6 +46,153 @@
-- @type SCHEDULER
-- @field #number ScheduleID the ID of the scheduler.
-- @extends Core.Base#BASE
--- # SCHEDULER class, extends @{Base#BASE}
--
-- The SCHEDULER class creates schedule.
--
-- A SCHEDULER can manage **multiple** (repeating) schedules. Each planned or executing schedule has a unique **ScheduleID**.
-- The ScheduleID is returned when the method @{#SCHEDULER.Schedule}() is called.
-- It is recommended to store the ScheduleID in a variable, as it is used in the methods @{SCHEDULER.Start}() and @{SCHEDULER.Stop}(),
-- which can start and stop specific repeating schedules respectively within a SCHEDULER object.
--
-- ## SCHEDULER constructor
--
-- The SCHEDULER class is quite easy to use, but note that the New constructor has variable parameters:
--
-- The @{#SCHEDULER.New}() method returns 2 variables:
--
-- 1. The SCHEDULER object reference.
-- 2. The first schedule planned in the SCHEDULER object.
--
-- To clarify the different appliances, lets have a look at the following examples:
--
-- ### Construct a SCHEDULER object without a persistent schedule.
--
-- * @{#SCHEDULER.New}( nil ): Setup a new SCHEDULER object, which is persistently executed after garbage collection.
--
-- SchedulerObject = SCHEDULER:New()
-- SchedulerID = SchedulerObject:Schedule( nil, ScheduleFunction, {} )
--
-- The above example creates a new SchedulerObject, but does not schedule anything.
-- A separate schedule is created by using the SchedulerObject using the method :Schedule..., which returns a ScheduleID
--
-- ### Construct a SCHEDULER object without a volatile schedule, but volatile to the Object existence...
--
-- * @{#SCHEDULER.New}( Object ): Setup a new SCHEDULER object, which is linked to the Object. When the Object is nillified or destroyed, the SCHEDULER object will also be destroyed and stopped after garbage collection.
--
-- ZoneObject = ZONE:New( "ZoneName" )
-- SchedulerObject = SCHEDULER:New( ZoneObject )
-- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {} )
-- ...
-- ZoneObject = nil
-- garbagecollect()
--
-- The above example creates a new SchedulerObject, but does not schedule anything, and is bound to the existence of ZoneObject, which is a ZONE.
-- A separate schedule is created by using the SchedulerObject using the method :Schedule()..., which returns a ScheduleID
-- Later in the logic, the ZoneObject is put to nil, and garbage is collected.
-- As a result, the ScheduleObject will cancel any planned schedule.
--
-- ### Construct a SCHEDULER object with a persistent schedule.
--
-- * @{#SCHEDULER.New}( nil, Function, FunctionArguments, Start, ... ): Setup a new persistent SCHEDULER object, and start a new schedule for the Function with the defined FunctionArguments according the Start and sequent parameters.
--
-- SchedulerObject, SchedulerID = SCHEDULER:New( nil, ScheduleFunction, {} )
--
-- The above example creates a new SchedulerObject, and does schedule the first schedule as part of the call.
-- Note that 2 variables are returned here: SchedulerObject, ScheduleID...
--
-- ### Construct a SCHEDULER object without a schedule, but volatile to the Object existence...
--
-- * @{#SCHEDULER.New}( Object, Function, FunctionArguments, Start, ... ): Setup a new SCHEDULER object, linked to Object, and start a new schedule for the Function with the defined FunctionArguments according the Start and sequent parameters.
--
-- ZoneObject = ZONE:New( "ZoneName" )
-- SchedulerObject, SchedulerID = SCHEDULER:New( ZoneObject, ScheduleFunction, {} )
-- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {} )
-- ...
-- ZoneObject = nil
-- garbagecollect()
--
-- The above example creates a new SchedulerObject, and schedules a method call (ScheduleFunction),
-- and is bound to the existence of ZoneObject, which is a ZONE object (ZoneObject).
-- Both a ScheduleObject and a SchedulerID variable are returned.
-- Later in the logic, the ZoneObject is put to nil, and garbage is collected.
-- As a result, the ScheduleObject will cancel the planned schedule.
--
-- ## SCHEDULER timer stopping and (re-)starting.
--
-- The SCHEDULER can be stopped and restarted with the following methods:
--
-- * @{#SCHEDULER.Start}(): (Re-)Start the schedules within the SCHEDULER object. If a CallID is provided to :Start(), only the schedule referenced by CallID will be (re-)started.
-- * @{#SCHEDULER.Stop}(): Stop the schedules within the SCHEDULER object. If a CallID is provided to :Stop(), then only the schedule referenced by CallID will be stopped.
--
-- ZoneObject = ZONE:New( "ZoneName" )
-- SchedulerObject, SchedulerID = SCHEDULER:New( ZoneObject, ScheduleFunction, {} )
-- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {}, 10, 10 )
-- ...
-- SchedulerObject:Stop( SchedulerID )
-- ...
-- SchedulerObject:Start( SchedulerID )
--
-- The above example creates a new SchedulerObject, and does schedule the first schedule as part of the call.
-- Note that 2 variables are returned here: SchedulerObject, ScheduleID...
-- Later in the logic, the repeating schedule with SchedulerID is stopped.
-- A bit later, the repeating schedule with SchedulerId is (re)-started.
--
-- ## Create a new schedule
--
-- With the method @{#SCHEDULER.Schedule}() a new time event can be scheduled.
-- This method is used by the :New() constructor when a new schedule is planned.
--
-- Consider the following code fragment of the SCHEDULER object creation.
--
-- ZoneObject = ZONE:New( "ZoneName" )
-- SchedulerObject = SCHEDULER:New( ZoneObject )
--
-- Several parameters can be specified that influence the behaviour of a Schedule.
--
-- ### A single schedule, immediately executed
--
-- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {} )
--
-- The above example schedules a new ScheduleFunction call to be executed asynchronously, within milleseconds ...
--
-- ### A single schedule, planned over time
--
-- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {}, 10 )
--
-- The above example schedules a new ScheduleFunction call to be executed asynchronously, within 10 seconds ...
--
-- ### A schedule with a repeating time interval, planned over time
--
-- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {}, 10, 60 )
--
-- The above example schedules a new ScheduleFunction call to be executed asynchronously, within 10 seconds,
-- and repeating 60 every seconds ...
--
-- ### A schedule with a repeating time interval, planned over time, with time interval randomization
--
-- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {}, 10, 60, 0.5 )
--
-- The above example schedules a new ScheduleFunction call to be executed asynchronously, within 10 seconds,
-- and repeating 60 seconds, with a 50% time interval randomization ...
-- So the repeating time interval will be randomized using the **0.5**,
-- and will calculate between **60 - ( 60 * 0.5 )** and **60 + ( 60 * 0.5 )** for each repeat,
-- which is in this example between **30** and **90** seconds.
--
-- ### A schedule with a repeating time interval, planned over time, with time interval randomization, and stop after a time interval
--
-- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {}, 10, 60, 0.5, 300 )
--
-- The above example schedules a new ScheduleFunction call to be executed asynchronously, within 10 seconds,
-- The schedule will repeat every 60 seconds.
-- So the repeating time interval will be randomized using the **0.5**,
-- and will calculate between **60 - ( 60 * 0.5 )** and **60 + ( 60 * 0.5 )** for each repeat,
-- which is in this example between **30** and **90** seconds.
-- The schedule will stop after **300** seconds.
--
-- @field #SCHEDULER
SCHEDULER = {
ClassName = "SCHEDULER",
Schedules = {},

View File

@@ -66,8 +66,7 @@
-- @module Zone
--- The ZONE_BASE class
-- @type ZONE_BASE
--- @type ZONE_BASE
-- @field #string ZoneName Name of the zone.
-- @field #number ZoneProbability A value between 0 and 1. 0 = 0% and 1 = 100% probability.
-- @extends Core.Base#BASE
@@ -83,19 +82,26 @@
--
-- ## Each zone implements two polymorphic functions defined in @{Zone#ZONE_BASE}:
--
-- * @{#ZONE_BASE.IsVec2InZone}(): Returns if a Vec2 is within the zone.
-- * @{#ZONE_BASE.IsVec3InZone}(): Returns if a Vec3 is within the zone.
-- * @{#ZONE_BASE.IsVec2InZone}(): Returns if a 2D vector is within the zone.
-- * @{#ZONE_BASE.IsVec3InZone}(): Returns if a 3D vector is within the zone.
-- * @{#ZONE_BASE.IsPointVec2InZone}(): Returns if a 2D point vector is within the zone.
-- * @{#ZONE_BASE.IsPointVec3InZone}(): Returns if a 3D point vector is within the zone.
--
-- ## A zone has a probability factor that can be set to randomize a selection between zones:
--
-- * @{#ZONE_BASE.SetRandomizeProbability}(): Set the randomization probability of a zone to be selected, taking a value between 0 and 1 ( 0 = 0%, 1 = 100% )
-- * @{#ZONE_BASE.GetRandomizeProbability}(): Get the randomization probability of a zone to be selected, passing a value between 0 and 1 ( 0 = 0%, 1 = 100% )
-- * @{#ZONE_BASE.SetZoneProbability}(): Set the randomization probability of a zone to be selected, taking a value between 0 and 1 ( 0 = 0%, 1 = 100% )
-- * @{#ZONE_BASE.GetZoneProbability}(): Get the randomization probability of a zone to be selected, passing a value between 0 and 1 ( 0 = 0%, 1 = 100% )
-- * @{#ZONE_BASE.GetZoneMaybe}(): Get the zone taking into account the randomization probability. nil is returned if this zone is not a candidate.
--
-- ## A zone manages Vectors:
-- ## A zone manages vectors:
--
-- * @{#ZONE_BASE.GetVec2}(): Returns the @{DCSTypes#Vec2} coordinate of the zone.
-- * @{#ZONE_BASE.GetRandomVec2}(): Define a random @{DCSTypes#Vec2} within the zone.
-- * @{#ZONE_BASE.GetVec2}(): Returns the 2D vector coordinate of the zone.
-- * @{#ZONE_BASE.GetVec3}(): Returns the 3D vector coordinate of the zone.
-- * @{#ZONE_BASE.GetPointVec2}(): Returns the 2D point vector coordinate of the zone.
-- * @{#ZONE_BASE.GetPointVec3}(): Returns the 3D point vector coordinate of the zone.
-- * @{#ZONE_BASE.GetRandomVec2}(): Define a random 2D vector within the zone.
-- * @{#ZONE_BASE.GetRandomPointVec2}(): Define a random 2D point vector within the zone.
-- * @{#ZONE_BASE.GetRandomPointVec3}(): Define a random 3D point vector within the zone.
--
-- ## A zone has a bounding square:
--
@@ -106,8 +112,7 @@
-- * @{#ZONE_BASE.SmokeZone}(): Smokes the zone boundaries in a color.
-- * @{#ZONE_BASE.FlareZone}(): Flares the zone boundaries in a color.
--
-- @field #ZONE_BASE ZONE_BASE
--
-- @field #ZONE_BASE
ZONE_BASE = {
ClassName = "ZONE_BASE",
ZoneName = "",
@@ -366,8 +371,7 @@ end
-- * @{#ZONE_RADIUS.GetRandomPointVec2}(): Gets a @{Point#POINT_VEC2} object representing a random 2D point in the zone.
-- * @{#ZONE_RADIUS.GetRandomPointVec3}(): Gets a @{Point#POINT_VEC3} object representing a random 3D point in the zone. Note that the height of the point is at landheight.
--
-- @field #ZONE_RADIUS ZONE_RADIUS
--
-- @field #ZONE_RADIUS
ZONE_RADIUS = {
ClassName="ZONE_RADIUS",
}
@@ -648,8 +652,7 @@ end
-- The ZONE class, defined by the zone name as defined within the Mission Editor.
-- This class implements the inherited functions from @{#ZONE_RADIUS} taking into account the own zone format and properties.
--
-- @field #ZONE ZONE
--
-- @field #ZONE
ZONE = {
ClassName="ZONE",
}
@@ -686,8 +689,7 @@ end
-- The ZONE_UNIT class defined by a zone around a @{Unit#UNIT} with a radius.
-- This class implements the inherited functions from @{#ZONE_RADIUS} taking into account the own zone format and properties.
--
-- @field #ZONE_UNIT ZONE_UNIT
--
-- @field #ZONE_UNIT
ZONE_UNIT = {
ClassName="ZONE_UNIT",
}
@@ -769,7 +771,6 @@ function ZONE_UNIT:GetVec3( Height )
end
--- @type ZONE_GROUP
-- @field Wrapper.Group#GROUP ZoneGROUP
-- @extends #ZONE_RADIUS
@@ -778,8 +779,7 @@ end
-- The ZONE_GROUP class defines by a zone around a @{Group#GROUP} with a radius. The current leader of the group defines the center of the zone.
-- This class implements the inherited functions from @{Zone#ZONE_RADIUS} taking into account the own zone format and properties.
--
-- @field #ZONE_GROUP ZONE_GROUP
--
-- @field #ZONE_GROUP
ZONE_GROUP = {
ClassName="ZONE_GROUP",
}
@@ -794,7 +794,7 @@ function ZONE_GROUP:New( ZoneName, ZoneGROUP, Radius )
local self = BASE:Inherit( self, ZONE_RADIUS:New( ZoneName, ZoneGROUP:GetVec2(), Radius ) )
self:F( { ZoneName, ZoneGROUP:GetVec2(), Radius } )
self.ZoneGROUP = ZoneGROUP
self._.ZoneGROUP = ZoneGROUP
return self
end
@@ -806,7 +806,7 @@ end
function ZONE_GROUP:GetVec2()
self:F( self.ZoneName )
local ZoneVec2 = self.ZoneGROUP:GetVec2()
local ZoneVec2 = self._.ZoneGROUP:GetVec2()
self:T( { ZoneVec2 } )
@@ -820,7 +820,7 @@ function ZONE_GROUP:GetRandomVec2()
self:F( self.ZoneName )
local Point = {}
local Vec2 = self.ZoneGROUP:GetVec2()
local Vec2 = self._.ZoneGROUP:GetVec2()
local angle = math.random() * math.pi*2;
Point.x = Vec2.x + math.cos( angle ) * math.random() * self:GetRadius();
@@ -834,7 +834,7 @@ end
--- @type ZONE_POLYGON_BASE
-- @field #ZONE_POLYGON_BASE.ListVec2 Polygon The polygon defined by an array of @{DCSTypes#Vec2}.
-- --@field #ZONE_POLYGON_BASE.ListVec2 Polygon The polygon defined by an array of @{DCSTypes#Vec2}.
-- @extends #ZONE_BASE
@@ -852,8 +852,7 @@ end
-- * @{#ZONE_POLYGON_BASE.GetRandomPointVec2}(): Return a @{Point#POINT_VEC2} object representing a random 2D point within the zone.
-- * @{#ZONE_POLYGON_BASE.GetRandomPointVec3}(): Return a @{Point#POINT_VEC3} object representing a random 3D point at landheight within the zone.
--
-- @field #ZONE_POLYGON_BASE ZONE_POLYGON_BASE
--
-- @field #ZONE_POLYGON_BASE
ZONE_POLYGON_BASE = {
ClassName="ZONE_POLYGON_BASE",
}
@@ -874,12 +873,12 @@ function ZONE_POLYGON_BASE:New( ZoneName, PointsArray )
local i = 0
self.Polygon = {}
self._.Polygon = {}
for i = 1, #PointsArray do
self.Polygon[i] = {}
self.Polygon[i].x = PointsArray[i].x
self.Polygon[i].y = PointsArray[i].y
self._.Polygon[i] = {}
self._.Polygon[i].x = PointsArray[i].x
self._.Polygon[i].y = PointsArray[i].y
end
return self
@@ -902,7 +901,7 @@ end
function ZONE_POLYGON_BASE:Flush()
self:F2()
self:E( { Polygon = self.ZoneName, Coordinates = self.Polygon } )
self:E( { Polygon = self.ZoneName, Coordinates = self._.Polygon } )
return self
end
@@ -918,17 +917,17 @@ function ZONE_POLYGON_BASE:BoundZone( UnBound )
local Segments = 10
i = 1
j = #self.Polygon
j = #self._.Polygon
while i <= #self.Polygon do
self:T( { i, j, self.Polygon[i], self.Polygon[j] } )
while i <= #self._.Polygon do
self:T( { i, j, self._.Polygon[i], self._.Polygon[j] } )
local DeltaX = self.Polygon[j].x - self.Polygon[i].x
local DeltaY = self.Polygon[j].y - self.Polygon[i].y
local DeltaX = self._.Polygon[j].x - self._.Polygon[i].x
local DeltaY = self._.Polygon[j].y - self._.Polygon[i].y
for Segment = 0, Segments do -- We divide each line in 5 segments and smoke a point on the line.
local PointX = self.Polygon[i].x + ( Segment * DeltaX / Segments )
local PointY = self.Polygon[i].y + ( Segment * DeltaY / Segments )
local PointX = self._.Polygon[i].x + ( Segment * DeltaX / Segments )
local PointY = self._.Polygon[i].y + ( Segment * DeltaY / Segments )
local Tire = {
["country"] = "USA",
["category"] = "Fortifications",
@@ -968,17 +967,17 @@ function ZONE_POLYGON_BASE:SmokeZone( SmokeColor )
local Segments = 10
i = 1
j = #self.Polygon
j = #self._.Polygon
while i <= #self.Polygon do
self:T( { i, j, self.Polygon[i], self.Polygon[j] } )
while i <= #self._.Polygon do
self:T( { i, j, self._.Polygon[i], self._.Polygon[j] } )
local DeltaX = self.Polygon[j].x - self.Polygon[i].x
local DeltaY = self.Polygon[j].y - self.Polygon[i].y
local DeltaX = self._.Polygon[j].x - self._.Polygon[i].x
local DeltaY = self._.Polygon[j].y - self._.Polygon[i].y
for Segment = 0, Segments do -- We divide each line in 5 segments and smoke a point on the line.
local PointX = self.Polygon[i].x + ( Segment * DeltaX / Segments )
local PointY = self.Polygon[i].y + ( Segment * DeltaY / Segments )
local PointX = self._.Polygon[i].x + ( Segment * DeltaX / Segments )
local PointY = self._.Polygon[i].y + ( Segment * DeltaY / Segments )
POINT_VEC2:New( PointX, PointY ):Smoke( SmokeColor )
end
j = i
@@ -1004,12 +1003,12 @@ function ZONE_POLYGON_BASE:IsVec2InZone( Vec2 )
local InPolygon = false
Next = 1
Prev = #self.Polygon
Prev = #self._.Polygon
while Next <= #self.Polygon do
self:T( { Next, Prev, self.Polygon[Next], self.Polygon[Prev] } )
if ( ( ( self.Polygon[Next].y > Vec2.y ) ~= ( self.Polygon[Prev].y > Vec2.y ) ) and
( Vec2.x < ( self.Polygon[Prev].x - self.Polygon[Next].x ) * ( Vec2.y - self.Polygon[Next].y ) / ( self.Polygon[Prev].y - self.Polygon[Next].y ) + self.Polygon[Next].x )
while Next <= #self._.Polygon do
self:T( { Next, Prev, self._.Polygon[Next], self._.Polygon[Prev] } )
if ( ( ( self._.Polygon[Next].y > Vec2.y ) ~= ( self._.Polygon[Prev].y > Vec2.y ) ) and
( Vec2.x < ( self._.Polygon[Prev].x - self._.Polygon[Next].x ) * ( Vec2.y - self._.Polygon[Next].y ) / ( self._.Polygon[Prev].y - self._.Polygon[Next].y ) + self._.Polygon[Next].x )
) then
InPolygon = not InPolygon
end
@@ -1080,17 +1079,17 @@ end
-- @return #ZONE_POLYGON_BASE.BoundingSquare The bounding square.
function ZONE_POLYGON_BASE:GetBoundingSquare()
local x1 = self.Polygon[1].x
local y1 = self.Polygon[1].y
local x2 = self.Polygon[1].x
local y2 = self.Polygon[1].y
local x1 = self._.Polygon[1].x
local y1 = self._.Polygon[1].y
local x2 = self._.Polygon[1].x
local y2 = self._.Polygon[1].y
for i = 2, #self.Polygon do
self:T2( { self.Polygon[i], x1, y1, x2, y2 } )
x1 = ( x1 > self.Polygon[i].x ) and self.Polygon[i].x or x1
x2 = ( x2 < self.Polygon[i].x ) and self.Polygon[i].x or x2
y1 = ( y1 > self.Polygon[i].y ) and self.Polygon[i].y or y1
y2 = ( y2 < self.Polygon[i].y ) and self.Polygon[i].y or y2
for i = 2, #self._.Polygon do
self:T2( { self._.Polygon[i], x1, y1, x2, y2 } )
x1 = ( x1 > self._.Polygon[i].x ) and self._.Polygon[i].x or x1
x2 = ( x2 < self._.Polygon[i].x ) and self._.Polygon[i].x or x2
y1 = ( y1 > self._.Polygon[i].y ) and self._.Polygon[i].y or y1
y2 = ( y2 < self._.Polygon[i].y ) and self._.Polygon[i].y or y2
end
@@ -1107,8 +1106,7 @@ end
-- The ZONE_POLYGON class defined by a sequence of @{Group#GROUP} waypoints within the Mission Editor, forming a polygon.
-- This class implements the inherited functions from @{Zone#ZONE_RADIUS} taking into account the own zone format and properties.
--
-- @field #ZONE_POLYGON ZONE_POLYGON
--
-- @field #ZONE_POLYGON
ZONE_POLYGON = {
ClassName="ZONE_POLYGON",
}
@@ -1124,7 +1122,7 @@ function ZONE_POLYGON:New( ZoneName, ZoneGroup )
local GroupPoints = ZoneGroup:GetTaskRoute()
local self = BASE:Inherit( self, ZONE_POLYGON_BASE:New( ZoneName, GroupPoints ) )
self:F( { ZoneName, ZoneGroup, self.Polygon } )
self:F( { ZoneName, ZoneGroup, self._.Polygon } )
return self
end