env.info( '*** MOOSE STATIC INCLUDE START *** ' ) env.info( 'Moose Generation Timestamp: 20171029_1717' ) --- Various routines -- @module routines -- @author Flightcontrol env.setErrorMessageBoxEnabled(false) --- Extract of MIST functions. -- @author Grimes routines = {} -- don't change these routines.majorVersion = 3 routines.minorVersion = 3 routines.build = 22 ----------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------- -- Utils- conversion, Lua utils, etc. routines.utils = {} --from http://lua-users.org/wiki/CopyTable routines.utils.deepCopy = function(object) local lookup_table = {} local function _copy(object) if type(object) ~= "table" then return object elseif lookup_table[object] then return lookup_table[object] end local new_table = {} lookup_table[object] = new_table for index, value in pairs(object) do new_table[_copy(index)] = _copy(value) end return setmetatable(new_table, getmetatable(object)) end local objectreturn = _copy(object) return objectreturn end -- porting in Slmod's serialize_slmod2 routines.utils.oneLineSerialize = function(tbl) -- serialization of a table all on a single line, no comments, made to replace old get_table_string function lookup_table = {} local function _Serialize( tbl ) if type(tbl) == 'table' then --function only works for tables! if lookup_table[tbl] then return lookup_table[object] end local tbl_str = {} lookup_table[tbl] = tbl_str tbl_str[#tbl_str + 1] = '{' for ind,val in pairs(tbl) do -- serialize its fields local ind_str = {} if type(ind) == "number" then ind_str[#ind_str + 1] = '[' ind_str[#ind_str + 1] = tostring(ind) ind_str[#ind_str + 1] = ']=' else --must be a string ind_str[#ind_str + 1] = '[' ind_str[#ind_str + 1] = routines.utils.basicSerialize(ind) ind_str[#ind_str + 1] = ']=' end local val_str = {} if ((type(val) == 'number') or (type(val) == 'boolean')) then val_str[#val_str + 1] = tostring(val) val_str[#val_str + 1] = ',' tbl_str[#tbl_str + 1] = table.concat(ind_str) tbl_str[#tbl_str + 1] = table.concat(val_str) elseif type(val) == 'string' then val_str[#val_str + 1] = routines.utils.basicSerialize(val) val_str[#val_str + 1] = ',' tbl_str[#tbl_str + 1] = table.concat(ind_str) tbl_str[#tbl_str + 1] = table.concat(val_str) elseif type(val) == 'nil' then -- won't ever happen, right? val_str[#val_str + 1] = 'nil,' tbl_str[#tbl_str + 1] = table.concat(ind_str) tbl_str[#tbl_str + 1] = table.concat(val_str) elseif type(val) == 'table' then if ind == "__index" then -- tbl_str[#tbl_str + 1] = "__index" -- tbl_str[#tbl_str + 1] = ',' --I think this is right, I just added it else val_str[#val_str + 1] = _Serialize(val) val_str[#val_str + 1] = ',' --I think this is right, I just added it tbl_str[#tbl_str + 1] = table.concat(ind_str) tbl_str[#tbl_str + 1] = table.concat(val_str) end elseif type(val) == 'function' then -- tbl_str[#tbl_str + 1] = "function " .. tostring(ind) -- tbl_str[#tbl_str + 1] = ',' --I think this is right, I just added it else -- env.info('unable to serialize value type ' .. routines.utils.basicSerialize(type(val)) .. ' at index ' .. tostring(ind)) -- env.info( debug.traceback() ) end end tbl_str[#tbl_str + 1] = '}' return table.concat(tbl_str) else return tostring(tbl) end end local objectreturn = _Serialize(tbl) return objectreturn end --porting in Slmod's "safestring" basic serialize routines.utils.basicSerialize = function(s) if s == nil then return "\"\"" else if ((type(s) == 'number') or (type(s) == 'boolean') or (type(s) == 'function') or (type(s) == 'table') or (type(s) == 'userdata') ) then return tostring(s) elseif type(s) == 'string' then s = string.format('%q', s) return s end end end routines.utils.toDegree = function(angle) return angle*180/math.pi end routines.utils.toRadian = function(angle) return angle*math.pi/180 end routines.utils.metersToNM = function(meters) return meters/1852 end routines.utils.metersToFeet = function(meters) return meters/0.3048 end routines.utils.NMToMeters = function(NM) return NM*1852 end routines.utils.feetToMeters = function(feet) return feet*0.3048 end routines.utils.mpsToKnots = function(mps) return mps*3600/1852 end routines.utils.mpsToKmph = function(mps) return mps*3.6 end routines.utils.knotsToMps = function(knots) return knots*1852/3600 end routines.utils.kmphToMps = function(kmph) return kmph/3.6 end function routines.utils.makeVec2(Vec3) if Vec3.z then return {x = Vec3.x, y = Vec3.z} else return {x = Vec3.x, y = Vec3.y} -- it was actually already vec2. end end function routines.utils.makeVec3(Vec2, y) if not Vec2.z then if not y then y = 0 end return {x = Vec2.x, y = y, z = Vec2.y} else return {x = Vec2.x, y = Vec2.y, z = Vec2.z} -- it was already Vec3, actually. end end function routines.utils.makeVec3GL(Vec2, offset) local adj = offset or 0 if not Vec2.z then return {x = Vec2.x, y = (land.getHeight(Vec2) + adj), z = Vec2.y} else return {x = Vec2.x, y = (land.getHeight({x = Vec2.x, y = Vec2.z}) + adj), z = Vec2.z} end end routines.utils.zoneToVec3 = function(zone) local new = {} if type(zone) == 'table' and zone.point then new.x = zone.point.x new.y = zone.point.y new.z = zone.point.z return new elseif type(zone) == 'string' then zone = trigger.misc.getZone(zone) if zone then new.x = zone.point.x new.y = zone.point.y new.z = zone.point.z return new end end end -- gets heading-error corrected direction from point along vector vec. function routines.utils.getDir(vec, point) local dir = math.atan2(vec.z, vec.x) dir = dir + routines.getNorthCorrection(point) if dir < 0 then dir = dir + 2*math.pi -- put dir in range of 0 to 2*pi end return dir end -- gets distance in meters between two points (2 dimensional) function routines.utils.get2DDist(point1, point2) point1 = routines.utils.makeVec3(point1) point2 = routines.utils.makeVec3(point2) return routines.vec.mag({x = point1.x - point2.x, y = 0, z = point1.z - point2.z}) end -- gets distance in meters between two points (3 dimensional) function routines.utils.get3DDist(point1, point2) return routines.vec.mag({x = point1.x - point2.x, y = point1.y - point2.y, z = point1.z - point2.z}) end --3D Vector manipulation routines.vec = {} routines.vec.add = function(vec1, vec2) return {x = vec1.x + vec2.x, y = vec1.y + vec2.y, z = vec1.z + vec2.z} end routines.vec.sub = function(vec1, vec2) return {x = vec1.x - vec2.x, y = vec1.y - vec2.y, z = vec1.z - vec2.z} end routines.vec.scalarMult = function(vec, mult) return {x = vec.x*mult, y = vec.y*mult, z = vec.z*mult} end routines.vec.scalar_mult = routines.vec.scalarMult routines.vec.dp = function(vec1, vec2) return vec1.x*vec2.x + vec1.y*vec2.y + vec1.z*vec2.z end routines.vec.cp = function(vec1, vec2) return { x = vec1.y*vec2.z - vec1.z*vec2.y, y = vec1.z*vec2.x - vec1.x*vec2.z, z = vec1.x*vec2.y - vec1.y*vec2.x} end routines.vec.mag = function(vec) return (vec.x^2 + vec.y^2 + vec.z^2)^0.5 end routines.vec.getUnitVec = function(vec) local mag = routines.vec.mag(vec) return { x = vec.x/mag, y = vec.y/mag, z = vec.z/mag } end routines.vec.rotateVec2 = function(vec2, theta) return { x = vec2.x*math.cos(theta) - vec2.y*math.sin(theta), y = vec2.x*math.sin(theta) + vec2.y*math.cos(theta)} end --------------------------------------------------------------------------------------------------------------------------- -- acc- the accuracy of each easting/northing. 0, 1, 2, 3, 4, or 5. routines.tostringMGRS = function(MGRS, acc) if acc == 0 then return MGRS.UTMZone .. ' ' .. MGRS.MGRSDigraph else return MGRS.UTMZone .. ' ' .. MGRS.MGRSDigraph .. ' ' .. string.format('%0' .. acc .. 'd', routines.utils.round(MGRS.Easting/(10^(5-acc)), 0)) .. ' ' .. string.format('%0' .. acc .. 'd', routines.utils.round(MGRS.Northing/(10^(5-acc)), 0)) end end --[[acc: in DM: decimal point of minutes. In DMS: decimal point of seconds. position after the decimal of the least significant digit: So: 42.32 - acc of 2. ]] routines.tostringLL = function(lat, lon, acc, DMS) local latHemi, lonHemi if lat > 0 then latHemi = 'N' else latHemi = 'S' end if lon > 0 then lonHemi = 'E' else lonHemi = 'W' end lat = math.abs(lat) lon = math.abs(lon) local latDeg = math.floor(lat) local latMin = (lat - latDeg)*60 local lonDeg = math.floor(lon) local lonMin = (lon - lonDeg)*60 if DMS then -- degrees, minutes, and seconds. local oldLatMin = latMin latMin = math.floor(latMin) local latSec = routines.utils.round((oldLatMin - latMin)*60, acc) local oldLonMin = lonMin lonMin = math.floor(lonMin) local lonSec = routines.utils.round((oldLonMin - lonMin)*60, acc) if latSec == 60 then latSec = 0 latMin = latMin + 1 end if lonSec == 60 then lonSec = 0 lonMin = lonMin + 1 end local secFrmtStr -- create the formatting string for the seconds place if acc <= 0 then -- no decimal place. secFrmtStr = '%02d' else local width = 3 + acc -- 01.310 - that's a width of 6, for example. secFrmtStr = '%0' .. width .. '.' .. acc .. 'f' end return string.format('%02d', latDeg) .. ' ' .. string.format('%02d', latMin) .. '\' ' .. string.format(secFrmtStr, latSec) .. '"' .. latHemi .. ' ' .. string.format('%02d', lonDeg) .. ' ' .. string.format('%02d', lonMin) .. '\' ' .. string.format(secFrmtStr, lonSec) .. '"' .. lonHemi else -- degrees, decimal minutes. latMin = routines.utils.round(latMin, acc) lonMin = routines.utils.round(lonMin, acc) if latMin == 60 then latMin = 0 latDeg = latDeg + 1 end if lonMin == 60 then lonMin = 0 lonDeg = lonDeg + 1 end local minFrmtStr -- create the formatting string for the minutes place if acc <= 0 then -- no decimal place. minFrmtStr = '%02d' else local width = 3 + acc -- 01.310 - that's a width of 6, for example. minFrmtStr = '%0' .. width .. '.' .. acc .. 'f' end return string.format('%02d', latDeg) .. ' ' .. string.format(minFrmtStr, latMin) .. '\'' .. latHemi .. ' ' .. string.format('%02d', lonDeg) .. ' ' .. string.format(minFrmtStr, lonMin) .. '\'' .. lonHemi end end --[[ required: az - radian required: dist - meters optional: alt - meters (set to false or nil if you don't want to use it). optional: metric - set true to get dist and alt in km and m. precision will always be nearest degree and NM or km.]] routines.tostringBR = function(az, dist, alt, metric) az = routines.utils.round(routines.utils.toDegree(az), 0) if metric then dist = routines.utils.round(dist/1000, 2) else dist = routines.utils.round(routines.utils.metersToNM(dist), 2) end local s = string.format('%03d', az) .. ' for ' .. dist if alt then if metric then s = s .. ' at ' .. routines.utils.round(alt, 0) else s = s .. ' at ' .. routines.utils.round(routines.utils.metersToFeet(alt), 0) end end return s end routines.getNorthCorrection = function(point) --gets the correction needed for true north if not point.z then --Vec2; convert to Vec3 point.z = point.y point.y = 0 end local lat, lon = coord.LOtoLL(point) local north_posit = coord.LLtoLO(lat + 1, lon) return math.atan2(north_posit.z - point.z, north_posit.x - point.x) end do local idNum = 0 --Simplified event handler routines.addEventHandler = function(f) --id is optional! local handler = {} idNum = idNum + 1 handler.id = idNum handler.f = f handler.onEvent = function(self, event) self.f(event) end world.addEventHandler(handler) end routines.removeEventHandler = function(id) for key, handler in pairs(world.eventHandlers) do if handler.id and handler.id == id then world.eventHandlers[key] = nil return true end end return false end end -- need to return a Vec3 or Vec2? function routines.getRandPointInCircle(point, radius, innerRadius) local theta = 2*math.pi*math.random() local rad = math.random() + math.random() if rad > 1 then rad = 2 - rad end local radMult if innerRadius and innerRadius <= radius then radMult = (radius - innerRadius)*rad + innerRadius else radMult = radius*rad end if not point.z then --might as well work with vec2/3 point.z = point.y end local rndCoord if radius > 0 then rndCoord = {x = math.cos(theta)*radMult + point.x, y = math.sin(theta)*radMult + point.z} else rndCoord = {x = point.x, y = point.z} end return rndCoord end routines.goRoute = function(group, path) local misTask = { id = 'Mission', params = { route = { points = routines.utils.deepCopy(path), }, }, } if type(group) == 'string' then group = Group.getByName(group) end local groupCon = group:getController() if groupCon then groupCon:setTask(misTask) return true end Controller.setTask(groupCon, misTask) return false end -- Useful atomic functions from mist, ported. routines.ground = {} routines.fixedWing = {} routines.heli = {} routines.ground.buildWP = function(point, overRideForm, overRideSpeed) local wp = {} wp.x = point.x if point.z then wp.y = point.z else wp.y = point.y end local form, speed if point.speed and not overRideSpeed then wp.speed = point.speed elseif type(overRideSpeed) == 'number' then wp.speed = overRideSpeed else wp.speed = routines.utils.kmphToMps(20) end if point.form and not overRideForm then form = point.form else form = overRideForm end if not form then wp.action = 'Cone' else form = string.lower(form) if form == 'off_road' or form == 'off road' then wp.action = 'Off Road' elseif form == 'on_road' or form == 'on road' then wp.action = 'On Road' elseif form == 'rank' or form == 'line_abrest' or form == 'line abrest' or form == 'lineabrest'then wp.action = 'Rank' elseif form == 'cone' then wp.action = 'Cone' elseif form == 'diamond' then wp.action = 'Diamond' elseif form == 'vee' then wp.action = 'Vee' elseif form == 'echelon_left' or form == 'echelon left' or form == 'echelonl' then wp.action = 'EchelonL' elseif form == 'echelon_right' or form == 'echelon right' or form == 'echelonr' then wp.action = 'EchelonR' else wp.action = 'Cone' -- if nothing matched end end wp.type = 'Turning Point' return wp end routines.fixedWing.buildWP = function(point, WPtype, speed, alt, altType) local wp = {} wp.x = point.x if point.z then wp.y = point.z else wp.y = point.y end if alt and type(alt) == 'number' then wp.alt = alt else wp.alt = 2000 end if altType then altType = string.lower(altType) if altType == 'radio' or 'agl' then wp.alt_type = 'RADIO' elseif altType == 'baro' or 'asl' then wp.alt_type = 'BARO' end else wp.alt_type = 'RADIO' end if point.speed then speed = point.speed end if point.type then WPtype = point.type end if not speed then wp.speed = routines.utils.kmphToMps(500) else wp.speed = speed end if not WPtype then wp.action = 'Turning Point' else WPtype = string.lower(WPtype) if WPtype == 'flyover' or WPtype == 'fly over' or WPtype == 'fly_over' then wp.action = 'Fly Over Point' elseif WPtype == 'turningpoint' or WPtype == 'turning point' or WPtype == 'turning_point' then wp.action = 'Turning Point' else wp.action = 'Turning Point' end end wp.type = 'Turning Point' return wp end routines.heli.buildWP = function(point, WPtype, speed, alt, altType) local wp = {} wp.x = point.x if point.z then wp.y = point.z else wp.y = point.y end if alt and type(alt) == 'number' then wp.alt = alt else wp.alt = 500 end if altType then altType = string.lower(altType) if altType == 'radio' or 'agl' then wp.alt_type = 'RADIO' elseif altType == 'baro' or 'asl' then wp.alt_type = 'BARO' end else wp.alt_type = 'RADIO' end if point.speed then speed = point.speed end if point.type then WPtype = point.type end if not speed then wp.speed = routines.utils.kmphToMps(200) else wp.speed = speed end if not WPtype then wp.action = 'Turning Point' else WPtype = string.lower(WPtype) if WPtype == 'flyover' or WPtype == 'fly over' or WPtype == 'fly_over' then wp.action = 'Fly Over Point' elseif WPtype == 'turningpoint' or WPtype == 'turning point' or WPtype == 'turning_point' then wp.action = 'Turning Point' else wp.action = 'Turning Point' end end wp.type = 'Turning Point' return wp end routines.groupToRandomPoint = function(vars) local group = vars.group --Required local point = vars.point --required local radius = vars.radius or 0 local innerRadius = vars.innerRadius local form = vars.form or 'Cone' local heading = vars.heading or math.random()*2*math.pi local headingDegrees = vars.headingDegrees local speed = vars.speed or routines.utils.kmphToMps(20) local useRoads if not vars.disableRoads then useRoads = true else useRoads = false end local path = {} if headingDegrees then heading = headingDegrees*math.pi/180 end if heading >= 2*math.pi then heading = heading - 2*math.pi end local rndCoord = routines.getRandPointInCircle(point, radius, innerRadius) local offset = {} local posStart = routines.getLeadPos(group) offset.x = routines.utils.round(math.sin(heading - (math.pi/2)) * 50 + rndCoord.x, 3) offset.z = routines.utils.round(math.cos(heading + (math.pi/2)) * 50 + rndCoord.y, 3) path[#path + 1] = routines.ground.buildWP(posStart, form, speed) if useRoads == true and ((point.x - posStart.x)^2 + (point.z - posStart.z)^2)^0.5 > radius * 1.3 then path[#path + 1] = routines.ground.buildWP({['x'] = posStart.x + 11, ['z'] = posStart.z + 11}, 'off_road', speed) path[#path + 1] = routines.ground.buildWP(posStart, 'on_road', speed) path[#path + 1] = routines.ground.buildWP(offset, 'on_road', speed) else path[#path + 1] = routines.ground.buildWP({['x'] = posStart.x + 25, ['z'] = posStart.z + 25}, form, speed) end path[#path + 1] = routines.ground.buildWP(offset, form, speed) path[#path + 1] = routines.ground.buildWP(rndCoord, form, speed) routines.goRoute(group, path) return end routines.groupRandomDistSelf = function(gpData, dist, form, heading, speed) local pos = routines.getLeadPos(gpData) local fakeZone = {} fakeZone.radius = dist or math.random(300, 1000) fakeZone.point = {x = pos.x, y, pos.y, z = pos.z} routines.groupToRandomZone(gpData, fakeZone, form, heading, speed) return end routines.groupToRandomZone = function(gpData, zone, form, heading, speed) if type(gpData) == 'string' then gpData = Group.getByName(gpData) end if type(zone) == 'string' then zone = trigger.misc.getZone(zone) elseif type(zone) == 'table' and not zone.radius then zone = trigger.misc.getZone(zone[math.random(1, #zone)]) end if speed then speed = routines.utils.kmphToMps(speed) end local vars = {} vars.group = gpData vars.radius = zone.radius vars.form = form vars.headingDegrees = heading vars.speed = speed vars.point = routines.utils.zoneToVec3(zone) routines.groupToRandomPoint(vars) return end routines.isTerrainValid = function(coord, terrainTypes) -- vec2/3 and enum or table of acceptable terrain types if coord.z then coord.y = coord.z end local typeConverted = {} if type(terrainTypes) == 'string' then -- if its a string it does this check for constId, constData in pairs(land.SurfaceType) do if string.lower(constId) == string.lower(terrainTypes) or string.lower(constData) == string.lower(terrainTypes) then table.insert(typeConverted, constId) end end elseif type(terrainTypes) == 'table' then -- if its a table it does this check for typeId, typeData in pairs(terrainTypes) do for constId, constData in pairs(land.SurfaceType) do if string.lower(constId) == string.lower(typeData) or string.lower(constData) == string.lower(typeId) then table.insert(typeConverted, constId) end end end end for validIndex, validData in pairs(typeConverted) do if land.getSurfaceType(coord) == land.SurfaceType[validData] then return true end end return false end routines.groupToPoint = function(gpData, point, form, heading, speed, useRoads) if type(point) == 'string' then point = trigger.misc.getZone(point) end if speed then speed = routines.utils.kmphToMps(speed) end local vars = {} vars.group = gpData vars.form = form vars.headingDegrees = heading vars.speed = speed vars.disableRoads = useRoads vars.point = routines.utils.zoneToVec3(point) routines.groupToRandomPoint(vars) return end routines.getLeadPos = function(group) if type(group) == 'string' then -- group name group = Group.getByName(group) end local units = group:getUnits() local leader = units[1] if not leader then -- SHOULD be good, but if there is a bug, this code future-proofs it then. local lowestInd = math.huge for ind, unit in pairs(units) do if ind < lowestInd then lowestInd = ind leader = unit end end end if leader and Unit.isExist(leader) then -- maybe a little too paranoid now... return leader:getPosition().p end end --[[ vars for routines.getMGRSString: vars.units - table of unit names (NOT unitNameTable- maybe this should change). vars.acc - integer between 0 and 5, inclusive ]] routines.getMGRSString = function(vars) local units = vars.units local acc = vars.acc or 5 local avgPos = routines.getAvgPos(units) if avgPos then return routines.tostringMGRS(coord.LLtoMGRS(coord.LOtoLL(avgPos)), acc) end end --[[ vars for routines.getLLString vars.units - table of unit names (NOT unitNameTable- maybe this should change). vars.acc - integer, number of numbers after decimal place vars.DMS - if true, output in degrees, minutes, seconds. Otherwise, output in degrees, minutes. ]] routines.getLLString = function(vars) local units = vars.units local acc = vars.acc or 3 local DMS = vars.DMS local avgPos = routines.getAvgPos(units) if avgPos then local lat, lon = coord.LOtoLL(avgPos) return routines.tostringLL(lat, lon, acc, DMS) end end --[[ vars.zone - table of a zone name. vars.ref - vec3 ref point, maybe overload for vec2 as well? vars.alt - boolean, if used, includes altitude in string vars.metric - boolean, gives distance in km instead of NM. ]] routines.getBRStringZone = function(vars) local zone = trigger.misc.getZone( vars.zone ) local ref = routines.utils.makeVec3(vars.ref, 0) -- turn it into Vec3 if it is not already. local alt = vars.alt local metric = vars.metric if zone then local vec = {x = zone.point.x - ref.x, y = zone.point.y - ref.y, z = zone.point.z - ref.z} local dir = routines.utils.getDir(vec, ref) local dist = routines.utils.get2DDist(zone.point, ref) if alt then alt = zone.y end return routines.tostringBR(dir, dist, alt, metric) else env.info( 'routines.getBRStringZone: error: zone is nil' ) end end --[[ vars.units- table of unit names (NOT unitNameTable- maybe this should change). vars.ref - vec3 ref point, maybe overload for vec2 as well? vars.alt - boolean, if used, includes altitude in string vars.metric - boolean, gives distance in km instead of NM. ]] routines.getBRString = function(vars) local units = vars.units local ref = routines.utils.makeVec3(vars.ref, 0) -- turn it into Vec3 if it is not already. local alt = vars.alt local metric = vars.metric local avgPos = routines.getAvgPos(units) if avgPos then local vec = {x = avgPos.x - ref.x, y = avgPos.y - ref.y, z = avgPos.z - ref.z} local dir = routines.utils.getDir(vec, ref) local dist = routines.utils.get2DDist(avgPos, ref) if alt then alt = avgPos.y end return routines.tostringBR(dir, dist, alt, metric) end end -- Returns the Vec3 coordinates of the average position of the concentration of units most in the heading direction. --[[ vars for routines.getLeadingPos: vars.units - table of unit names vars.heading - direction vars.radius - number vars.headingDegrees - boolean, switches heading to degrees ]] routines.getLeadingPos = function(vars) local units = vars.units local heading = vars.heading local radius = vars.radius if vars.headingDegrees then heading = routines.utils.toRadian(vars.headingDegrees) end local unitPosTbl = {} for i = 1, #units do local unit = Unit.getByName(units[i]) if unit and unit:isExist() then unitPosTbl[#unitPosTbl + 1] = unit:getPosition().p end end if #unitPosTbl > 0 then -- one more more units found. -- first, find the unit most in the heading direction local maxPos = -math.huge local maxPosInd -- maxPos - the furthest in direction defined by heading; maxPosInd = for i = 1, #unitPosTbl do local rotatedVec2 = routines.vec.rotateVec2(routines.utils.makeVec2(unitPosTbl[i]), heading) if (not maxPos) or maxPos < rotatedVec2.x then maxPos = rotatedVec2.x maxPosInd = i end end --now, get all the units around this unit... local avgPos if radius then local maxUnitPos = unitPosTbl[maxPosInd] local avgx, avgy, avgz, totNum = 0, 0, 0, 0 for i = 1, #unitPosTbl do if routines.utils.get2DDist(maxUnitPos, unitPosTbl[i]) <= radius then avgx = avgx + unitPosTbl[i].x avgy = avgy + unitPosTbl[i].y avgz = avgz + unitPosTbl[i].z totNum = totNum + 1 end end avgPos = { x = avgx/totNum, y = avgy/totNum, z = avgz/totNum} else avgPos = unitPosTbl[maxPosInd] end return avgPos end end --[[ vars for routines.getLeadingMGRSString: vars.units - table of unit names vars.heading - direction vars.radius - number vars.headingDegrees - boolean, switches heading to degrees vars.acc - number, 0 to 5. ]] routines.getLeadingMGRSString = function(vars) local pos = routines.getLeadingPos(vars) if pos then local acc = vars.acc or 5 return routines.tostringMGRS(coord.LLtoMGRS(coord.LOtoLL(pos)), acc) end end --[[ vars for routines.getLeadingLLString: vars.units - table of unit names vars.heading - direction, number vars.radius - number vars.headingDegrees - boolean, switches heading to degrees vars.acc - number of digits after decimal point (can be negative) vars.DMS - boolean, true if you want DMS. ]] routines.getLeadingLLString = function(vars) local pos = routines.getLeadingPos(vars) if pos then local acc = vars.acc or 3 local DMS = vars.DMS local lat, lon = coord.LOtoLL(pos) return routines.tostringLL(lat, lon, acc, DMS) end end --[[ vars for routines.getLeadingBRString: vars.units - table of unit names vars.heading - direction, number vars.radius - number vars.headingDegrees - boolean, switches heading to degrees vars.metric - boolean, if true, use km instead of NM. vars.alt - boolean, if true, include altitude. vars.ref - vec3/vec2 reference point. ]] routines.getLeadingBRString = function(vars) local pos = routines.getLeadingPos(vars) if pos then local ref = vars.ref local alt = vars.alt local metric = vars.metric local vec = {x = pos.x - ref.x, y = pos.y - ref.y, z = pos.z - ref.z} local dir = routines.utils.getDir(vec, ref) local dist = routines.utils.get2DDist(pos, ref) if alt then alt = pos.y end return routines.tostringBR(dir, dist, alt, metric) end end --[[ vars for routines.message.add vars.text = 'Hello World' vars.displayTime = 20 vars.msgFor = {coa = {'red'}, countries = {'Ukraine', 'Georgia'}, unitTypes = {'A-10C'}} ]] --[[ vars for routines.msgMGRS vars.units - table of unit names (NOT unitNameTable- maybe this should change). vars.acc - integer between 0 and 5, inclusive vars.text - text in the message vars.displayTime - self explanatory vars.msgFor - scope ]] routines.msgMGRS = function(vars) local units = vars.units local acc = vars.acc local text = vars.text local displayTime = vars.displayTime local msgFor = vars.msgFor local s = routines.getMGRSString{units = units, acc = acc} local newText if string.find(text, '%%s') then -- look for %s newText = string.format(text, s) -- insert the coordinates into the message else -- else, just append to the end. newText = text .. s end routines.message.add{ text = newText, displayTime = displayTime, msgFor = msgFor } end --[[ vars for routines.msgLL vars.units - table of unit names (NOT unitNameTable- maybe this should change) (Yes). vars.acc - integer, number of numbers after decimal place vars.DMS - if true, output in degrees, minutes, seconds. Otherwise, output in degrees, minutes. vars.text - text in the message vars.displayTime - self explanatory vars.msgFor - scope ]] routines.msgLL = function(vars) local units = vars.units -- technically, I don't really need to do this, but it helps readability. local acc = vars.acc local DMS = vars.DMS local text = vars.text local displayTime = vars.displayTime local msgFor = vars.msgFor local s = routines.getLLString{units = units, acc = acc, DMS = DMS} local newText if string.find(text, '%%s') then -- look for %s newText = string.format(text, s) -- insert the coordinates into the message else -- else, just append to the end. newText = text .. s end routines.message.add{ text = newText, displayTime = displayTime, msgFor = msgFor } end --[[ vars.units- table of unit names (NOT unitNameTable- maybe this should change). vars.ref - vec3 ref point, maybe overload for vec2 as well? vars.alt - boolean, if used, includes altitude in string vars.metric - boolean, gives distance in km instead of NM. vars.text - text of the message vars.displayTime vars.msgFor - scope ]] routines.msgBR = function(vars) local units = vars.units -- technically, I don't really need to do this, but it helps readability. local ref = vars.ref -- vec2/vec3 will be handled in routines.getBRString local alt = vars.alt local metric = vars.metric local text = vars.text local displayTime = vars.displayTime local msgFor = vars.msgFor local s = routines.getBRString{units = units, ref = ref, alt = alt, metric = metric} local newText if string.find(text, '%%s') then -- look for %s newText = string.format(text, s) -- insert the coordinates into the message else -- else, just append to the end. newText = text .. s end routines.message.add{ text = newText, displayTime = displayTime, msgFor = msgFor } end -------------------------------------------------------------------------------------------- -- basically, just sub-types of routines.msgBR... saves folks the work of getting the ref point. --[[ vars.units- table of unit names (NOT unitNameTable- maybe this should change). vars.ref - string red, blue vars.alt - boolean, if used, includes altitude in string vars.metric - boolean, gives distance in km instead of NM. vars.text - text of the message vars.displayTime vars.msgFor - scope ]] routines.msgBullseye = function(vars) if string.lower(vars.ref) == 'red' then vars.ref = routines.DBs.missionData.bullseye.red routines.msgBR(vars) elseif string.lower(vars.ref) == 'blue' then vars.ref = routines.DBs.missionData.bullseye.blue routines.msgBR(vars) end end --[[ vars.units- table of unit names (NOT unitNameTable- maybe this should change). vars.ref - unit name of reference point vars.alt - boolean, if used, includes altitude in string vars.metric - boolean, gives distance in km instead of NM. vars.text - text of the message vars.displayTime vars.msgFor - scope ]] routines.msgBRA = function(vars) if Unit.getByName(vars.ref) then vars.ref = Unit.getByName(vars.ref):getPosition().p if not vars.alt then vars.alt = true end routines.msgBR(vars) end end -------------------------------------------------------------------------------------------- --[[ vars for routines.msgLeadingMGRS: vars.units - table of unit names vars.heading - direction vars.radius - number vars.headingDegrees - boolean, switches heading to degrees (optional) vars.acc - number, 0 to 5. vars.text - text of the message vars.displayTime vars.msgFor - scope ]] routines.msgLeadingMGRS = function(vars) local units = vars.units -- technically, I don't really need to do this, but it helps readability. local heading = vars.heading local radius = vars.radius local headingDegrees = vars.headingDegrees local acc = vars.acc local text = vars.text local displayTime = vars.displayTime local msgFor = vars.msgFor local s = routines.getLeadingMGRSString{units = units, heading = heading, radius = radius, headingDegrees = headingDegrees, acc = acc} local newText if string.find(text, '%%s') then -- look for %s newText = string.format(text, s) -- insert the coordinates into the message else -- else, just append to the end. newText = text .. s end routines.message.add{ text = newText, displayTime = displayTime, msgFor = msgFor } end --[[ vars for routines.msgLeadingLL: vars.units - table of unit names vars.heading - direction, number vars.radius - number vars.headingDegrees - boolean, switches heading to degrees (optional) vars.acc - number of digits after decimal point (can be negative) vars.DMS - boolean, true if you want DMS. (optional) vars.text - text of the message vars.displayTime vars.msgFor - scope ]] routines.msgLeadingLL = function(vars) local units = vars.units -- technically, I don't really need to do this, but it helps readability. local heading = vars.heading local radius = vars.radius local headingDegrees = vars.headingDegrees local acc = vars.acc local DMS = vars.DMS local text = vars.text local displayTime = vars.displayTime local msgFor = vars.msgFor local s = routines.getLeadingLLString{units = units, heading = heading, radius = radius, headingDegrees = headingDegrees, acc = acc, DMS = DMS} local newText if string.find(text, '%%s') then -- look for %s newText = string.format(text, s) -- insert the coordinates into the message else -- else, just append to the end. newText = text .. s end routines.message.add{ text = newText, displayTime = displayTime, msgFor = msgFor } end --[[ vars.units - table of unit names vars.heading - direction, number vars.radius - number vars.headingDegrees - boolean, switches heading to degrees (optional) vars.metric - boolean, if true, use km instead of NM. (optional) vars.alt - boolean, if true, include altitude. (optional) vars.ref - vec3/vec2 reference point. vars.text - text of the message vars.displayTime vars.msgFor - scope ]] routines.msgLeadingBR = function(vars) local units = vars.units -- technically, I don't really need to do this, but it helps readability. local heading = vars.heading local radius = vars.radius local headingDegrees = vars.headingDegrees local metric = vars.metric local alt = vars.alt local ref = vars.ref -- vec2/vec3 will be handled in routines.getBRString local text = vars.text local displayTime = vars.displayTime local msgFor = vars.msgFor local s = routines.getLeadingBRString{units = units, heading = heading, radius = radius, headingDegrees = headingDegrees, metric = metric, alt = alt, ref = ref} local newText if string.find(text, '%%s') then -- look for %s newText = string.format(text, s) -- insert the coordinates into the message else -- else, just append to the end. newText = text .. s end routines.message.add{ text = newText, displayTime = displayTime, msgFor = msgFor } end function spairs(t, order) -- collect the keys local keys = {} for k in pairs(t) do keys[#keys+1] = k end -- if order function given, sort by it by passing the table and keys a, b, -- otherwise just sort the keys if order then table.sort(keys, function(a,b) return order(t, a, b) end) else table.sort(keys) end -- return the iterator function local i = 0 return function() i = i + 1 if keys[i] then return keys[i], t[keys[i]] end end end function routines.IsPartOfGroupInZones( CargoGroup, LandingZones ) --trace.f() local CurrentZoneID = nil if CargoGroup then local CargoUnits = CargoGroup:getUnits() for CargoUnitID, CargoUnit in pairs( CargoUnits ) do if CargoUnit and CargoUnit:getLife() >= 1.0 then CurrentZoneID = routines.IsUnitInZones( CargoUnit, LandingZones ) if CurrentZoneID then break end end end end --trace.r( "", "", { CurrentZoneID } ) return CurrentZoneID end function routines.IsUnitInZones( TransportUnit, LandingZones ) --trace.f("", "routines.IsUnitInZones" ) local TransportZoneResult = nil local TransportZonePos = nil local TransportZone = nil -- fill-up some local variables to support further calculations to determine location of units within the zone. if TransportUnit then local TransportUnitPos = TransportUnit:getPosition().p if type( LandingZones ) == "table" then for LandingZoneID, LandingZoneName in pairs( LandingZones ) do TransportZone = trigger.misc.getZone( LandingZoneName ) if TransportZone then TransportZonePos = {radius = TransportZone.radius, x = TransportZone.point.x, y = TransportZone.point.y, z = TransportZone.point.z} if ((( TransportUnitPos.x - TransportZonePos.x)^2 + (TransportUnitPos.z - TransportZonePos.z)^2)^0.5 <= TransportZonePos.radius) then TransportZoneResult = LandingZoneID break end end end else TransportZone = trigger.misc.getZone( LandingZones ) TransportZonePos = {radius = TransportZone.radius, x = TransportZone.point.x, y = TransportZone.point.y, z = TransportZone.point.z} if ((( TransportUnitPos.x - TransportZonePos.x)^2 + (TransportUnitPos.z - TransportZonePos.z)^2)^0.5 <= TransportZonePos.radius) then TransportZoneResult = 1 end end if TransportZoneResult then --trace.i( "routines", "TransportZone:" .. TransportZoneResult ) else --trace.i( "routines", "TransportZone:nil logic" ) end return TransportZoneResult else --trace.i( "routines", "TransportZone:nil hard" ) return nil end end function routines.IsUnitNearZonesRadius( TransportUnit, LandingZones, ZoneRadius ) --trace.f("", "routines.IsUnitInZones" ) local TransportZoneResult = nil local TransportZonePos = nil local TransportZone = nil -- fill-up some local variables to support further calculations to determine location of units within the zone. if TransportUnit then local TransportUnitPos = TransportUnit:getPosition().p if type( LandingZones ) == "table" then for LandingZoneID, LandingZoneName in pairs( LandingZones ) do TransportZone = trigger.misc.getZone( LandingZoneName ) if TransportZone then TransportZonePos = {radius = TransportZone.radius, x = TransportZone.point.x, y = TransportZone.point.y, z = TransportZone.point.z} if ((( TransportUnitPos.x - TransportZonePos.x)^2 + (TransportUnitPos.z - TransportZonePos.z)^2)^0.5 <= ZoneRadius ) then TransportZoneResult = LandingZoneID break end end end else TransportZone = trigger.misc.getZone( LandingZones ) TransportZonePos = {radius = TransportZone.radius, x = TransportZone.point.x, y = TransportZone.point.y, z = TransportZone.point.z} if ((( TransportUnitPos.x - TransportZonePos.x)^2 + (TransportUnitPos.z - TransportZonePos.z)^2)^0.5 <= ZoneRadius ) then TransportZoneResult = 1 end end if TransportZoneResult then --trace.i( "routines", "TransportZone:" .. TransportZoneResult ) else --trace.i( "routines", "TransportZone:nil logic" ) end return TransportZoneResult else --trace.i( "routines", "TransportZone:nil hard" ) return nil end end function routines.IsStaticInZones( TransportStatic, LandingZones ) --trace.f() local TransportZoneResult = nil local TransportZonePos = nil local TransportZone = nil -- fill-up some local variables to support further calculations to determine location of units within the zone. local TransportStaticPos = TransportStatic:getPosition().p if type( LandingZones ) == "table" then for LandingZoneID, LandingZoneName in pairs( LandingZones ) do TransportZone = trigger.misc.getZone( LandingZoneName ) if TransportZone then TransportZonePos = {radius = TransportZone.radius, x = TransportZone.point.x, y = TransportZone.point.y, z = TransportZone.point.z} if ((( TransportStaticPos.x - TransportZonePos.x)^2 + (TransportStaticPos.z - TransportZonePos.z)^2)^0.5 <= TransportZonePos.radius) then TransportZoneResult = LandingZoneID break end end end else TransportZone = trigger.misc.getZone( LandingZones ) TransportZonePos = {radius = TransportZone.radius, x = TransportZone.point.x, y = TransportZone.point.y, z = TransportZone.point.z} if ((( TransportStaticPos.x - TransportZonePos.x)^2 + (TransportStaticPos.z - TransportZonePos.z)^2)^0.5 <= TransportZonePos.radius) then TransportZoneResult = 1 end end --trace.r( "", "", { TransportZoneResult } ) return TransportZoneResult end function routines.IsUnitInRadius( CargoUnit, ReferencePosition, Radius ) --trace.f() local Valid = true -- fill-up some local variables to support further calculations to determine location of units within the zone. local CargoPos = CargoUnit:getPosition().p local ReferenceP = ReferencePosition.p if (((CargoPos.x - ReferenceP.x)^2 + (CargoPos.z - ReferenceP.z)^2)^0.5 <= Radius) then else Valid = false end return Valid end function routines.IsPartOfGroupInRadius( CargoGroup, ReferencePosition, Radius ) --trace.f() local Valid = true Valid = routines.ValidateGroup( CargoGroup, "CargoGroup", Valid ) -- fill-up some local variables to support further calculations to determine location of units within the zone local CargoUnits = CargoGroup:getUnits() for CargoUnitId, CargoUnit in pairs( CargoUnits ) do local CargoUnitPos = CargoUnit:getPosition().p -- env.info( 'routines.IsPartOfGroupInRadius: CargoUnitPos.x = ' .. CargoUnitPos.x .. ' CargoUnitPos.z = ' .. CargoUnitPos.z ) local ReferenceP = ReferencePosition.p -- env.info( 'routines.IsPartOfGroupInRadius: ReferenceGroupPos.x = ' .. ReferenceGroupPos.x .. ' ReferenceGroupPos.z = ' .. ReferenceGroupPos.z ) if ((( CargoUnitPos.x - ReferenceP.x)^2 + (CargoUnitPos.z - ReferenceP.z)^2)^0.5 <= Radius) then else Valid = false break end end return Valid end function routines.ValidateString( Variable, VariableName, Valid ) --trace.f() if type( Variable ) == "string" then if Variable == "" then error( "routines.ValidateString: error: " .. VariableName .. " must be filled out!" ) Valid = false end else error( "routines.ValidateString: error: " .. VariableName .. " is not a string." ) Valid = false end --trace.r( "", "", { Valid } ) return Valid end function routines.ValidateNumber( Variable, VariableName, Valid ) --trace.f() if type( Variable ) == "number" then else error( "routines.ValidateNumber: error: " .. VariableName .. " is not a number." ) Valid = false end --trace.r( "", "", { Valid } ) return Valid end function routines.ValidateGroup( Variable, VariableName, Valid ) --trace.f() if Variable == nil then error( "routines.ValidateGroup: error: " .. VariableName .. " is a nil value!" ) Valid = false end --trace.r( "", "", { Valid } ) return Valid end function routines.ValidateZone( LandingZones, VariableName, Valid ) --trace.f() if LandingZones == nil then error( "routines.ValidateGroup: error: " .. VariableName .. " is a nil value!" ) Valid = false end if type( LandingZones ) == "table" then for LandingZoneID, LandingZoneName in pairs( LandingZones ) do if trigger.misc.getZone( LandingZoneName ) == nil then error( "routines.ValidateGroup: error: Zone " .. LandingZoneName .. " does not exist!" ) Valid = false break end end else if trigger.misc.getZone( LandingZones ) == nil then error( "routines.ValidateGroup: error: Zone " .. LandingZones .. " does not exist!" ) Valid = false end end --trace.r( "", "", { Valid } ) return Valid end function routines.ValidateEnumeration( Variable, VariableName, Enum, Valid ) --trace.f() local ValidVariable = false for EnumId, EnumData in pairs( Enum ) do if Variable == EnumData then ValidVariable = true break end end if ValidVariable then else error( 'TransportValidateEnum: " .. VariableName .. " is not a valid type.' .. Variable ) Valid = false end --trace.r( "", "", { Valid } ) return Valid end function routines.getGroupRoute(groupIdent, task) -- same as getGroupPoints but returns speed and formation type along with vec2 of point} -- refactor to search by groupId and allow groupId and groupName as inputs local gpId = groupIdent if type(groupIdent) == 'string' and not tonumber(groupIdent) then gpId = _DATABASE.Templates.Groups[groupIdent].groupId end for coa_name, coa_data in pairs(env.mission.coalition) do if (coa_name == 'red' or coa_name == 'blue') and type(coa_data) == 'table' then if coa_data.country then --there is a country table for cntry_id, cntry_data in pairs(coa_data.country) do for obj_type_name, obj_type_data in pairs(cntry_data) do if obj_type_name == "helicopter" or obj_type_name == "ship" or obj_type_name == "plane" or obj_type_name == "vehicle" then -- only these types have points if ((type(obj_type_data) == 'table') and obj_type_data.group and (type(obj_type_data.group) == 'table') and (#obj_type_data.group > 0)) then --there's a group! for group_num, group_data in pairs(obj_type_data.group) do if group_data and group_data.groupId == gpId then -- this is the group we are looking for if group_data.route and group_data.route.points and #group_data.route.points > 0 then local points = {} for point_num, point in pairs(group_data.route.points) do local routeData = {} if not point.point then routeData.x = point.x routeData.y = point.y else routeData.point = point.point --it's possible that the ME could move to the point = Vec2 notation. end routeData.form = point.action routeData.speed = point.speed routeData.alt = point.alt routeData.alt_type = point.alt_type routeData.airdromeId = point.airdromeId routeData.helipadId = point.helipadId routeData.type = point.type routeData.action = point.action if task then routeData.task = point.task end points[point_num] = routeData end return points end return end --if group_data and group_data.name and group_data.name == 'groupname' end --for group_num, group_data in pairs(obj_type_data.group) do end --if ((type(obj_type_data) == 'table') and obj_type_data.group and (type(obj_type_data.group) == 'table') and (#obj_type_data.group > 0)) then end --if obj_type_name == "helicopter" or obj_type_name == "ship" or obj_type_name == "plane" or obj_type_name == "vehicle" or obj_type_name == "static" then end --for obj_type_name, obj_type_data in pairs(cntry_data) do end --for cntry_id, cntry_data in pairs(coa_data.country) do end --if coa_data.country then --there is a country table end --if coa_name == 'red' or coa_name == 'blue' and type(coa_data) == 'table' then end --for coa_name, coa_data in pairs(mission.coalition) do end routines.ground.patrolRoute = function(vars) local tempRoute = {} local useRoute = {} local gpData = vars.gpData if type(gpData) == 'string' then gpData = Group.getByName(gpData) end local useGroupRoute if not vars.useGroupRoute then useGroupRoute = vars.gpData else useGroupRoute = vars.useGroupRoute end local routeProvided = false if not vars.route then if useGroupRoute then tempRoute = routines.getGroupRoute(useGroupRoute) end else useRoute = vars.route local posStart = routines.getLeadPos(gpData) useRoute[1] = routines.ground.buildWP(posStart, useRoute[1].action, useRoute[1].speed) routeProvided = true end local overRideSpeed = vars.speed or 'default' local pType = vars.pType local offRoadForm = vars.offRoadForm or 'default' local onRoadForm = vars.onRoadForm or 'default' if routeProvided == false and #tempRoute > 0 then local posStart = routines.getLeadPos(gpData) useRoute[#useRoute + 1] = routines.ground.buildWP(posStart, offRoadForm, overRideSpeed) for i = 1, #tempRoute do local tempForm = tempRoute[i].action local tempSpeed = tempRoute[i].speed if offRoadForm == 'default' then tempForm = tempRoute[i].action end if onRoadForm == 'default' then onRoadForm = 'On Road' end if (string.lower(tempRoute[i].action) == 'on road' or string.lower(tempRoute[i].action) == 'onroad' or string.lower(tempRoute[i].action) == 'on_road') then tempForm = onRoadForm else tempForm = offRoadForm end if type(overRideSpeed) == 'number' then tempSpeed = overRideSpeed end useRoute[#useRoute + 1] = routines.ground.buildWP(tempRoute[i], tempForm, tempSpeed) end if pType and string.lower(pType) == 'doubleback' then local curRoute = routines.utils.deepCopy(useRoute) for i = #curRoute, 2, -1 do useRoute[#useRoute + 1] = routines.ground.buildWP(curRoute[i], curRoute[i].action, curRoute[i].speed) end end useRoute[1].action = useRoute[#useRoute].action -- make it so the first WP matches the last WP end local cTask3 = {} local newPatrol = {} newPatrol.route = useRoute newPatrol.gpData = gpData:getName() cTask3[#cTask3 + 1] = 'routines.ground.patrolRoute(' cTask3[#cTask3 + 1] = routines.utils.oneLineSerialize(newPatrol) cTask3[#cTask3 + 1] = ')' cTask3 = table.concat(cTask3) local tempTask = { id = 'WrappedAction', params = { action = { id = 'Script', params = { command = cTask3, }, }, }, } useRoute[#useRoute].task = tempTask routines.goRoute(gpData, useRoute) return end routines.ground.patrol = function(gpData, pType, form, speed) local vars = {} if type(gpData) == 'table' and gpData:getName() then gpData = gpData:getName() end vars.useGroupRoute = gpData vars.gpData = gpData vars.pType = pType vars.offRoadForm = form vars.speed = speed routines.ground.patrolRoute(vars) return end function routines.GetUnitHeight( CheckUnit ) --trace.f( "routines" ) local UnitPoint = CheckUnit:getPoint() local UnitPosition = { x = UnitPoint.x, y = UnitPoint.z } local UnitHeight = UnitPoint.y local LandHeight = land.getHeight( UnitPosition ) --env.info(( 'CarrierHeight: LandHeight = ' .. LandHeight .. ' CarrierHeight = ' .. CarrierHeight )) --trace.f( "routines", "Unit Height = " .. UnitHeight - LandHeight ) return UnitHeight - LandHeight end Su34Status = { status = {} } boardMsgRed = { statusMsg = "" } boardMsgAll = { timeMsg = "" } SpawnSettings = {} Su34MenuPath = {} Su34Menus = 0 function Su34AttackCarlVinson(groupName) --trace.menu("", "Su34AttackCarlVinson") local groupSu34 = Group.getByName( groupName ) local controllerSu34 = groupSu34.getController(groupSu34) local groupCarlVinson = Group.getByName("US Carl Vinson #001") controllerSu34.setOption( controllerSu34, AI.Option.Air.id.ROE, AI.Option.Air.val.ROE.OPEN_FIRE ) controllerSu34.setOption( controllerSu34, AI.Option.Air.id.REACTION_ON_THREAT, AI.Option.Air.val.REACTION_ON_THREAT.EVADE_FIRE ) if groupCarlVinson ~= nil then controllerSu34.pushTask(controllerSu34,{id = 'AttackGroup', params = { groupId = groupCarlVinson:getID(), expend = AI.Task.WeaponExpend.ALL, attackQtyLimit = true}}) end Su34Status.status[groupName] = 1 MessageToRed( string.format('%s: ',groupName) .. 'Attacking carrier Carl Vinson. ', 10, 'RedStatus' .. groupName ) end function Su34AttackWest(groupName) --trace.f("","Su34AttackWest") local groupSu34 = Group.getByName( groupName ) local controllerSu34 = groupSu34.getController(groupSu34) local groupShipWest1 = Group.getByName("US Ship West #001") local groupShipWest2 = Group.getByName("US Ship West #002") controllerSu34.setOption( controllerSu34, AI.Option.Air.id.ROE, AI.Option.Air.val.ROE.OPEN_FIRE ) controllerSu34.setOption( controllerSu34, AI.Option.Air.id.REACTION_ON_THREAT, AI.Option.Air.val.REACTION_ON_THREAT.EVADE_FIRE ) if groupShipWest1 ~= nil then controllerSu34.pushTask(controllerSu34,{id = 'AttackGroup', params = { groupId = groupShipWest1:getID(), expend = AI.Task.WeaponExpend.ALL, attackQtyLimit = true}}) end if groupShipWest2 ~= nil then controllerSu34.pushTask(controllerSu34,{id = 'AttackGroup', params = { groupId = groupShipWest2:getID(), expend = AI.Task.WeaponExpend.ALL, attackQtyLimit = true}}) end Su34Status.status[groupName] = 2 MessageToRed( string.format('%s: ',groupName) .. 'Attacking invading ships in the west. ', 10, 'RedStatus' .. groupName ) end function Su34AttackNorth(groupName) --trace.menu("","Su34AttackNorth") local groupSu34 = Group.getByName( groupName ) local controllerSu34 = groupSu34.getController(groupSu34) local groupShipNorth1 = Group.getByName("US Ship North #001") local groupShipNorth2 = Group.getByName("US Ship North #002") local groupShipNorth3 = Group.getByName("US Ship North #003") controllerSu34.setOption( controllerSu34, AI.Option.Air.id.ROE, AI.Option.Air.val.ROE.OPEN_FIRE ) controllerSu34.setOption( controllerSu34, AI.Option.Air.id.REACTION_ON_THREAT, AI.Option.Air.val.REACTION_ON_THREAT.EVADE_FIRE ) if groupShipNorth1 ~= nil then controllerSu34.pushTask(controllerSu34,{id = 'AttackGroup', params = { groupId = groupShipNorth1:getID(), expend = AI.Task.WeaponExpend.ALL, attackQtyLimit = false}}) end if groupShipNorth2 ~= nil then controllerSu34.pushTask(controllerSu34,{id = 'AttackGroup', params = { groupId = groupShipNorth2:getID(), expend = AI.Task.WeaponExpend.ALL, attackQtyLimit = false}}) end if groupShipNorth3 ~= nil then controllerSu34.pushTask(controllerSu34,{id = 'AttackGroup', params = { groupId = groupShipNorth3:getID(), expend = AI.Task.WeaponExpend.ALL, attackQtyLimit = false}}) end Su34Status.status[groupName] = 3 MessageToRed( string.format('%s: ',groupName) .. 'Attacking invading ships in the north. ', 10, 'RedStatus' .. groupName ) end function Su34Orbit(groupName) --trace.menu("","Su34Orbit") local groupSu34 = Group.getByName( groupName ) local controllerSu34 = groupSu34:getController() controllerSu34.setOption( controllerSu34, AI.Option.Air.id.ROE, AI.Option.Air.val.ROE.WEAPON_HOLD ) controllerSu34.setOption( controllerSu34, AI.Option.Air.id.REACTION_ON_THREAT, AI.Option.Air.val.REACTION_ON_THREAT.EVADE_FIRE ) controllerSu34:pushTask( {id = 'ControlledTask', params = { task = { id = 'Orbit', params = { pattern = AI.Task.OrbitPattern.RACE_TRACK } }, stopCondition = { duration = 600 } } } ) Su34Status.status[groupName] = 4 MessageToRed( string.format('%s: ',groupName) .. 'In orbit and awaiting further instructions. ', 10, 'RedStatus' .. groupName ) end function Su34TakeOff(groupName) --trace.menu("","Su34TakeOff") local groupSu34 = Group.getByName( groupName ) local controllerSu34 = groupSu34:getController() controllerSu34.setOption( controllerSu34, AI.Option.Air.id.ROE, AI.Option.Air.val.ROE.WEAPON_HOLD ) controllerSu34.setOption( controllerSu34, AI.Option.Air.id.REACTION_ON_THREAT, AI.Option.Air.val.REACTION_ON_THREAT.BYPASS_AND_ESCAPE ) Su34Status.status[groupName] = 8 MessageToRed( string.format('%s: ',groupName) .. 'Take-Off. ', 10, 'RedStatus' .. groupName ) end function Su34Hold(groupName) --trace.menu("","Su34Hold") local groupSu34 = Group.getByName( groupName ) local controllerSu34 = groupSu34:getController() controllerSu34.setOption( controllerSu34, AI.Option.Air.id.ROE, AI.Option.Air.val.ROE.WEAPON_HOLD ) controllerSu34.setOption( controllerSu34, AI.Option.Air.id.REACTION_ON_THREAT, AI.Option.Air.val.REACTION_ON_THREAT.BYPASS_AND_ESCAPE ) Su34Status.status[groupName] = 5 MessageToRed( string.format('%s: ',groupName) .. 'Holding Weapons. ', 10, 'RedStatus' .. groupName ) end function Su34RTB(groupName) --trace.menu("","Su34RTB") Su34Status.status[groupName] = 6 MessageToRed( string.format('%s: ',groupName) .. 'Return to Krasnodar. ', 10, 'RedStatus' .. groupName ) end function Su34Destroyed(groupName) --trace.menu("","Su34Destroyed") Su34Status.status[groupName] = 7 MessageToRed( string.format('%s: ',groupName) .. 'Destroyed. ', 30, 'RedStatus' .. groupName ) end function GroupAlive( groupName ) --trace.menu("","GroupAlive") local groupTest = Group.getByName( groupName ) local groupExists = false if groupTest then groupExists = groupTest:isExist() end --trace.r( "", "", { groupExists } ) return groupExists end function Su34IsDead() --trace.f() end function Su34OverviewStatus() --trace.menu("","Su34OverviewStatus") local msg = "" local currentStatus = 0 local Exists = false for groupName, currentStatus in pairs(Su34Status.status) do env.info(('Su34 Overview Status: GroupName = ' .. groupName )) Alive = GroupAlive( groupName ) if Alive then if currentStatus == 1 then msg = msg .. string.format("%s: ",groupName) msg = msg .. "Attacking carrier Carl Vinson. " elseif currentStatus == 2 then msg = msg .. string.format("%s: ",groupName) msg = msg .. "Attacking supporting ships in the west. " elseif currentStatus == 3 then msg = msg .. string.format("%s: ",groupName) msg = msg .. "Attacking invading ships in the north. " elseif currentStatus == 4 then msg = msg .. string.format("%s: ",groupName) msg = msg .. "In orbit and awaiting further instructions. " elseif currentStatus == 5 then msg = msg .. string.format("%s: ",groupName) msg = msg .. "Holding Weapons. " elseif currentStatus == 6 then msg = msg .. string.format("%s: ",groupName) msg = msg .. "Return to Krasnodar. " elseif currentStatus == 7 then msg = msg .. string.format("%s: ",groupName) msg = msg .. "Destroyed. " elseif currentStatus == 8 then msg = msg .. string.format("%s: ",groupName) msg = msg .. "Take-Off. " end else if currentStatus == 7 then msg = msg .. string.format("%s: ",groupName) msg = msg .. "Destroyed. " else Su34Destroyed(groupName) end end end boardMsgRed.statusMsg = msg end function UpdateBoardMsg() --trace.f() Su34OverviewStatus() MessageToRed( boardMsgRed.statusMsg, 15, 'RedStatus' ) end function MusicReset( flg ) --trace.f() trigger.action.setUserFlag(95,flg) end function PlaneActivate(groupNameFormat, flg) --trace.f() local groupName = groupNameFormat .. string.format("#%03d", trigger.misc.getUserFlag(flg)) --trigger.action.outText(groupName,10) trigger.action.activateGroup(Group.getByName(groupName)) end function Su34Menu(groupName) --trace.f() --env.info(( 'Su34Menu(' .. groupName .. ')' )) local groupSu34 = Group.getByName( groupName ) if Su34Status.status[groupName] == 1 or Su34Status.status[groupName] == 2 or Su34Status.status[groupName] == 3 or Su34Status.status[groupName] == 4 or Su34Status.status[groupName] == 5 then if Su34MenuPath[groupName] == nil then if planeMenuPath == nil then planeMenuPath = missionCommands.addSubMenuForCoalition( coalition.side.RED, "SU-34 anti-ship flights", nil ) end Su34MenuPath[groupName] = missionCommands.addSubMenuForCoalition( coalition.side.RED, "Flight " .. groupName, planeMenuPath ) missionCommands.addCommandForCoalition( coalition.side.RED, "Attack carrier Carl Vinson", Su34MenuPath[groupName], Su34AttackCarlVinson, groupName ) missionCommands.addCommandForCoalition( coalition.side.RED, "Attack ships in the west", Su34MenuPath[groupName], Su34AttackWest, groupName ) missionCommands.addCommandForCoalition( coalition.side.RED, "Attack ships in the north", Su34MenuPath[groupName], Su34AttackNorth, groupName ) missionCommands.addCommandForCoalition( coalition.side.RED, "Hold position and await instructions", Su34MenuPath[groupName], Su34Orbit, groupName ) missionCommands.addCommandForCoalition( coalition.side.RED, "Report status", Su34MenuPath[groupName], Su34OverviewStatus ) end else if Su34MenuPath[groupName] then missionCommands.removeItemForCoalition(coalition.side.RED, Su34MenuPath[groupName]) end end end --- Obsolete function, but kept to rework in framework. function ChooseInfantry ( TeleportPrefixTable, TeleportMax ) --trace.f("Spawn") --env.info(( 'ChooseInfantry: ' )) TeleportPrefixTableCount = #TeleportPrefixTable TeleportPrefixTableIndex = math.random( 1, TeleportPrefixTableCount ) --env.info(( 'ChooseInfantry: TeleportPrefixTableIndex = ' .. TeleportPrefixTableIndex .. ' TeleportPrefixTableCount = ' .. TeleportPrefixTableCount .. ' TeleportMax = ' .. TeleportMax )) local TeleportFound = false local TeleportLoop = true local Index = TeleportPrefixTableIndex local TeleportPrefix = '' while TeleportLoop do TeleportPrefix = TeleportPrefixTable[Index] if SpawnSettings[TeleportPrefix] then if SpawnSettings[TeleportPrefix]['SpawnCount'] - 1 < TeleportMax then SpawnSettings[TeleportPrefix]['SpawnCount'] = SpawnSettings[TeleportPrefix]['SpawnCount'] + 1 TeleportFound = true else TeleportFound = false end else SpawnSettings[TeleportPrefix] = {} SpawnSettings[TeleportPrefix]['SpawnCount'] = 0 TeleportFound = true end if TeleportFound then TeleportLoop = false else if Index < TeleportPrefixTableCount then Index = Index + 1 else TeleportLoop = false end end --env.info(( 'ChooseInfantry: Loop 1 - TeleportPrefix = ' .. TeleportPrefix .. ' Index = ' .. Index )) end if TeleportFound == false then TeleportLoop = true Index = 1 while TeleportLoop do TeleportPrefix = TeleportPrefixTable[Index] if SpawnSettings[TeleportPrefix] then if SpawnSettings[TeleportPrefix]['SpawnCount'] - 1 < TeleportMax then SpawnSettings[TeleportPrefix]['SpawnCount'] = SpawnSettings[TeleportPrefix]['SpawnCount'] + 1 TeleportFound = true else TeleportFound = false end else SpawnSettings[TeleportPrefix] = {} SpawnSettings[TeleportPrefix]['SpawnCount'] = 0 TeleportFound = true end if TeleportFound then TeleportLoop = false else if Index < TeleportPrefixTableIndex then Index = Index + 1 else TeleportLoop = false end end --env.info(( 'ChooseInfantry: Loop 2 - TeleportPrefix = ' .. TeleportPrefix .. ' Index = ' .. Index )) end end local TeleportGroupName = '' if TeleportFound == true then TeleportGroupName = TeleportPrefix .. string.format("#%03d", SpawnSettings[TeleportPrefix]['SpawnCount'] ) else TeleportGroupName = '' end --env.info(('ChooseInfantry: TeleportGroupName = ' .. TeleportGroupName )) --env.info(('ChooseInfantry: return')) return TeleportGroupName end SpawnedInfantry = 0 function LandCarrier ( CarrierGroup, LandingZonePrefix ) --trace.f() --env.info(( 'LandCarrier: ' )) --env.info(( 'LandCarrier: CarrierGroup = ' .. CarrierGroup:getName() )) --env.info(( 'LandCarrier: LandingZone = ' .. LandingZonePrefix )) local controllerGroup = CarrierGroup:getController() local LandingZone = trigger.misc.getZone(LandingZonePrefix) local LandingZonePos = {} LandingZonePos.x = LandingZone.point.x + math.random(LandingZone.radius * -1, LandingZone.radius) LandingZonePos.y = LandingZone.point.z + math.random(LandingZone.radius * -1, LandingZone.radius) controllerGroup:pushTask( { id = 'Land', params = { point = LandingZonePos, durationFlag = true, duration = 10 } } ) --env.info(( 'LandCarrier: end' )) end EscortCount = 0 function EscortCarrier ( CarrierGroup, EscortPrefix, EscortLastWayPoint, EscortEngagementDistanceMax, EscortTargetTypes ) --trace.f() --env.info(( 'EscortCarrier: ' )) --env.info(( 'EscortCarrier: CarrierGroup = ' .. CarrierGroup:getName() )) --env.info(( 'EscortCarrier: EscortPrefix = ' .. EscortPrefix )) local CarrierName = CarrierGroup:getName() local EscortMission = {} local CarrierMission = {} local EscortMission = SpawnMissionGroup( EscortPrefix ) local CarrierMission = SpawnMissionGroup( CarrierGroup:getName() ) if EscortMission ~= nil and CarrierMission ~= nil then EscortCount = EscortCount + 1 EscortMissionName = string.format( EscortPrefix .. '#Escort %s', CarrierName ) EscortMission.name = EscortMissionName EscortMission.groupId = nil EscortMission.lateActivation = false EscortMission.taskSelected = false local EscortUnits = #EscortMission.units for u = 1, EscortUnits do EscortMission.units[u].name = string.format( EscortPrefix .. '#Escort %s %02d', CarrierName, u ) EscortMission.units[u].unitId = nil end EscortMission.route.points[1].task = { id = "ComboTask", params = { tasks = { [1] = { enabled = true, auto = false, id = "Escort", number = 1, params = { lastWptIndexFlagChangedManually = false, groupId = CarrierGroup:getID(), lastWptIndex = nil, lastWptIndexFlag = false, engagementDistMax = EscortEngagementDistanceMax, targetTypes = EscortTargetTypes, pos = { y = 20, x = 20, z = 0, } -- end of ["pos"] } -- end of ["params"] } -- end of [1] } -- end of ["tasks"] } -- end of ["params"] } -- end of ["task"] SpawnGroupAdd( EscortPrefix, EscortMission ) end end function SendMessageToCarrier( CarrierGroup, CarrierMessage ) --trace.f() if CarrierGroup ~= nil then MessageToGroup( CarrierGroup, CarrierMessage, 30, 'Carrier/' .. CarrierGroup:getName() ) end end function MessageToGroup( MsgGroup, MsgText, MsgTime, MsgName ) --trace.f() if type(MsgGroup) == 'string' then --env.info( 'MessageToGroup: Converted MsgGroup string "' .. MsgGroup .. '" into a Group structure.' ) MsgGroup = Group.getByName( MsgGroup ) end if MsgGroup ~= nil then local MsgTable = {} MsgTable.text = MsgText MsgTable.displayTime = MsgTime MsgTable.msgFor = { units = { MsgGroup:getUnits()[1]:getName() } } MsgTable.name = MsgName --routines.message.add( MsgTable ) --env.info(('MessageToGroup: Message sent to ' .. MsgGroup:getUnits()[1]:getName() .. ' -> ' .. MsgText )) end end function MessageToUnit( UnitName, MsgText, MsgTime, MsgName ) --trace.f() if UnitName ~= nil then local MsgTable = {} MsgTable.text = MsgText MsgTable.displayTime = MsgTime MsgTable.msgFor = { units = { UnitName } } MsgTable.name = MsgName --routines.message.add( MsgTable ) end end function MessageToAll( MsgText, MsgTime, MsgName ) --trace.f() MESSAGE:New( MsgText, MsgTime, "Message" ):ToCoalition( coalition.side.RED ):ToCoalition( coalition.side.BLUE ) end function MessageToRed( MsgText, MsgTime, MsgName ) --trace.f() MESSAGE:New( MsgText, MsgTime, "To Red Coalition" ):ToCoalition( coalition.side.RED ) end function MessageToBlue( MsgText, MsgTime, MsgName ) --trace.f() MESSAGE:New( MsgText, MsgTime, "To Blue Coalition" ):ToCoalition( coalition.side.RED ) end function getCarrierHeight( CarrierGroup ) --trace.f() if CarrierGroup ~= nil then if table.getn(CarrierGroup:getUnits()) == 1 then local CarrierUnit = CarrierGroup:getUnits()[1] local CurrentPoint = CarrierUnit:getPoint() local CurrentPosition = { x = CurrentPoint.x, y = CurrentPoint.z } local CarrierHeight = CurrentPoint.y local LandHeight = land.getHeight( CurrentPosition ) --env.info(( 'CarrierHeight: LandHeight = ' .. LandHeight .. ' CarrierHeight = ' .. CarrierHeight )) return CarrierHeight - LandHeight else return 999999 end else return 999999 end end function GetUnitHeight( CheckUnit ) --trace.f() local UnitPoint = CheckUnit:getPoint() local UnitPosition = { x = CurrentPoint.x, y = CurrentPoint.z } local UnitHeight = CurrentPoint.y local LandHeight = land.getHeight( CurrentPosition ) --env.info(( 'CarrierHeight: LandHeight = ' .. LandHeight .. ' CarrierHeight = ' .. CarrierHeight )) return UnitHeight - LandHeight end _MusicTable = {} _MusicTable.Files = {} _MusicTable.Queue = {} _MusicTable.FileCnt = 0 function MusicRegister( SndRef, SndFile, SndTime ) --trace.f() env.info(( 'MusicRegister: SndRef = ' .. SndRef )) env.info(( 'MusicRegister: SndFile = ' .. SndFile )) env.info(( 'MusicRegister: SndTime = ' .. SndTime )) _MusicTable.FileCnt = _MusicTable.FileCnt + 1 _MusicTable.Files[_MusicTable.FileCnt] = {} _MusicTable.Files[_MusicTable.FileCnt].Ref = SndRef _MusicTable.Files[_MusicTable.FileCnt].File = SndFile _MusicTable.Files[_MusicTable.FileCnt].Time = SndTime if not _MusicTable.Function then _MusicTable.Function = routines.scheduleFunction( MusicScheduler, { }, timer.getTime() + 10, 10) end end function MusicToPlayer( SndRef, PlayerName, SndContinue ) --trace.f() --env.info(( 'MusicToPlayer: SndRef = ' .. SndRef )) local PlayerUnits = AlivePlayerUnits() for PlayerUnitIdx, PlayerUnit in pairs(PlayerUnits) do local PlayerUnitName = PlayerUnit:getPlayerName() --env.info(( 'MusicToPlayer: PlayerUnitName = ' .. PlayerUnitName )) if PlayerName == PlayerUnitName then PlayerGroup = PlayerUnit:getGroup() if PlayerGroup then --env.info(( 'MusicToPlayer: PlayerGroup = ' .. PlayerGroup:getName() )) MusicToGroup( SndRef, PlayerGroup, SndContinue ) end break end end --env.info(( 'MusicToPlayer: end' )) end function MusicToGroup( SndRef, SndGroup, SndContinue ) --trace.f() --env.info(( 'MusicToGroup: SndRef = ' .. SndRef )) if SndGroup ~= nil then if _MusicTable and _MusicTable.FileCnt > 0 then if SndGroup:isExist() then if MusicCanStart(SndGroup:getUnit(1):getPlayerName()) then --env.info(( 'MusicToGroup: OK for Sound.' )) local SndIdx = 0 if SndRef == '' then --env.info(( 'MusicToGroup: SndRef as empty. Queueing at random.' )) SndIdx = math.random( 1, _MusicTable.FileCnt ) else for SndIdx = 1, _MusicTable.FileCnt do if _MusicTable.Files[SndIdx].Ref == SndRef then break end end end --env.info(( 'MusicToGroup: SndIdx = ' .. SndIdx )) --env.info(( 'MusicToGroup: Queueing Music ' .. _MusicTable.Files[SndIdx].File .. ' for Group ' .. SndGroup:getID() )) trigger.action.outSoundForGroup( SndGroup:getID(), _MusicTable.Files[SndIdx].File ) MessageToGroup( SndGroup, 'Playing ' .. _MusicTable.Files[SndIdx].File, 15, 'Music-' .. SndGroup:getUnit(1):getPlayerName() ) local SndQueueRef = SndGroup:getUnit(1):getPlayerName() if _MusicTable.Queue[SndQueueRef] == nil then _MusicTable.Queue[SndQueueRef] = {} end _MusicTable.Queue[SndQueueRef].Start = timer.getTime() _MusicTable.Queue[SndQueueRef].PlayerName = SndGroup:getUnit(1):getPlayerName() _MusicTable.Queue[SndQueueRef].Group = SndGroup _MusicTable.Queue[SndQueueRef].ID = SndGroup:getID() _MusicTable.Queue[SndQueueRef].Ref = SndIdx _MusicTable.Queue[SndQueueRef].Continue = SndContinue _MusicTable.Queue[SndQueueRef].Type = Group end end end end end function MusicCanStart(PlayerName) --trace.f() --env.info(( 'MusicCanStart:' )) local MusicOut = false if _MusicTable['Queue'] ~= nil and _MusicTable.FileCnt > 0 then --env.info(( 'MusicCanStart: PlayerName = ' .. PlayerName )) local PlayerFound = false local MusicStart = 0 local MusicTime = 0 for SndQueueIdx, SndQueue in pairs( _MusicTable.Queue ) do if SndQueue.PlayerName == PlayerName then PlayerFound = true MusicStart = SndQueue.Start MusicTime = _MusicTable.Files[SndQueue.Ref].Time break end end if PlayerFound then --env.info(( 'MusicCanStart: MusicStart = ' .. MusicStart )) --env.info(( 'MusicCanStart: MusicTime = ' .. MusicTime )) --env.info(( 'MusicCanStart: timer.getTime() = ' .. timer.getTime() )) if MusicStart + MusicTime <= timer.getTime() then MusicOut = true end else MusicOut = true end end if MusicOut then --env.info(( 'MusicCanStart: true' )) else --env.info(( 'MusicCanStart: false' )) end return MusicOut end function MusicScheduler() --trace.scheduled("", "MusicScheduler") --env.info(( 'MusicScheduler:' )) if _MusicTable['Queue'] ~= nil and _MusicTable.FileCnt > 0 then --env.info(( 'MusicScheduler: Walking Sound Queue.')) for SndQueueIdx, SndQueue in pairs( _MusicTable.Queue ) do if SndQueue.Continue then if MusicCanStart(SndQueue.PlayerName) then --env.info(('MusicScheduler: MusicToGroup')) MusicToPlayer( '', SndQueue.PlayerName, true ) end end end end end env.info(( 'Init: Scripts Loaded v1.1' )) --- This module contains derived utilities taken from the MIST framework, -- which are excellent tools to be reused in an OO environment!. -- -- ### Authors: -- -- * Grimes : Design & Programming of the MIST framework. -- -- ### Contributions: -- -- * FlightControl : Rework to OO framework -- -- @module Utils --- @type SMOKECOLOR -- @field Green -- @field Red -- @field White -- @field Orange -- @field Blue SMOKECOLOR = trigger.smokeColor -- #SMOKECOLOR --- @type FLARECOLOR -- @field Green -- @field Red -- @field White -- @field Yellow FLARECOLOR = trigger.flareColor -- #FLARECOLOR --- Utilities static class. -- @type UTILS UTILS = { _MarkID = 1 } --- Function to infer instance of an object -- -- ### Examples: -- -- * UTILS.IsInstanceOf( 'some text', 'string' ) will return true -- * UTILS.IsInstanceOf( some_function, 'function' ) will return true -- * UTILS.IsInstanceOf( 10, 'number' ) will return true -- * UTILS.IsInstanceOf( false, 'boolean' ) will return true -- * UTILS.IsInstanceOf( nil, 'nil' ) will return true -- -- * UTILS.IsInstanceOf( ZONE:New( 'some zone', ZONE ) will return true -- * UTILS.IsInstanceOf( ZONE:New( 'some zone', 'ZONE' ) will return true -- * UTILS.IsInstanceOf( ZONE:New( 'some zone', 'zone' ) will return true -- * UTILS.IsInstanceOf( ZONE:New( 'some zone', 'BASE' ) will return true -- -- * UTILS.IsInstanceOf( ZONE:New( 'some zone', 'GROUP' ) will return false -- -- -- @param object is the object to be evaluated -- @param className is the name of the class to evaluate (can be either a string or a Moose class) -- @return #boolean UTILS.IsInstanceOf = function( object, className ) -- Is className NOT a string ? if not type( className ) == 'string' then -- Is className a Moose class ? if type( className ) == 'table' and className.IsInstanceOf ~= nil then -- Get the name of the Moose class as a string className = className.ClassName -- className is neither a string nor a Moose class, throw an error else -- I'm not sure if this should take advantage of MOOSE logging function, or throw an error for pcall local err_str = 'className parameter should be a string; parameter received: '..type( className ) self:E( err_str ) return false -- error( err_str ) end end -- Is the object a Moose class instance ? if type( object ) == 'table' and object.IsInstanceOf ~= nil then -- Use the IsInstanceOf method of the BASE class return object:IsInstanceOf( className ) else -- If the object is not an instance of a Moose class, evaluate against lua basic data types local basicDataTypes = { 'string', 'number', 'function', 'boolean', 'nil', 'table' } for _, basicDataType in ipairs( basicDataTypes ) do if className == basicDataType then return type( object ) == basicDataType end end end -- Check failed return false end --from http://lua-users.org/wiki/CopyTable UTILS.DeepCopy = function(object) local lookup_table = {} local function _copy(object) if type(object) ~= "table" then return object elseif lookup_table[object] then return lookup_table[object] end local new_table = {} lookup_table[object] = new_table for index, value in pairs(object) do new_table[_copy(index)] = _copy(value) end return setmetatable(new_table, getmetatable(object)) end local objectreturn = _copy(object) return objectreturn end -- porting in Slmod's serialize_slmod2 UTILS.OneLineSerialize = function( tbl ) -- serialization of a table all on a single line, no comments, made to replace old get_table_string function lookup_table = {} local function _Serialize( tbl ) if type(tbl) == 'table' then --function only works for tables! if lookup_table[tbl] then return lookup_table[object] end local tbl_str = {} lookup_table[tbl] = tbl_str tbl_str[#tbl_str + 1] = '{' for ind,val in pairs(tbl) do -- serialize its fields local ind_str = {} if type(ind) == "number" then ind_str[#ind_str + 1] = '[' ind_str[#ind_str + 1] = tostring(ind) ind_str[#ind_str + 1] = ']=' else --must be a string ind_str[#ind_str + 1] = '[' ind_str[#ind_str + 1] = routines.utils.basicSerialize(ind) ind_str[#ind_str + 1] = ']=' end local val_str = {} if ((type(val) == 'number') or (type(val) == 'boolean')) then val_str[#val_str + 1] = tostring(val) val_str[#val_str + 1] = ',' tbl_str[#tbl_str + 1] = table.concat(ind_str) tbl_str[#tbl_str + 1] = table.concat(val_str) elseif type(val) == 'string' then val_str[#val_str + 1] = routines.utils.basicSerialize(val) val_str[#val_str + 1] = ',' tbl_str[#tbl_str + 1] = table.concat(ind_str) tbl_str[#tbl_str + 1] = table.concat(val_str) elseif type(val) == 'nil' then -- won't ever happen, right? val_str[#val_str + 1] = 'nil,' tbl_str[#tbl_str + 1] = table.concat(ind_str) tbl_str[#tbl_str + 1] = table.concat(val_str) elseif type(val) == 'table' then if ind == "__index" then -- tbl_str[#tbl_str + 1] = "__index" -- tbl_str[#tbl_str + 1] = ',' --I think this is right, I just added it else val_str[#val_str + 1] = _Serialize(val) val_str[#val_str + 1] = ',' --I think this is right, I just added it tbl_str[#tbl_str + 1] = table.concat(ind_str) tbl_str[#tbl_str + 1] = table.concat(val_str) end elseif type(val) == 'function' then tbl_str[#tbl_str + 1] = "f() " .. tostring(ind) tbl_str[#tbl_str + 1] = ',' --I think this is right, I just added it else env.info('unable to serialize value type ' .. routines.utils.basicSerialize(type(val)) .. ' at index ' .. tostring(ind)) env.info( debug.traceback() ) end end tbl_str[#tbl_str + 1] = '}' return table.concat(tbl_str) else return tostring(tbl) end end local objectreturn = _Serialize(tbl) return objectreturn end --porting in Slmod's "safestring" basic serialize UTILS.BasicSerialize = function(s) if s == nil then return "\"\"" else if ((type(s) == 'number') or (type(s) == 'boolean') or (type(s) == 'function') or (type(s) == 'table') or (type(s) == 'userdata') ) then return tostring(s) elseif type(s) == 'string' then s = string.format('%q', s) return s end end end UTILS.ToDegree = function(angle) return angle*180/math.pi end UTILS.ToRadian = function(angle) return angle*math.pi/180 end UTILS.MetersToNM = function(meters) return meters/1852 end UTILS.MetersToFeet = function(meters) return meters/0.3048 end UTILS.NMToMeters = function(NM) return NM*1852 end UTILS.FeetToMeters = function(feet) return feet*0.3048 end UTILS.MpsToKnots = function(mps) return mps*3600/1852 end UTILS.MpsToKmph = function(mps) return mps*3.6 end UTILS.KnotsToMps = function(knots) return knots*1852/3600 end UTILS.KnotsToKmph = function(knots) return knots* 1.852 end UTILS.KmphToMps = function(kmph) return kmph/3.6 end --[[acc: in DM: decimal point of minutes. In DMS: decimal point of seconds. position after the decimal of the least significant digit: So: 42.32 - acc of 2. ]] UTILS.tostringLL = function( lat, lon, acc, DMS) local latHemi, lonHemi if lat > 0 then latHemi = 'N' else latHemi = 'S' end if lon > 0 then lonHemi = 'E' else lonHemi = 'W' end lat = math.abs(lat) lon = math.abs(lon) local latDeg = math.floor(lat) local latMin = (lat - latDeg)*60 local lonDeg = math.floor(lon) local lonMin = (lon - lonDeg)*60 if DMS then -- degrees, minutes, and seconds. local oldLatMin = latMin latMin = math.floor(latMin) local latSec = UTILS.Round((oldLatMin - latMin)*60, acc) local oldLonMin = lonMin lonMin = math.floor(lonMin) local lonSec = UTILS.Round((oldLonMin - lonMin)*60, acc) if latSec == 60 then latSec = 0 latMin = latMin + 1 end if lonSec == 60 then lonSec = 0 lonMin = lonMin + 1 end local secFrmtStr -- create the formatting string for the seconds place secFrmtStr = '%02d' -- if acc <= 0 then -- no decimal place. -- secFrmtStr = '%02d' -- else -- local width = 3 + acc -- 01.310 - that's a width of 6, for example. -- secFrmtStr = '%0' .. width .. '.' .. acc .. 'f' -- end return string.format('%02d', latDeg) .. ' ' .. string.format('%02d', latMin) .. '\' ' .. string.format(secFrmtStr, latSec) .. '"' .. latHemi .. ' ' .. string.format('%02d', lonDeg) .. ' ' .. string.format('%02d', lonMin) .. '\' ' .. string.format(secFrmtStr, lonSec) .. '"' .. lonHemi else -- degrees, decimal minutes. latMin = UTILS.Round(latMin, acc) lonMin = UTILS.Round(lonMin, acc) if latMin == 60 then latMin = 0 latDeg = latDeg + 1 end if lonMin == 60 then lonMin = 0 lonDeg = lonDeg + 1 end local minFrmtStr -- create the formatting string for the minutes place if acc <= 0 then -- no decimal place. minFrmtStr = '%02d' else local width = 3 + acc -- 01.310 - that's a width of 6, for example. minFrmtStr = '%0' .. width .. '.' .. acc .. 'f' end return string.format('%02d', latDeg) .. ' ' .. string.format(minFrmtStr, latMin) .. '\'' .. latHemi .. ' ' .. string.format('%02d', lonDeg) .. ' ' .. string.format(minFrmtStr, lonMin) .. '\'' .. lonHemi end end -- acc- the accuracy of each easting/northing. 0, 1, 2, 3, 4, or 5. UTILS.tostringMGRS = function(MGRS, acc) --R2.1 if acc == 0 then return MGRS.UTMZone .. ' ' .. MGRS.MGRSDigraph else return MGRS.UTMZone .. ' ' .. MGRS.MGRSDigraph .. ' ' .. string.format('%0' .. acc .. 'd', UTILS.Round(MGRS.Easting/(10^(5-acc)), 0)) .. ' ' .. string.format('%0' .. acc .. 'd', UTILS.Round(MGRS.Northing/(10^(5-acc)), 0)) end end --- From http://lua-users.org/wiki/SimpleRound -- use negative idp for rounding ahead of decimal place, positive for rounding after decimal place function UTILS.Round( num, idp ) local mult = 10 ^ ( idp or 0 ) return math.floor( num * mult + 0.5 ) / mult end -- porting in Slmod's dostring function UTILS.DoString( s ) local f, err = loadstring( s ) if f then return true, f() else return false, err end end -- Here is a customized version of pairs, which I called spairs because it iterates over the table in a sorted order. function UTILS.spairs( t, order ) -- collect the keys local keys = {} for k in pairs(t) do keys[#keys+1] = k end -- if order function given, sort by it by passing the table and keys a, b, -- otherwise just sort the keys if order then table.sort(keys, function(a,b) return order(t, a, b) end) else table.sort(keys) end -- return the iterator function local i = 0 return function() i = i + 1 if keys[i] then return keys[i], t[keys[i]] end end end -- get a new mark ID for markings function UTILS.GetMarkID() UTILS._MarkID = UTILS._MarkID + 1 return UTILS._MarkID end -- Test if a Vec2 is in a radius of another Vec2 function UTILS.IsInRadius( InVec2, Vec2, Radius ) local InRadius = ( ( InVec2.x - Vec2.x ) ^2 + ( InVec2.y - Vec2.y ) ^2 ) ^ 0.5 <= Radius return InRadius end -- Test if a Vec3 is in the sphere of another Vec3 function UTILS.IsInSphere( InVec3, Vec3, Radius ) local InSphere = ( ( InVec3.x - Vec3.x ) ^2 + ( InVec3.y - Vec3.y ) ^2 + ( InVec3.z - Vec3.z ) ^2 ) ^ 0.5 <= Radius return InSphere end --- **Core** -- BASE forms **the basis of the MOOSE framework**. Each class within the MOOSE framework derives from BASE. -- -- ![Banner Image](..\Presentations\BASE\Dia1.JPG) -- -- === -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @module Base local _TraceOnOff = true local _TraceLevel = 1 local _TraceAll = false local _TraceClass = {} local _TraceClassMethod = {} local _ClassID = 0 --- @type BASE -- @field ClassName The name of the class. -- @field ClassID The ID number of the class. -- @field ClassNameAndID The name of the class concatenated with the ID number of the class. --- # 1) #BASE class -- -- All classes within the MOOSE framework are derived from the BASE class. -- -- BASE provides facilities for : -- -- * The construction and inheritance of MOOSE classes. -- * The class naming and numbering system. -- * The class hierarchy search system. -- * The tracing of information or objects during mission execution for debuggin purposes. -- * The subscription to DCS events for event handling in MOOSE objects. -- -- Note: The BASE class is an abstract class and is not meant to be used directly. -- -- ## 1.1) BASE constructor -- -- Any class derived from BASE, will use the @{Base#BASE.New} constructor embedded in the @{Base#BASE.Inherit} method. -- See an example at the @{Base#BASE.New} method how this is done. -- -- ## 1.2) Trace information for debugging -- -- The BASE class contains trace methods to trace progress within a mission execution of a certain object. -- These trace methods are inherited by each MOOSE class interiting BASE, soeach object created from derived class from BASE can use the tracing methods to trace its execution. -- -- Any type of information can be passed to these tracing methods. See the following examples: -- -- self:E( "Hello" ) -- -- Result in the word "Hello" in the dcs.log. -- -- local Array = { 1, nil, "h", { "a","b" }, "x" } -- self:E( Array ) -- -- Results with the text [1]=1,[3]="h",[4]={[1]="a",[2]="b"},[5]="x"} in the dcs.log. -- -- local Object1 = "Object1" -- local Object2 = 3 -- local Object3 = { Object 1, Object 2 } -- self:E( { Object1, Object2, Object3 } ) -- -- Results with the text [1]={[1]="Object",[2]=3,[3]={[1]="Object",[2]=3}} in the dcs.log. -- -- local SpawnObject = SPAWN:New( "Plane" ) -- local GroupObject = GROUP:FindByName( "Group" ) -- self:E( { Spawn = SpawnObject, Group = GroupObject } ) -- -- Results with the text [1]={Spawn={....),Group={...}} in the dcs.log. -- -- Below a more detailed explanation of the different method types for tracing. -- -- ### 1.2.1) Tracing methods categories -- -- There are basically 3 types of tracing methods available: -- -- * @{#BASE.F}: Used to trace the entrance of a function and its given parameters. An F is indicated at column 44 in the DCS.log file. -- * @{#BASE.T}: Used to trace further logic within a function giving optional variables or parameters. A T is indicated at column 44 in the DCS.log file. -- * @{#BASE.E}: Used to always trace information giving optional variables or parameters. An E is indicated at column 44 in the DCS.log file. -- -- ### 1.2.2) Tracing levels -- -- There are 3 tracing levels within MOOSE. -- These tracing levels were defined to avoid bulks of tracing to be generated by lots of objects. -- -- As such, the F and T methods have additional variants to trace level 2 and 3 respectively: -- -- * @{#BASE.F2}: Trace the beginning of a function and its given parameters with tracing level 2. -- * @{#BASE.F3}: Trace the beginning of a function and its given parameters with tracing level 3. -- * @{#BASE.T2}: Trace further logic within a function giving optional variables or parameters with tracing level 2. -- * @{#BASE.T3}: Trace further logic within a function giving optional variables or parameters with tracing level 3. -- -- ### 1.2.3) Trace activation. -- -- Tracing can be activated in several ways: -- -- * Switch tracing on or off through the @{#BASE.TraceOnOff}() method. -- * Activate all tracing through the @{#BASE.TraceAll}() method. -- * Activate only the tracing of a certain class (name) through the @{#BASE.TraceClass}() method. -- * Activate only the tracing of a certain method of a certain class through the @{#BASE.TraceClassMethod}() method. -- * Activate only the tracing of a certain level through the @{#BASE.TraceLevel}() method. -- -- ### 1.2.4) Check if tracing is on. -- -- The method @{#BASE.IsTrace}() will validate if tracing is activated or not. -- -- ## 1.3 DCS simulator Event Handling -- -- The BASE class provides methods to catch DCS Events. These are events that are triggered from within the DCS simulator, -- and handled through lua scripting. MOOSE provides an encapsulation to handle these events more efficiently. -- -- ### 1.3.1 Subscribe / Unsubscribe to DCS Events -- -- At first, the mission designer will need to **Subscribe** to a specific DCS event for the class. -- So, when the DCS event occurs, the class will be notified of that event. -- There are two methods which you use to subscribe to or unsubscribe from an event. -- -- * @{#BASE.HandleEvent}(): Subscribe to a DCS Event. -- * @{#BASE.UnHandleEvent}(): Unsubscribe from a DCS Event. -- -- ### 1.3.2 Event Handling of DCS Events -- -- Once the class is subscribed to the event, an **Event Handling** method on the object or class needs to be written that will be called -- when the DCS event occurs. The Event Handling method receives an @{Event#EVENTDATA} structure, which contains a lot of information -- about the event that occurred. -- -- Find below an example of the prototype how to write an event handling function for two units: -- -- local Tank1 = UNIT:FindByName( "Tank A" ) -- local Tank2 = UNIT:FindByName( "Tank B" ) -- -- -- Here we subscribe to the Dead events. So, if one of these tanks dies, the Tank1 or Tank2 objects will be notified. -- Tank1:HandleEvent( EVENTS.Dead ) -- Tank2:HandleEvent( EVENTS.Dead ) -- -- --- This function is an Event Handling function that will be called when Tank1 is Dead. -- -- @param Wrapper.Unit#UNIT self -- -- @param Core.Event#EVENTDATA EventData -- function Tank1:OnEventDead( EventData ) -- -- self:SmokeGreen() -- end -- -- --- This function is an Event Handling function that will be called when Tank2 is Dead. -- -- @param Wrapper.Unit#UNIT self -- -- @param Core.Event#EVENTDATA EventData -- function Tank2:OnEventDead( EventData ) -- -- self:SmokeBlue() -- end -- -- -- -- See the @{Event} module for more information about event handling. -- -- ## 1.4) Class identification methods -- -- BASE provides methods to get more information of each object: -- -- * @{#BASE.GetClassID}(): Gets the ID (number) of the object. Each object created is assigned a number, that is incremented by one. -- * @{#BASE.GetClassName}(): Gets the name of the object, which is the name of the class the object was instantiated from. -- * @{#BASE.GetClassNameAndID}(): Gets the name and ID of the object. -- -- ## 1.5) All objects derived from BASE can have "States" -- -- A mechanism is in place in MOOSE, that allows to let the objects administer **states**. -- States are essentially properties of objects, which are identified by a **Key** and a **Value**. -- -- The method @{#BASE.SetState}() can be used to set a Value with a reference Key to the object. -- To **read or retrieve** a state Value based on a Key, use the @{#BASE.GetState} method. -- -- These two methods provide a very handy way to keep state at long lasting processes. -- Values can be stored within the objects, and later retrieved or changed when needed. -- There is one other important thing to note, the @{#BASE.SetState}() and @{#BASE.GetState} methods -- receive as the **first parameter the object for which the state needs to be set**. -- Thus, if the state is to be set for the same object as the object for which the method is used, then provide the same -- object name to the method. -- -- ## 1.10) Inheritance -- -- The following methods are available to implement inheritance -- -- * @{#BASE.Inherit}: Inherits from a class. -- * @{#BASE.GetParent}: Returns the parent object from the object it is handling, or nil if there is no parent object. -- -- === -- -- @field #BASE BASE -- BASE = { ClassName = "BASE", ClassID = 0, Events = {}, States = {}, } --- @field #BASE.__ BASE.__ = {} --- @field #BASE._ BASE._ = { Schedules = {} --- Contains the Schedulers Active } --- The Formation Class -- @type FORMATION -- @field Cone A cone formation. FORMATION = { Cone = "Cone", Vee = "Vee" } --- BASE constructor. -- -- This is an example how to use the BASE:New() constructor in a new class definition when inheriting from BASE. -- -- function EVENT:New() -- local self = BASE:Inherit( self, BASE:New() ) -- #EVENT -- return self -- end -- -- @param #BASE self -- @return #BASE function BASE:New() local self = routines.utils.deepCopy( self ) -- Create a new self instance _ClassID = _ClassID + 1 self.ClassID = _ClassID -- This is for "private" methods... -- When a __ is passed to a method as "self", the __index will search for the method on the public method list too! -- if rawget( self, "__" ) then --setmetatable( self, { __index = self.__ } ) -- end return self end --- This is the worker method to inherit from a parent class. -- @param #BASE self -- @param Child is the Child class that inherits. -- @param #BASE Parent is the Parent class that the Child inherits from. -- @return #BASE Child function BASE:Inherit( Child, Parent ) local Child = routines.utils.deepCopy( Child ) if Child ~= nil then -- This is for "private" methods... -- When a __ is passed to a method as "self", the __index will search for the method on the public method list of the same object too! if rawget( Child, "__" ) then setmetatable( Child, { __index = Child.__ } ) setmetatable( Child.__, { __index = Parent } ) else setmetatable( Child, { __index = Parent } ) end --Child:_SetDestructor() end return Child end --- This is the worker method to retrieve the Parent class. -- Note that the Parent class must be passed to call the parent class method. -- -- self:GetParent(self):ParentMethod() -- -- -- @param #BASE self -- @param #BASE Child is the Child class from which the Parent class needs to be retrieved. -- @return #BASE function BASE:GetParent( Child ) local Parent -- BASE class has no parent if Child.ClassName == 'BASE' then Parent = nil elseif rawget( Child, "__" ) then Parent = getmetatable( Child.__ ).__index else Parent = getmetatable( Child ).__index end return Parent end --- This is the worker method to check if an object is an (sub)instance of a class. -- -- ### Examples: -- -- * ZONE:New( 'some zone' ):IsInstanceOf( ZONE ) will return true -- * ZONE:New( 'some zone' ):IsInstanceOf( 'ZONE' ) will return true -- * ZONE:New( 'some zone' ):IsInstanceOf( 'zone' ) will return true -- * ZONE:New( 'some zone' ):IsInstanceOf( 'BASE' ) will return true -- -- * ZONE:New( 'some zone' ):IsInstanceOf( 'GROUP' ) will return false -- -- @param #BASE self -- @param ClassName is the name of the class or the class itself to run the check against -- @return #boolean function BASE:IsInstanceOf( ClassName ) -- Is className NOT a string ? if type( ClassName ) ~= 'string' then -- Is className a Moose class ? if type( ClassName ) == 'table' and ClassName.ClassName ~= nil then -- Get the name of the Moose class as a string ClassName = ClassName.ClassName -- className is neither a string nor a Moose class, throw an error else -- I'm not sure if this should take advantage of MOOSE logging function, or throw an error for pcall local err_str = 'className parameter should be a string; parameter received: '..type( ClassName ) self:E( err_str ) -- error( err_str ) return false end end ClassName = string.upper( ClassName ) if string.upper( self.ClassName ) == ClassName then return true end local Parent = self:GetParent(self) while Parent do if string.upper( Parent.ClassName ) == ClassName then return true end Parent = Parent:GetParent(Parent) end return false end --- Get the ClassName + ClassID of the class instance. -- The ClassName + ClassID is formatted as '%s#%09d'. -- @param #BASE self -- @return #string The ClassName + ClassID of the class instance. function BASE:GetClassNameAndID() return string.format( '%s#%09d', self.ClassName, self.ClassID ) end --- Get the ClassName of the class instance. -- @param #BASE self -- @return #string The ClassName of the class instance. function BASE:GetClassName() return self.ClassName end --- Get the ClassID of the class instance. -- @param #BASE self -- @return #string The ClassID of the class instance. function BASE:GetClassID() return self.ClassID end do -- Event Handling --- Returns the event dispatcher -- @param #BASE self -- @return Core.Event#EVENT function BASE:EventDispatcher() return _EVENTDISPATCHER end --- Get the Class @{Event} processing Priority. -- The Event processing Priority is a number from 1 to 10, -- reflecting the order of the classes subscribed to the Event to be processed. -- @param #BASE self -- @return #number The @{Event} processing Priority. function BASE:GetEventPriority() return self._.EventPriority or 5 end --- Set the Class @{Event} processing Priority. -- The Event processing Priority is a number from 1 to 10, -- reflecting the order of the classes subscribed to the Event to be processed. -- @param #BASE self -- @param #number EventPriority The @{Event} processing Priority. -- @return self function BASE:SetEventPriority( EventPriority ) self._.EventPriority = EventPriority end --- Remove all subscribed events -- @param #BASE self -- @return #BASE function BASE:EventRemoveAll() self:EventDispatcher():RemoveAll( self ) return self end --- Subscribe to a DCS Event. -- @param #BASE self -- @param Core.Event#EVENTS Event -- @param #function EventFunction (optional) The function to be called when the event occurs for the unit. -- @return #BASE function BASE:HandleEvent( Event, EventFunction ) self:EventDispatcher():OnEventGeneric( EventFunction, self, Event ) return self end --- UnSubscribe to a DCS event. -- @param #BASE self -- @param Core.Event#EVENTS Event -- @return #BASE function BASE:UnHandleEvent( Event ) self:EventDispatcher():RemoveEvent( self, Event ) return self end -- Event handling function prototypes --- Occurs whenever any unit in a mission fires a weapon. But not any machine gun or autocannon based weapon, those are handled by EVENT.ShootingStart. -- @function [parent=#BASE] OnEventShot -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs whenever an object is hit by a weapon. -- initiator : The unit object the fired the weapon -- weapon: Weapon object that hit the target -- target: The Object that was hit. -- @function [parent=#BASE] OnEventHit -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when an aircraft takes off from an airbase, farp, or ship. -- initiator : The unit that tookoff -- place: Object from where the AI took-off from. Can be an Airbase Object, FARP, or Ships -- @function [parent=#BASE] OnEventTakeoff -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when an aircraft lands at an airbase, farp or ship -- initiator : The unit that has landed -- place: Object that the unit landed on. Can be an Airbase Object, FARP, or Ships -- @function [parent=#BASE] OnEventLand -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when any aircraft crashes into the ground and is completely destroyed. -- initiator : The unit that has crashed -- @function [parent=#BASE] OnEventCrash -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when a pilot ejects from an aircraft -- initiator : The unit that has ejected -- @function [parent=#BASE] OnEventEjection -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when an aircraft connects with a tanker and begins taking on fuel. -- initiator : The unit that is receiving fuel. -- @function [parent=#BASE] OnEventRefueling -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when an object is dead. -- initiator : The unit that is dead. -- @function [parent=#BASE] OnEventDead -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when an object is completely destroyed. -- initiator : The unit that is was destroyed. -- @function [parent=#BASE] OnEvent -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when the pilot of an aircraft is killed. Can occur either if the player is alive and crashes or if a weapon kills the pilot without completely destroying the plane. -- initiator : The unit that the pilot has died in. -- @function [parent=#BASE] OnEventPilotDead -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when a ground unit captures either an airbase or a farp. -- initiator : The unit that captured the base -- place: The airbase that was captured, can be a FARP or Airbase. When calling place:getCoalition() the faction will already be the new owning faction. -- @function [parent=#BASE] OnEventBaseCaptured -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when a mission starts -- @function [parent=#BASE] OnEventMissionStart -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when a mission ends -- @function [parent=#BASE] OnEventMissionEnd -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when an aircraft is finished taking fuel. -- initiator : The unit that was receiving fuel. -- @function [parent=#BASE] OnEventRefuelingStop -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when any object is spawned into the mission. -- initiator : The unit that was spawned -- @function [parent=#BASE] OnEventBirth -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when any system fails on a human controlled aircraft. -- initiator : The unit that had the failure -- @function [parent=#BASE] OnEventHumanFailure -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when any aircraft starts its engines. -- initiator : The unit that is starting its engines. -- @function [parent=#BASE] OnEventEngineStartup -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when any aircraft shuts down its engines. -- initiator : The unit that is stopping its engines. -- @function [parent=#BASE] OnEventEngineShutdown -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when any player assumes direct control of a unit. -- initiator : The unit that is being taken control of. -- @function [parent=#BASE] OnEventPlayerEnterUnit -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when any player relieves control of a unit to the AI. -- initiator : The unit that the player left. -- @function [parent=#BASE] OnEventPlayerLeaveUnit -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when any unit begins firing a weapon that has a high rate of fire. Most common with aircraft cannons (GAU-8), autocannons, and machine guns. -- initiator : The unit that is doing the shooing. -- target: The unit that is being targeted. -- @function [parent=#BASE] OnEventShootingStart -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. --- Occurs when any unit stops firing its weapon. Event will always correspond with a shooting start event. -- initiator : The unit that was doing the shooing. -- @function [parent=#BASE] OnEventShootingEnd -- @param #BASE self -- @param Core.Event#EVENTDATA EventData The EventData structure. end --- Creation of a Birth Event. -- @param #BASE self -- @param Dcs.DCSTypes#Time EventTime The time stamp of the event. -- @param Dcs.DCSWrapper.Object#Object Initiator The initiating object of the event. -- @param #string IniUnitName The initiating unit name. -- @param place -- @param subplace function BASE:CreateEventBirth( EventTime, Initiator, IniUnitName, place, subplace ) self:F( { EventTime, Initiator, IniUnitName, place, subplace } ) local Event = { id = world.event.S_EVENT_BIRTH, time = EventTime, initiator = Initiator, IniUnitName = IniUnitName, place = place, subplace = subplace } world.onEvent( Event ) end --- Creation of a Crash Event. -- @param #BASE self -- @param Dcs.DCSTypes#Time EventTime The time stamp of the event. -- @param Dcs.DCSWrapper.Object#Object Initiator The initiating object of the event. function BASE:CreateEventCrash( EventTime, Initiator ) self:F( { EventTime, Initiator } ) local Event = { id = world.event.S_EVENT_CRASH, time = EventTime, initiator = Initiator, } world.onEvent( Event ) end --- Creation of a Takeoff Event. -- @param #BASE self -- @param Dcs.DCSTypes#Time EventTime The time stamp of the event. -- @param Dcs.DCSWrapper.Object#Object Initiator The initiating object of the event. function BASE:CreateEventTakeoff( EventTime, Initiator ) self:F( { EventTime, Initiator } ) local Event = { id = world.event.S_EVENT_TAKEOFF, time = EventTime, initiator = Initiator, } world.onEvent( Event ) end -- TODO: Complete Dcs.DCSTypes#Event structure. --- The main event handling function... This function captures all events generated for the class. -- @param #BASE self -- @param Dcs.DCSTypes#Event event function BASE:onEvent(event) --self:F( { BaseEventCodes[event.id], event } ) if self then for EventID, EventObject in pairs( self.Events ) do if EventObject.EventEnabled then --env.info( 'onEvent Table EventObject.Self = ' .. tostring(EventObject.Self) ) --env.info( 'onEvent event.id = ' .. tostring(event.id) ) --env.info( 'onEvent EventObject.Event = ' .. tostring(EventObject.Event) ) if event.id == EventObject.Event then if self == EventObject.Self then if event.initiator and event.initiator:isExist() then event.IniUnitName = event.initiator:getName() end if event.target and event.target:isExist() then event.TgtUnitName = event.target:getName() end --self:T( { BaseEventCodes[event.id], event } ) --EventObject.EventFunction( self, event ) end end end end end end do -- Scheduling --- Schedule a new time event. Note that the schedule will only take place if the scheduler is *started*. Even for a single schedule event, the scheduler needs to be started also. -- @param #BASE self -- @param #number Start Specifies the amount of seconds that will be waited before the scheduling is started, and the event function is called. -- @param #function SchedulerFunction The event function to be called when a timer event occurs. The event function needs to accept the parameters specified in SchedulerArguments. -- @param #table ... Optional arguments that can be given as part of scheduler. The arguments need to be given as a table { param1, param 2, ... }. -- @return #number The ScheduleID of the planned schedule. function BASE:ScheduleOnce( Start, SchedulerFunction, ... ) self:F2( { Start } ) self:T3( { ... } ) local ObjectName = "-" ObjectName = self.ClassName .. self.ClassID self:F3( { "ScheduleOnce: ", ObjectName, Start } ) self.SchedulerObject = self local ScheduleID = _SCHEDULEDISPATCHER:AddSchedule( self, SchedulerFunction, { ... }, Start, nil, nil, nil ) self._.Schedules[#self.Schedules+1] = ScheduleID return self._.Schedules end --- Schedule a new time event. Note that the schedule will only take place if the scheduler is *started*. Even for a single schedule event, the scheduler needs to be started also. -- @param #BASE self -- @param #number Start Specifies the amount of seconds that will be waited before the scheduling is started, and the event function is called. -- @param #number Repeat Specifies the interval in seconds when the scheduler will call the event function. -- @param #number RandomizeFactor Specifies a randomization factor between 0 and 1 to randomize the Repeat. -- @param #number Stop Specifies the amount of seconds when the scheduler will be stopped. -- @param #function SchedulerFunction The event function to be called when a timer event occurs. The event function needs to accept the parameters specified in SchedulerArguments. -- @param #table ... Optional arguments that can be given as part of scheduler. The arguments need to be given as a table { param1, param 2, ... }. -- @return #number The ScheduleID of the planned schedule. function BASE:ScheduleRepeat( Start, Repeat, RandomizeFactor, Stop, SchedulerFunction, ... ) self:F2( { Start } ) self:T3( { ... } ) local ObjectName = "-" ObjectName = self.ClassName .. self.ClassID self:F3( { "ScheduleRepeat: ", ObjectName, Start, Repeat, RandomizeFactor, Stop } ) self.SchedulerObject = self local ScheduleID = _SCHEDULEDISPATCHER:AddSchedule( self, SchedulerFunction, { ... }, Start, Repeat, RandomizeFactor, Stop ) self._.Schedules[SchedulerFunction] = ScheduleID return self._.Schedules end --- Stops the Schedule. -- @param #BASE self -- @param #function SchedulerFunction The event function to be called when a timer event occurs. The event function needs to accept the parameters specified in SchedulerArguments. function BASE:ScheduleStop( SchedulerFunction ) self:F3( { "ScheduleStop:" } ) _SCHEDULEDISPATCHER:Stop( self, self._.Schedules[SchedulerFunction] ) end end --- Set a state or property of the Object given a Key and a Value. -- Note that if the Object is destroyed, nillified or garbage collected, then the Values and Keys will also be gone. -- @param #BASE self -- @param Object The object that will hold the Value set by the Key. -- @param Key The key that is used as a reference of the value. Note that the key can be a #string, but it can also be any other type! -- @param Value The value to is stored in the object. -- @return The Value set. -- @return #nil The Key was not found and thus the Value could not be retrieved. function BASE:SetState( Object, Key, Value ) local ClassNameAndID = Object:GetClassNameAndID() self.States[ClassNameAndID] = self.States[ClassNameAndID] or {} self.States[ClassNameAndID][Key] = Value return self.States[ClassNameAndID][Key] end --- Get a Value given a Key from the Object. -- Note that if the Object is destroyed, nillified or garbage collected, then the Values and Keys will also be gone. -- @param #BASE self -- @param Object The object that holds the Value set by the Key. -- @param Key The key that is used to retrieve the value. Note that the key can be a #string, but it can also be any other type! -- @return The Value retrieved. function BASE:GetState( Object, Key ) local ClassNameAndID = Object:GetClassNameAndID() if self.States[ClassNameAndID] then local Value = self.States[ClassNameAndID][Key] or false return Value end return nil end function BASE:ClearState( Object, StateName ) local ClassNameAndID = Object:GetClassNameAndID() if self.States[ClassNameAndID] then self.States[ClassNameAndID][StateName] = nil end end -- Trace section -- Log a trace (only shown when trace is on) -- TODO: Make trace function using variable parameters. --- Set trace on or off -- Note that when trace is off, no debug statement is performed, increasing performance! -- When Moose is loaded statically, (as one file), tracing is switched off by default. -- So tracing must be switched on manually in your mission if you are using Moose statically. -- When moose is loading dynamically (for moose class development), tracing is switched on by default. -- @param #BASE self -- @param #boolean TraceOnOff Switch the tracing on or off. -- @usage -- -- Switch the tracing On -- BASE:TraceOnOff( true ) -- -- -- Switch the tracing Off -- BASE:TraceOnOff( false ) function BASE:TraceOnOff( TraceOnOff ) _TraceOnOff = TraceOnOff end --- Enquires if tracing is on (for the class). -- @param #BASE self -- @return #boolean function BASE:IsTrace() if debug and ( _TraceAll == true ) or ( _TraceClass[self.ClassName] or _TraceClassMethod[self.ClassName] ) then return true else return false end end --- Set trace level -- @param #BASE self -- @param #number Level function BASE:TraceLevel( Level ) _TraceLevel = Level self:E( "Tracing level " .. Level ) end --- Trace all methods in MOOSE -- @param #BASE self -- @param #boolean TraceAll true = trace all methods in MOOSE. function BASE:TraceAll( TraceAll ) _TraceAll = TraceAll if _TraceAll then self:E( "Tracing all methods in MOOSE " ) else self:E( "Switched off tracing all methods in MOOSE" ) end end --- Set tracing for a class -- @param #BASE self -- @param #string Class function BASE:TraceClass( Class ) _TraceClass[Class] = true _TraceClassMethod[Class] = {} self:E( "Tracing class " .. Class ) end --- Set tracing for a specific method of class -- @param #BASE self -- @param #string Class -- @param #string Method function BASE:TraceClassMethod( Class, Method ) if not _TraceClassMethod[Class] then _TraceClassMethod[Class] = {} _TraceClassMethod[Class].Method = {} end _TraceClassMethod[Class].Method[Method] = true self:E( "Tracing method " .. Method .. " of class " .. Class ) end --- Trace a function call. This function is private. -- @param #BASE self -- @param Arguments A #table or any field. function BASE:_F( Arguments, DebugInfoCurrentParam, DebugInfoFromParam ) if debug and ( _TraceAll == true ) or ( _TraceClass[self.ClassName] or _TraceClassMethod[self.ClassName] ) then local DebugInfoCurrent = DebugInfoCurrentParam and DebugInfoCurrentParam or debug.getinfo( 2, "nl" ) local DebugInfoFrom = DebugInfoFromParam and DebugInfoFromParam or debug.getinfo( 3, "l" ) local Function = "function" if DebugInfoCurrent.name then Function = DebugInfoCurrent.name end if _TraceAll == true or _TraceClass[self.ClassName] or _TraceClassMethod[self.ClassName].Method[Function] then local LineCurrent = 0 if DebugInfoCurrent.currentline then LineCurrent = DebugInfoCurrent.currentline end local LineFrom = 0 if DebugInfoFrom then LineFrom = DebugInfoFrom.currentline end env.info( string.format( "%6d(%6d)/%1s:%20s%05d.%s(%s)" , LineCurrent, LineFrom, "F", self.ClassName, self.ClassID, Function, routines.utils.oneLineSerialize( Arguments ) ) ) end end end --- Trace a function call. Must be at the beginning of the function logic. -- @param #BASE self -- @param Arguments A #table or any field. function BASE:F( Arguments ) if debug and _TraceOnOff then local DebugInfoCurrent = debug.getinfo( 2, "nl" ) local DebugInfoFrom = debug.getinfo( 3, "l" ) if _TraceLevel >= 1 then self:_F( Arguments, DebugInfoCurrent, DebugInfoFrom ) end end end --- Trace a function call level 2. Must be at the beginning of the function logic. -- @param #BASE self -- @param Arguments A #table or any field. function BASE:F2( Arguments ) if debug and _TraceOnOff then local DebugInfoCurrent = debug.getinfo( 2, "nl" ) local DebugInfoFrom = debug.getinfo( 3, "l" ) if _TraceLevel >= 2 then self:_F( Arguments, DebugInfoCurrent, DebugInfoFrom ) end end end --- Trace a function call level 3. Must be at the beginning of the function logic. -- @param #BASE self -- @param Arguments A #table or any field. function BASE:F3( Arguments ) if debug and _TraceOnOff then local DebugInfoCurrent = debug.getinfo( 2, "nl" ) local DebugInfoFrom = debug.getinfo( 3, "l" ) if _TraceLevel >= 3 then self:_F( Arguments, DebugInfoCurrent, DebugInfoFrom ) end end end --- Trace a function logic. -- @param #BASE self -- @param Arguments A #table or any field. function BASE:_T( Arguments, DebugInfoCurrentParam, DebugInfoFromParam ) if debug and ( _TraceAll == true ) or ( _TraceClass[self.ClassName] or _TraceClassMethod[self.ClassName] ) then local DebugInfoCurrent = DebugInfoCurrentParam and DebugInfoCurrentParam or debug.getinfo( 2, "nl" ) local DebugInfoFrom = DebugInfoFromParam and DebugInfoFromParam or debug.getinfo( 3, "l" ) local Function = "function" if DebugInfoCurrent.name then Function = DebugInfoCurrent.name end if _TraceAll == true or _TraceClass[self.ClassName] or _TraceClassMethod[self.ClassName].Method[Function] then local LineCurrent = 0 if DebugInfoCurrent.currentline then LineCurrent = DebugInfoCurrent.currentline end local LineFrom = 0 if DebugInfoFrom then LineFrom = DebugInfoFrom.currentline end env.info( string.format( "%6d(%6d)/%1s:%20s%05d.%s" , LineCurrent, LineFrom, "T", self.ClassName, self.ClassID, routines.utils.oneLineSerialize( Arguments ) ) ) end end end --- Trace a function logic level 1. Can be anywhere within the function logic. -- @param #BASE self -- @param Arguments A #table or any field. function BASE:T( Arguments ) if debug and _TraceOnOff then local DebugInfoCurrent = debug.getinfo( 2, "nl" ) local DebugInfoFrom = debug.getinfo( 3, "l" ) if _TraceLevel >= 1 then self:_T( Arguments, DebugInfoCurrent, DebugInfoFrom ) end end end --- Trace a function logic level 2. Can be anywhere within the function logic. -- @param #BASE self -- @param Arguments A #table or any field. function BASE:T2( Arguments ) if debug and _TraceOnOff then local DebugInfoCurrent = debug.getinfo( 2, "nl" ) local DebugInfoFrom = debug.getinfo( 3, "l" ) if _TraceLevel >= 2 then self:_T( Arguments, DebugInfoCurrent, DebugInfoFrom ) end end end --- Trace a function logic level 3. Can be anywhere within the function logic. -- @param #BASE self -- @param Arguments A #table or any field. function BASE:T3( Arguments ) if debug and _TraceOnOff then local DebugInfoCurrent = debug.getinfo( 2, "nl" ) local DebugInfoFrom = debug.getinfo( 3, "l" ) if _TraceLevel >= 3 then self:_T( Arguments, DebugInfoCurrent, DebugInfoFrom ) end end end --- Log an exception which will be traced always. Can be anywhere within the function logic. -- @param #BASE self -- @param Arguments A #table or any field. function BASE:E( Arguments ) if debug then local DebugInfoCurrent = debug.getinfo( 2, "nl" ) local DebugInfoFrom = debug.getinfo( 3, "l" ) local Function = "function" if DebugInfoCurrent.name then Function = DebugInfoCurrent.name end local LineCurrent = DebugInfoCurrent.currentline local LineFrom = -1 if DebugInfoFrom then LineFrom = DebugInfoFrom.currentline end env.info( string.format( "%6d(%6d)/%1s:%20s%05d.%s(%s)" , LineCurrent, LineFrom, "E", self.ClassName, self.ClassID, Function, routines.utils.oneLineSerialize( Arguments ) ) ) end end --- old stuff --function BASE:_Destructor() -- --self:E("_Destructor") -- -- --self:EventRemoveAll() --end -- THIS IS WHY WE NEED LUA 5.2 ... --function BASE:_SetDestructor() -- -- -- TODO: Okay, this is really technical... -- -- When you set a proxy to a table to catch __gc, weak tables don't behave like weak... -- -- Therefore, I am parking this logic until I've properly discussed all this with the community. -- -- local proxy = newproxy(true) -- local proxyMeta = getmetatable(proxy) -- -- proxyMeta.__gc = function () -- env.info("In __gc for " .. self:GetClassNameAndID() ) -- if self._Destructor then -- self:_Destructor() -- end -- end -- -- -- keep the userdata from newproxy reachable until the object -- -- table is about to be garbage-collected - then the __gc hook -- -- will be invoked and the destructor called -- rawset( self, '__proxy', proxy ) -- --end--- The REPORT class -- @type REPORT -- @extends Core.Base#BASE REPORT = { ClassName = "REPORT", Title = "", } --- Create a new REPORT. -- @param #REPORT self -- @param #string Title -- @return #REPORT function REPORT:New( Title ) local self = BASE:Inherit( self, BASE:New() ) -- #REPORT self.Report = {} self:SetTitle( Title or "" ) self:SetIndent( 3 ) return self end --- Has the REPORT Text? -- @param #REPORT self -- @return #boolean function REPORT:HasText() --R2.1 return #self.Report > 0 end --- Set indent of a REPORT. -- @param #REPORT self -- @param #number Indent -- @return #REPORT function REPORT:SetIndent( Indent ) --R2.1 self.Indent = Indent return self end --- Add a new line to a REPORT. -- @param #REPORT self -- @param #string Text -- @return #REPORT function REPORT:Add( Text ) self.Report[#self.Report+1] = Text return self end --- Add a new line to a REPORT. -- @param #REPORT self -- @param #string Text -- @return #REPORT function REPORT:AddIndent( Text ) --R2.1 self.Report[#self.Report+1] = string.rep(" ", self.Indent ) .. Text:gsub("\n","\n"..string.rep( " ", self.Indent ) ) return self end --- Produces the text of the report, taking into account an optional delimeter, which is \n by default. -- @param #REPORT self -- @param #string Delimiter (optional) A delimiter text. -- @return #string The report text. function REPORT:Text( Delimiter ) Delimiter = Delimiter or "\n" local ReportText = ( self.Title ~= "" and self.Title .. Delimiter or self.Title ) .. table.concat( self.Report, Delimiter ) or "" return ReportText end --- Sets the title of the report. -- @param #REPORT self -- @param #string Title The title of the report. -- @return #REPORT function REPORT:SetTitle( Title ) self.Title = Title return self end --- Gets the amount of report items contained in the report. -- @param #REPORT self -- @return #number Returns the number of report items contained in the report. 0 is returned if no report items are contained in the report. The title is not counted for. function REPORT:GetCount() return #self.Report end --- **Core** -- SCHEDULER prepares and handles the **execution of functions over scheduled time (intervals)**. -- -- ![Banner Image](..\Presentations\SCHEDULER\Dia1.JPG) -- -- === -- -- SCHEDULER manages the **scheduling of functions**: -- -- * optionally in an optional specified time interval, -- * optionally **repeating** with a specified time repeat interval, -- * optionally **randomizing** with a specified time interval randomization factor, -- * optionally **stop** the repeating after a specified time interval. -- -- === -- -- # Demo Missions -- -- ### [SCHEDULER Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/SCH%20-%20Scheduler) -- -- ### [SCHEDULER Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/SCH%20-%20Scheduler) -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [SCHEDULER YouTube Channel (none)]() -- -- ==== -- -- ### Contributions: -- -- * FlightControl : Concept & Testing -- -- ### Authors: -- -- * FlightControl : Design & Programming -- -- === -- -- @module Scheduler --- The SCHEDULER class -- @type SCHEDULER -- @field #number ScheduleID the ID of the scheduler. -- @extends Core.Base#BASE --- # SCHEDULER class, extends @{Base#BASE} -- -- The SCHEDULER class creates schedule. -- -- A SCHEDULER can manage **multiple** (repeating) schedules. Each planned or executing schedule has a unique **ScheduleID**. -- The ScheduleID is returned when the method @{#SCHEDULER.Schedule}() is called. -- It is recommended to store the ScheduleID in a variable, as it is used in the methods @{SCHEDULER.Start}() and @{SCHEDULER.Stop}(), -- which can start and stop specific repeating schedules respectively within a SCHEDULER object. -- -- ## SCHEDULER constructor -- -- The SCHEDULER class is quite easy to use, but note that the New constructor has variable parameters: -- -- The @{#SCHEDULER.New}() method returns 2 variables: -- -- 1. The SCHEDULER object reference. -- 2. The first schedule planned in the SCHEDULER object. -- -- To clarify the different appliances, lets have a look at the following examples: -- -- ### Construct a SCHEDULER object without a persistent schedule. -- -- * @{#SCHEDULER.New}( nil ): Setup a new SCHEDULER object, which is persistently executed after garbage collection. -- -- SchedulerObject = SCHEDULER:New() -- SchedulerID = SchedulerObject:Schedule( nil, ScheduleFunction, {} ) -- -- The above example creates a new SchedulerObject, but does not schedule anything. -- A separate schedule is created by using the SchedulerObject using the method :Schedule..., which returns a ScheduleID -- -- ### Construct a SCHEDULER object without a volatile schedule, but volatile to the Object existence... -- -- * @{#SCHEDULER.New}( Object ): Setup a new SCHEDULER object, which is linked to the Object. When the Object is nillified or destroyed, the SCHEDULER object will also be destroyed and stopped after garbage collection. -- -- ZoneObject = ZONE:New( "ZoneName" ) -- SchedulerObject = SCHEDULER:New( ZoneObject ) -- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {} ) -- ... -- ZoneObject = nil -- garbagecollect() -- -- The above example creates a new SchedulerObject, but does not schedule anything, and is bound to the existence of ZoneObject, which is a ZONE. -- A separate schedule is created by using the SchedulerObject using the method :Schedule()..., which returns a ScheduleID -- Later in the logic, the ZoneObject is put to nil, and garbage is collected. -- As a result, the ScheduleObject will cancel any planned schedule. -- -- ### Construct a SCHEDULER object with a persistent schedule. -- -- * @{#SCHEDULER.New}( nil, Function, FunctionArguments, Start, ... ): Setup a new persistent SCHEDULER object, and start a new schedule for the Function with the defined FunctionArguments according the Start and sequent parameters. -- -- SchedulerObject, SchedulerID = SCHEDULER:New( nil, ScheduleFunction, {} ) -- -- The above example creates a new SchedulerObject, and does schedule the first schedule as part of the call. -- Note that 2 variables are returned here: SchedulerObject, ScheduleID... -- -- ### Construct a SCHEDULER object without a schedule, but volatile to the Object existence... -- -- * @{#SCHEDULER.New}( Object, Function, FunctionArguments, Start, ... ): Setup a new SCHEDULER object, linked to Object, and start a new schedule for the Function with the defined FunctionArguments according the Start and sequent parameters. -- -- ZoneObject = ZONE:New( "ZoneName" ) -- SchedulerObject, SchedulerID = SCHEDULER:New( ZoneObject, ScheduleFunction, {} ) -- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {} ) -- ... -- ZoneObject = nil -- garbagecollect() -- -- The above example creates a new SchedulerObject, and schedules a method call (ScheduleFunction), -- and is bound to the existence of ZoneObject, which is a ZONE object (ZoneObject). -- Both a ScheduleObject and a SchedulerID variable are returned. -- Later in the logic, the ZoneObject is put to nil, and garbage is collected. -- As a result, the ScheduleObject will cancel the planned schedule. -- -- ## SCHEDULER timer stopping and (re-)starting. -- -- The SCHEDULER can be stopped and restarted with the following methods: -- -- * @{#SCHEDULER.Start}(): (Re-)Start the schedules within the SCHEDULER object. If a CallID is provided to :Start(), only the schedule referenced by CallID will be (re-)started. -- * @{#SCHEDULER.Stop}(): Stop the schedules within the SCHEDULER object. If a CallID is provided to :Stop(), then only the schedule referenced by CallID will be stopped. -- -- ZoneObject = ZONE:New( "ZoneName" ) -- SchedulerObject, SchedulerID = SCHEDULER:New( ZoneObject, ScheduleFunction, {} ) -- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {}, 10, 10 ) -- ... -- SchedulerObject:Stop( SchedulerID ) -- ... -- SchedulerObject:Start( SchedulerID ) -- -- The above example creates a new SchedulerObject, and does schedule the first schedule as part of the call. -- Note that 2 variables are returned here: SchedulerObject, ScheduleID... -- Later in the logic, the repeating schedule with SchedulerID is stopped. -- A bit later, the repeating schedule with SchedulerId is (re)-started. -- -- ## Create a new schedule -- -- With the method @{#SCHEDULER.Schedule}() a new time event can be scheduled. -- This method is used by the :New() constructor when a new schedule is planned. -- -- Consider the following code fragment of the SCHEDULER object creation. -- -- ZoneObject = ZONE:New( "ZoneName" ) -- SchedulerObject = SCHEDULER:New( ZoneObject ) -- -- Several parameters can be specified that influence the behaviour of a Schedule. -- -- ### A single schedule, immediately executed -- -- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {} ) -- -- The above example schedules a new ScheduleFunction call to be executed asynchronously, within milleseconds ... -- -- ### A single schedule, planned over time -- -- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {}, 10 ) -- -- The above example schedules a new ScheduleFunction call to be executed asynchronously, within 10 seconds ... -- -- ### A schedule with a repeating time interval, planned over time -- -- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {}, 10, 60 ) -- -- The above example schedules a new ScheduleFunction call to be executed asynchronously, within 10 seconds, -- and repeating 60 every seconds ... -- -- ### A schedule with a repeating time interval, planned over time, with time interval randomization -- -- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {}, 10, 60, 0.5 ) -- -- The above example schedules a new ScheduleFunction call to be executed asynchronously, within 10 seconds, -- and repeating 60 seconds, with a 50% time interval randomization ... -- So the repeating time interval will be randomized using the **0.5**, -- and will calculate between **60 - ( 60 * 0.5 )** and **60 + ( 60 * 0.5 )** for each repeat, -- which is in this example between **30** and **90** seconds. -- -- ### A schedule with a repeating time interval, planned over time, with time interval randomization, and stop after a time interval -- -- SchedulerID = SchedulerObject:Schedule( ZoneObject, ScheduleFunction, {}, 10, 60, 0.5, 300 ) -- -- The above example schedules a new ScheduleFunction call to be executed asynchronously, within 10 seconds, -- The schedule will repeat every 60 seconds. -- So the repeating time interval will be randomized using the **0.5**, -- and will calculate between **60 - ( 60 * 0.5 )** and **60 + ( 60 * 0.5 )** for each repeat, -- which is in this example between **30** and **90** seconds. -- The schedule will stop after **300** seconds. -- -- @field #SCHEDULER SCHEDULER = { ClassName = "SCHEDULER", Schedules = {}, } --- SCHEDULER constructor. -- @param #SCHEDULER self -- @param #table SchedulerObject Specified for which Moose object the timer is setup. If a value of nil is provided, a scheduler will be setup without an object reference. -- @param #function SchedulerFunction The event function to be called when a timer event occurs. The event function needs to accept the parameters specified in SchedulerArguments. -- @param #table SchedulerArguments Optional arguments that can be given as part of scheduler. The arguments need to be given as a table { param1, param 2, ... }. -- @param #number Start Specifies the amount of seconds that will be waited before the scheduling is started, and the event function is called. -- @param #number Repeat Specifies the interval in seconds when the scheduler will call the event function. -- @param #number RandomizeFactor Specifies a randomization factor between 0 and 1 to randomize the Repeat. -- @param #number Stop Specifies the amount of seconds when the scheduler will be stopped. -- @return #SCHEDULER self. -- @return #number The ScheduleID of the planned schedule. function SCHEDULER:New( SchedulerObject, SchedulerFunction, SchedulerArguments, Start, Repeat, RandomizeFactor, Stop ) local self = BASE:Inherit( self, BASE:New() ) -- #SCHEDULER self:F2( { Start, Repeat, RandomizeFactor, Stop } ) local ScheduleID = nil self.MasterObject = SchedulerObject if SchedulerFunction then ScheduleID = self:Schedule( SchedulerObject, SchedulerFunction, SchedulerArguments, Start, Repeat, RandomizeFactor, Stop ) end return self, ScheduleID end --function SCHEDULER:_Destructor() -- --self:E("_Destructor") -- -- _SCHEDULEDISPATCHER:RemoveSchedule( self.CallID ) --end --- Schedule a new time event. Note that the schedule will only take place if the scheduler is *started*. Even for a single schedule event, the scheduler needs to be started also. -- @param #SCHEDULER self -- @param #table SchedulerObject Specified for which Moose object the timer is setup. If a value of nil is provided, a scheduler will be setup without an object reference. -- @param #function SchedulerFunction The event function to be called when a timer event occurs. The event function needs to accept the parameters specified in SchedulerArguments. -- @param #table SchedulerArguments Optional arguments that can be given as part of scheduler. The arguments need to be given as a table { param1, param 2, ... }. -- @param #number Start Specifies the amount of seconds that will be waited before the scheduling is started, and the event function is called. -- @param #number Repeat Specifies the interval in seconds when the scheduler will call the event function. -- @param #number RandomizeFactor Specifies a randomization factor between 0 and 1 to randomize the Repeat. -- @param #number Stop Specifies the amount of seconds when the scheduler will be stopped. -- @return #number The ScheduleID of the planned schedule. function SCHEDULER:Schedule( SchedulerObject, SchedulerFunction, SchedulerArguments, Start, Repeat, RandomizeFactor, Stop ) self:F2( { Start, Repeat, RandomizeFactor, Stop } ) self:T3( { SchedulerArguments } ) local ObjectName = "-" if SchedulerObject and SchedulerObject.ClassName and SchedulerObject.ClassID then ObjectName = SchedulerObject.ClassName .. SchedulerObject.ClassID end self:F3( { "Schedule :", ObjectName, tostring( SchedulerObject ), Start, Repeat, RandomizeFactor, Stop } ) self.SchedulerObject = SchedulerObject local ScheduleID = _SCHEDULEDISPATCHER:AddSchedule( self, SchedulerFunction, SchedulerArguments, Start, Repeat, RandomizeFactor, Stop ) self.Schedules[#self.Schedules+1] = ScheduleID return ScheduleID end --- (Re-)Starts the schedules or a specific schedule if a valid ScheduleID is provided. -- @param #SCHEDULER self -- @param #number ScheduleID (optional) The ScheduleID of the planned (repeating) schedule. function SCHEDULER:Start( ScheduleID ) self:F3( { ScheduleID } ) _SCHEDULEDISPATCHER:Start( self, ScheduleID ) end --- Stops the schedules or a specific schedule if a valid ScheduleID is provided. -- @param #SCHEDULER self -- @param #number ScheduleID (optional) The ScheduleID of the planned (repeating) schedule. function SCHEDULER:Stop( ScheduleID ) self:F3( { ScheduleID } ) _SCHEDULEDISPATCHER:Stop( self, ScheduleID ) end --- Removes a specific schedule if a valid ScheduleID is provided. -- @param #SCHEDULER self -- @param #number ScheduleID (optional) The ScheduleID of the planned (repeating) schedule. function SCHEDULER:Remove( ScheduleID ) self:F3( { ScheduleID } ) _SCHEDULEDISPATCHER:Remove( self, ScheduleID ) end --- Clears all pending schedules. -- @param #SCHEDULER self function SCHEDULER:Clear() self:F3( ) _SCHEDULEDISPATCHER:Clear( self ) end --- **Core** -- SCHEDULEDISPATCHER dispatches the different schedules. -- -- === -- -- Takes care of the creation and dispatching of scheduled functions for SCHEDULER objects. -- -- This class is tricky and needs some thorought explanation. -- SCHEDULE classes are used to schedule functions for objects, or as persistent objects. -- The SCHEDULEDISPATCHER class ensures that: -- -- - Scheduled functions are planned according the SCHEDULER object parameters. -- - Scheduled functions are repeated when requested, according the SCHEDULER object parameters. -- - Scheduled functions are automatically removed when the schedule is finished, according the SCHEDULER object parameters. -- -- The SCHEDULEDISPATCHER class will manage SCHEDULER object in memory during garbage collection: -- - When a SCHEDULER object is not attached to another object (that is, it's first :Schedule() parameter is nil), then the SCHEDULER -- object is _persistent_ within memory. -- - When a SCHEDULER object *is* attached to another object, then the SCHEDULER object is _not persistent_ within memory after a garbage collection! -- The none persistency of SCHEDULERS attached to objects is required to allow SCHEDULER objects to be garbage collectged, when the parent object is also desroyed or nillified and garbage collected. -- Even when there are pending timer scheduled functions to be executed for the SCHEDULER object, -- these will not be executed anymore when the SCHEDULER object has been destroyed. -- -- The SCHEDULEDISPATCHER allows multiple scheduled functions to be planned and executed for one SCHEDULER object. -- The SCHEDULER object therefore keeps a table of "CallID's", which are returned after each planning of a new scheduled function by the SCHEDULEDISPATCHER. -- The SCHEDULER object plans new scheduled functions through the @{Scheduler#SCHEDULER.Schedule}() method. -- The Schedule() method returns the CallID that is the reference ID for each planned schedule. -- -- === -- -- ### Contributions: - -- ### Authors: FlightControl : Design & Programming -- -- @module ScheduleDispatcher --- The SCHEDULEDISPATCHER structure -- @type SCHEDULEDISPATCHER SCHEDULEDISPATCHER = { ClassName = "SCHEDULEDISPATCHER", CallID = 0, } function SCHEDULEDISPATCHER:New() local self = BASE:Inherit( self, BASE:New() ) self:F3() return self end --- Add a Schedule to the ScheduleDispatcher. -- The development of this method was really tidy. -- It is constructed as such that a garbage collection is executed on the weak tables, when the Scheduler is nillified. -- Nothing of this code should be modified without testing it thoroughly. -- @param #SCHEDULEDISPATCHER self -- @param Core.Scheduler#SCHEDULER Scheduler function SCHEDULEDISPATCHER:AddSchedule( Scheduler, ScheduleFunction, ScheduleArguments, Start, Repeat, Randomize, Stop ) self:F2( { Scheduler, ScheduleFunction, ScheduleArguments, Start, Repeat, Randomize, Stop } ) self.CallID = self.CallID + 1 local CallID = self.CallID .. "#" .. ( Scheduler.MasterObject and Scheduler.MasterObject.GetClassNameAndID and Scheduler.MasterObject:GetClassNameAndID() or "" ) or "" -- Initialize the ObjectSchedulers array, which is a weakly coupled table. -- If the object used as the key is nil, then the garbage collector will remove the item from the Functions array. self.PersistentSchedulers = self.PersistentSchedulers or {} -- Initialize the ObjectSchedulers array, which is a weakly coupled table. -- If the object used as the key is nil, then the garbage collector will remove the item from the Functions array. self.ObjectSchedulers = self.ObjectSchedulers or setmetatable( {}, { __mode = "v" } ) if Scheduler.MasterObject then self.ObjectSchedulers[CallID] = Scheduler self:F3( { CallID = CallID, ObjectScheduler = tostring(self.ObjectSchedulers[CallID]), MasterObject = tostring(Scheduler.MasterObject) } ) else self.PersistentSchedulers[CallID] = Scheduler self:F3( { CallID = CallID, PersistentScheduler = self.PersistentSchedulers[CallID] } ) end self.Schedule = self.Schedule or setmetatable( {}, { __mode = "k" } ) self.Schedule[Scheduler] = self.Schedule[Scheduler] or {} self.Schedule[Scheduler][CallID] = {} self.Schedule[Scheduler][CallID].Function = ScheduleFunction self.Schedule[Scheduler][CallID].Arguments = ScheduleArguments self.Schedule[Scheduler][CallID].StartTime = timer.getTime() + ( Start or 0 ) self.Schedule[Scheduler][CallID].Start = Start + .1 self.Schedule[Scheduler][CallID].Repeat = Repeat or 0 self.Schedule[Scheduler][CallID].Randomize = Randomize or 0 self.Schedule[Scheduler][CallID].Stop = Stop self:T3( self.Schedule[Scheduler][CallID] ) self.Schedule[Scheduler][CallID].CallHandler = function( CallID ) self:F2( CallID ) local ErrorHandler = function( errmsg ) env.info( "Error in timer function: " .. errmsg ) if debug ~= nil then env.info( debug.traceback() ) end return errmsg end local Scheduler = self.ObjectSchedulers[CallID] if not Scheduler then Scheduler = self.PersistentSchedulers[CallID] end --self:T3( { Scheduler = Scheduler } ) if Scheduler then local MasterObject = tostring(Scheduler.MasterObject) local Schedule = self.Schedule[Scheduler][CallID] --self:T3( { Schedule = Schedule } ) local ScheduleObject = Scheduler.SchedulerObject --local ScheduleObjectName = Scheduler.SchedulerObject:GetNameAndClassID() local ScheduleFunction = Schedule.Function local ScheduleArguments = Schedule.Arguments local Start = Schedule.Start local Repeat = Schedule.Repeat or 0 local Randomize = Schedule.Randomize or 0 local Stop = Schedule.Stop or 0 local ScheduleID = Schedule.ScheduleID local Status, Result if ScheduleObject then local function Timer() return ScheduleFunction( ScheduleObject, unpack( ScheduleArguments ) ) end Status, Result = xpcall( Timer, ErrorHandler ) else local function Timer() return ScheduleFunction( unpack( ScheduleArguments ) ) end Status, Result = xpcall( Timer, ErrorHandler ) end local CurrentTime = timer.getTime() local StartTime = Schedule.StartTime self:F3( { Master = MasterObject, CurrentTime = CurrentTime, StartTime = StartTime, Start = Start, Repeat = Repeat, Randomize = Randomize, Stop = Stop } ) if Status and (( Result == nil ) or ( Result and Result ~= false ) ) then if Repeat ~= 0 and ( ( Stop == 0 ) or ( Stop ~= 0 and CurrentTime <= StartTime + Stop ) ) then local ScheduleTime = CurrentTime + Repeat + math.random( - ( Randomize * Repeat / 2 ), ( Randomize * Repeat / 2 ) ) + 0.01 --self:T3( { Repeat = CallID, CurrentTime, ScheduleTime, ScheduleArguments } ) return ScheduleTime -- returns the next time the function needs to be called. else self:Stop( Scheduler, CallID ) end else self:Stop( Scheduler, CallID ) end else self:E( "Scheduled obsolete call for CallID: " .. CallID ) end return nil end self:Start( Scheduler, CallID ) return CallID end function SCHEDULEDISPATCHER:RemoveSchedule( Scheduler, CallID ) self:F2( { Remove = CallID, Scheduler = Scheduler } ) if CallID then self:Stop( Scheduler, CallID ) self.Schedule[Scheduler][CallID] = nil end end function SCHEDULEDISPATCHER:Start( Scheduler, CallID ) self:F2( { Start = CallID, Scheduler = Scheduler } ) if CallID then local Schedule = self.Schedule[Scheduler] -- Only start when there is no ScheduleID defined! -- This prevents to "Start" the scheduler twice with the same CallID... if not Schedule[CallID].ScheduleID then Schedule[CallID].StartTime = timer.getTime() -- Set the StartTime field to indicate when the scheduler started. Schedule[CallID].ScheduleID = timer.scheduleFunction( Schedule[CallID].CallHandler, CallID, timer.getTime() + Schedule[CallID].Start ) end else for CallID, Schedule in pairs( self.Schedule[Scheduler] or {} ) do self:Start( Scheduler, CallID ) -- Recursive end end end function SCHEDULEDISPATCHER:Stop( Scheduler, CallID ) self:F2( { Stop = CallID, Scheduler = Scheduler } ) if CallID then local Schedule = self.Schedule[Scheduler] -- Only stop when there is a ScheduleID defined for the CallID. -- So, when the scheduler was stopped before, do nothing. if Schedule[CallID].ScheduleID then timer.removeFunction( Schedule[CallID].ScheduleID ) Schedule[CallID].ScheduleID = nil end else for CallID, Schedule in pairs( self.Schedule[Scheduler] or {} ) do self:Stop( Scheduler, CallID ) -- Recursive end end end function SCHEDULEDISPATCHER:Clear( Scheduler ) self:F2( { Scheduler = Scheduler } ) for CallID, Schedule in pairs( self.Schedule[Scheduler] or {} ) do self:Stop( Scheduler, CallID ) -- Recursive end end --- **Core** -- EVENT models DCS **event dispatching** using a **publish-subscribe** model. -- -- ![Banner Image](..\Presentations\EVENT\Dia1.JPG) -- -- === -- -- # 1) Event Handling Overview -- -- ![Objects](..\Presentations\EVENT\Dia2.JPG) -- -- Within a running mission, various DCS events occur. Units are dynamically created, crash, die, shoot stuff, get hit etc. -- This module provides a mechanism to dispatch those events occuring within your running mission, to the different objects orchestrating your mission. -- -- ![Objects](..\Presentations\EVENT\Dia3.JPG) -- -- Objects can subscribe to different events. The Event dispatcher will publish the received DCS events to the subscribed MOOSE objects, in a specified order. -- In this way, the subscribed MOOSE objects are kept in sync with your evolving running mission. -- -- ## 1.1) Event Dispatching -- -- ![Objects](..\Presentations\EVENT\Dia4.JPG) -- -- The _EVENTDISPATCHER object is automatically created within MOOSE, -- and handles the dispatching of DCS Events occurring -- in the simulator to the subscribed objects -- in the correct processing order. -- -- ![Objects](..\Presentations\EVENT\Dia5.JPG) -- -- There are 5 levels of kind of objects that the _EVENTDISPATCHER services: -- -- * _DATABASE object: The core of the MOOSE objects. Any object that is created, deleted or updated, is done in this database. -- * SET_ derived classes: Subsets of the _DATABASE object. These subsets are updated by the _EVENTDISPATCHER as the second priority. -- * UNIT objects: UNIT objects can subscribe to DCS events. Each DCS event will be directly published to teh subscribed UNIT object. -- * GROUP objects: GROUP objects can subscribe to DCS events. Each DCS event will be directly published to the subscribed GROUP object. -- * Any other object: Various other objects can subscribe to DCS events. Each DCS event triggered will be published to each subscribed object. -- -- ![Objects](..\Presentations\EVENT\Dia6.JPG) -- -- For most DCS events, the above order of updating will be followed. -- -- ![Objects](..\Presentations\EVENT\Dia7.JPG) -- -- But for some DCS events, the publishing order is reversed. This is due to the fact that objects need to be **erased** instead of added. -- -- ## 1.2) Event Handling -- -- ![Objects](..\Presentations\EVENT\Dia8.JPG) -- -- The actual event subscribing and handling is not facilitated through the _EVENTDISPATCHER, but it is done through the @{BASE} class, @{UNIT} class and @{GROUP} class. -- The _EVENTDISPATCHER is a component that is quietly working in the background of MOOSE. -- -- ![Objects](..\Presentations\EVENT\Dia9.JPG) -- -- The BASE class provides methods to catch DCS Events. These are events that are triggered from within the DCS simulator, -- and handled through lua scripting. MOOSE provides an encapsulation to handle these events more efficiently. -- -- ### 1.2.1 Subscribe / Unsubscribe to DCS Events -- -- At first, the mission designer will need to **Subscribe** to a specific DCS event for the class. -- So, when the DCS event occurs, the class will be notified of that event. -- There are two functions which you use to subscribe to or unsubscribe from an event. -- -- * @{Base#BASE.HandleEvent}(): Subscribe to a DCS Event. -- * @{Base#BASE.UnHandleEvent}(): Unsubscribe from a DCS Event. -- -- Note that for a UNIT, the event will be handled **for that UNIT only**! -- Note that for a GROUP, the event will be handled **for all the UNITs in that GROUP only**! -- -- For all objects of other classes, the subscribed events will be handled for **all UNITs within the Mission**! -- So if a UNIT within the mission has the subscribed event for that object, -- then the object event handler will receive the event for that UNIT! -- -- ### 1.3.2 Event Handling of DCS Events -- -- Once the class is subscribed to the event, an **Event Handling** method on the object or class needs to be written that will be called -- when the DCS event occurs. The Event Handling method receives an @{Event#EVENTDATA} structure, which contains a lot of information -- about the event that occurred. -- -- Find below an example of the prototype how to write an event handling function for two units: -- -- local Tank1 = UNIT:FindByName( "Tank A" ) -- local Tank2 = UNIT:FindByName( "Tank B" ) -- -- -- Here we subscribe to the Dead events. So, if one of these tanks dies, the Tank1 or Tank2 objects will be notified. -- Tank1:HandleEvent( EVENTS.Dead ) -- Tank2:HandleEvent( EVENTS.Dead ) -- -- --- This function is an Event Handling function that will be called when Tank1 is Dead. -- -- @param Wrapper.Unit#UNIT self -- -- @param Core.Event#EVENTDATA EventData -- function Tank1:OnEventDead( EventData ) -- -- self:SmokeGreen() -- end -- -- --- This function is an Event Handling function that will be called when Tank2 is Dead. -- -- @param Wrapper.Unit#UNIT self -- -- @param Core.Event#EVENTDATA EventData -- function Tank2:OnEventDead( EventData ) -- -- self:SmokeBlue() -- end -- -- ### 1.3.3 Event Handling methods that are automatically called upon subscribed DCS events -- -- ![Objects](..\Presentations\EVENT\Dia10.JPG) -- -- The following list outlines which EVENTS item in the structure corresponds to which Event Handling method. -- Always ensure that your event handling methods align with the events being subscribed to, or nothing will be executed. -- -- # 2) EVENTS type -- -- The EVENTS structure contains names for all the different DCS events that objects can subscribe to using the -- @{Base#BASE.HandleEvent}() method. -- -- # 3) EVENTDATA type -- -- The @{Event#EVENTDATA} structure contains all the fields that are populated with event information before -- an Event Handler method is being called by the event dispatcher. -- The Event Handler received the EVENTDATA object as a parameter, and can be used to investigate further the different events. -- There are basically 4 main categories of information stored in the EVENTDATA structure: -- -- * Initiator Unit data: Several fields documenting the initiator unit related to the event. -- * Target Unit data: Several fields documenting the target unit related to the event. -- * Weapon data: Certain events populate weapon information. -- * Place data: Certain events populate place information. -- -- --- This function is an Event Handling function that will be called when Tank1 is Dead. -- -- EventData is an EVENTDATA structure. -- -- We use the EventData.IniUnit to smoke the tank Green. -- -- @param Wrapper.Unit#UNIT self -- -- @param Core.Event#EVENTDATA EventData -- function Tank1:OnEventDead( EventData ) -- -- EventData.IniUnit:SmokeGreen() -- end -- -- -- Find below an overview which events populate which information categories: -- -- ![Objects](..\Presentations\EVENT\Dia14.JPG) -- -- **IMPORTANT NOTE:** Some events can involve not just UNIT objects, but also STATIC objects!!! -- In that case the initiator or target unit fields will refer to a STATIC object! -- In case a STATIC object is involved, the documentation indicates which fields will and won't not be populated. -- The fields **IniObjectCategory** and **TgtObjectCategory** contain the indicator which **kind of object is involved** in the event. -- You can use the enumerator **Object.Category.UNIT** and **Object.Category.STATIC** to check on IniObjectCategory and TgtObjectCategory. -- Example code snippet: -- -- if Event.IniObjectCategory == Object.Category.UNIT then -- ... -- end -- if Event.IniObjectCategory == Object.Category.STATIC then -- ... -- end -- -- When a static object is involved in the event, the Group and Player fields won't be populated. -- -- === -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @module Event --- The EVENT structure -- @type EVENT -- @field #EVENT.Events Events -- @extends Core.Base#BASE EVENT = { ClassName = "EVENT", ClassID = 0, } world.event.S_EVENT_NEW_CARGO = world.event.S_EVENT_MAX + 1000 world.event.S_EVENT_DELETE_CARGO = world.event.S_EVENT_MAX + 1001 --- The different types of events supported by MOOSE. -- Use this structure to subscribe to events using the @{Base#BASE.HandleEvent}() method. -- @type EVENTS EVENTS = { Shot = world.event.S_EVENT_SHOT, Hit = world.event.S_EVENT_HIT, Takeoff = world.event.S_EVENT_TAKEOFF, Land = world.event.S_EVENT_LAND, Crash = world.event.S_EVENT_CRASH, Ejection = world.event.S_EVENT_EJECTION, Refueling = world.event.S_EVENT_REFUELING, Dead = world.event.S_EVENT_DEAD, PilotDead = world.event.S_EVENT_PILOT_DEAD, BaseCaptured = world.event.S_EVENT_BASE_CAPTURED, MissionStart = world.event.S_EVENT_MISSION_START, MissionEnd = world.event.S_EVENT_MISSION_END, TookControl = world.event.S_EVENT_TOOK_CONTROL, RefuelingStop = world.event.S_EVENT_REFUELING_STOP, Birth = world.event.S_EVENT_BIRTH, HumanFailure = world.event.S_EVENT_HUMAN_FAILURE, EngineStartup = world.event.S_EVENT_ENGINE_STARTUP, EngineShutdown = world.event.S_EVENT_ENGINE_SHUTDOWN, PlayerEnterUnit = world.event.S_EVENT_PLAYER_ENTER_UNIT, PlayerLeaveUnit = world.event.S_EVENT_PLAYER_LEAVE_UNIT, PlayerComment = world.event.S_EVENT_PLAYER_COMMENT, ShootingStart = world.event.S_EVENT_SHOOTING_START, ShootingEnd = world.event.S_EVENT_SHOOTING_END, NewCargo = world.event.S_EVENT_NEW_CARGO, DeleteCargo = world.event.S_EVENT_DELETE_CARGO, } --- The Event structure -- Note that at the beginning of each field description, there is an indication which field will be populated depending on the object type involved in the Event: -- -- * A (Object.Category.)UNIT : A UNIT object type is involved in the Event. -- * A (Object.Category.)STATIC : A STATIC object type is involved in the Event.µ -- -- @type EVENTDATA -- @field #number id The identifier of the event. -- -- @field Dcs.DCSUnit#Unit initiator (UNIT/STATIC/SCENERY) The initiating @{Dcs.DCSUnit#Unit} or @{Dcs.DCSStaticObject#StaticObject}. -- @field Dcs.DCSObject#Object.Category IniObjectCategory (UNIT/STATIC/SCENERY) The initiator object category ( Object.Category.UNIT or Object.Category.STATIC ). -- @field Dcs.DCSUnit#Unit IniDCSUnit (UNIT/STATIC) The initiating @{DCSUnit#Unit} or @{DCSStaticObject#StaticObject}. -- @field #string IniDCSUnitName (UNIT/STATIC) The initiating Unit name. -- @field Wrapper.Unit#UNIT IniUnit (UNIT/STATIC) The initiating MOOSE wrapper @{Unit#UNIT} of the initiator Unit object. -- @field #string IniUnitName (UNIT/STATIC) The initiating UNIT name (same as IniDCSUnitName). -- @field Dcs.DCSGroup#Group IniDCSGroup (UNIT) The initiating {DCSGroup#Group}. -- @field #string IniDCSGroupName (UNIT) The initiating Group name. -- @field Wrapper.Group#GROUP IniGroup (UNIT) The initiating MOOSE wrapper @{Group#GROUP} of the initiator Group object. -- @field #string IniGroupName UNIT) The initiating GROUP name (same as IniDCSGroupName). -- @field #string IniPlayerName (UNIT) The name of the initiating player in case the Unit is a client or player slot. -- @field Dcs.DCScoalition#coalition.side IniCoalition (UNIT) The coalition of the initiator. -- @field Dcs.DCSUnit#Unit.Category IniCategory (UNIT) The category of the initiator. -- @field #string IniTypeName (UNIT) The type name of the initiator. -- -- @field Dcs.DCSUnit#Unit target (UNIT/STATIC) The target @{Dcs.DCSUnit#Unit} or @{DCSStaticObject#StaticObject}. -- @field Dcs.DCSObject#Object.Category TgtObjectCategory (UNIT/STATIC) The target object category ( Object.Category.UNIT or Object.Category.STATIC ). -- @field Dcs.DCSUnit#Unit TgtDCSUnit (UNIT/STATIC) The target @{DCSUnit#Unit} or @{DCSStaticObject#StaticObject}. -- @field #string TgtDCSUnitName (UNIT/STATIC) The target Unit name. -- @field Wrapper.Unit#UNIT TgtUnit (UNIT/STATIC) The target MOOSE wrapper @{Unit#UNIT} of the target Unit object. -- @field #string TgtUnitName (UNIT/STATIC) The target UNIT name (same as TgtDCSUnitName). -- @field Dcs.DCSGroup#Group TgtDCSGroup (UNIT) The target {DCSGroup#Group}. -- @field #string TgtDCSGroupName (UNIT) The target Group name. -- @field Wrapper.Group#GROUP TgtGroup (UNIT) The target MOOSE wrapper @{Group#GROUP} of the target Group object. -- @field #string TgtGroupName (UNIT) The target GROUP name (same as TgtDCSGroupName). -- @field #string TgtPlayerName (UNIT) The name of the target player in case the Unit is a client or player slot. -- @field Dcs.DCScoalition#coalition.side TgtCoalition (UNIT) The coalition of the target. -- @field Dcs.DCSUnit#Unit.Category TgtCategory (UNIT) The category of the target. -- @field #string TgtTypeName (UNIT) The type name of the target. -- -- @field weapon The weapon used during the event. -- @field Weapon -- @field WeaponName -- @field WeaponTgtDCSUnit local _EVENTMETA = { [world.event.S_EVENT_SHOT] = { Order = 1, Side = "I", Event = "OnEventShot", Text = "S_EVENT_SHOT" }, [world.event.S_EVENT_HIT] = { Order = 1, Side = "T", Event = "OnEventHit", Text = "S_EVENT_HIT" }, [world.event.S_EVENT_TAKEOFF] = { Order = 1, Side = "I", Event = "OnEventTakeoff", Text = "S_EVENT_TAKEOFF" }, [world.event.S_EVENT_LAND] = { Order = 1, Side = "I", Event = "OnEventLand", Text = "S_EVENT_LAND" }, [world.event.S_EVENT_CRASH] = { Order = -1, Side = "I", Event = "OnEventCrash", Text = "S_EVENT_CRASH" }, [world.event.S_EVENT_EJECTION] = { Order = 1, Side = "I", Event = "OnEventEjection", Text = "S_EVENT_EJECTION" }, [world.event.S_EVENT_REFUELING] = { Order = 1, Side = "I", Event = "OnEventRefueling", Text = "S_EVENT_REFUELING" }, [world.event.S_EVENT_DEAD] = { Order = -1, Side = "I", Event = "OnEventDead", Text = "S_EVENT_DEAD" }, [world.event.S_EVENT_PILOT_DEAD] = { Order = 1, Side = "I", Event = "OnEventPilotDead", Text = "S_EVENT_PILOT_DEAD" }, [world.event.S_EVENT_BASE_CAPTURED] = { Order = 1, Side = "I", Event = "OnEventBaseCaptured", Text = "S_EVENT_BASE_CAPTURED" }, [world.event.S_EVENT_MISSION_START] = { Order = 1, Side = "N", Event = "OnEventMissionStart", Text = "S_EVENT_MISSION_START" }, [world.event.S_EVENT_MISSION_END] = { Order = 1, Side = "N", Event = "OnEventMissionEnd", Text = "S_EVENT_MISSION_END" }, [world.event.S_EVENT_TOOK_CONTROL] = { Order = 1, Side = "N", Event = "OnEventTookControl", Text = "S_EVENT_TOOK_CONTROL" }, [world.event.S_EVENT_REFUELING_STOP] = { Order = 1, Side = "I", Event = "OnEventRefuelingStop", Text = "S_EVENT_REFUELING_STOP" }, [world.event.S_EVENT_BIRTH] = { Order = 1, Side = "I", Event = "OnEventBirth", Text = "S_EVENT_BIRTH" }, [world.event.S_EVENT_HUMAN_FAILURE] = { Order = 1, Side = "I", Event = "OnEventHumanFailure", Text = "S_EVENT_HUMAN_FAILURE" }, [world.event.S_EVENT_ENGINE_STARTUP] = { Order = 1, Side = "I", Event = "OnEventEngineStartup", Text = "S_EVENT_ENGINE_STARTUP" }, [world.event.S_EVENT_ENGINE_SHUTDOWN] = { Order = 1, Side = "I", Event = "OnEventEngineShutdown", Text = "S_EVENT_ENGINE_SHUTDOWN" }, [world.event.S_EVENT_PLAYER_ENTER_UNIT] = { Order = 1, Side = "I", Event = "OnEventPlayerEnterUnit", Text = "S_EVENT_PLAYER_ENTER_UNIT" }, [world.event.S_EVENT_PLAYER_LEAVE_UNIT] = { Order = -1, Side = "I", Event = "OnEventPlayerLeaveUnit", Text = "S_EVENT_PLAYER_LEAVE_UNIT" }, [world.event.S_EVENT_PLAYER_COMMENT] = { Order = 1, Side = "I", Event = "OnEventPlayerComment", Text = "S_EVENT_PLAYER_COMMENT" }, [world.event.S_EVENT_SHOOTING_START] = { Order = 1, Side = "I", Event = "OnEventShootingStart", Text = "S_EVENT_SHOOTING_START" }, [world.event.S_EVENT_SHOOTING_END] = { Order = 1, Side = "I", Event = "OnEventShootingEnd", Text = "S_EVENT_SHOOTING_END" }, [EVENTS.NewCargo] = { Order = 1, Event = "OnEventNewCargo", Text = "S_EVENT_NEW_CARGO" }, [EVENTS.DeleteCargo] = { Order = 1, Event = "OnEventDeleteCargo", Text = "S_EVENT_DELETE_CARGO" }, } --- The Events structure -- @type EVENT.Events -- @field #number IniUnit function EVENT:New() local self = BASE:Inherit( self, BASE:New() ) self:F2() self.EventHandler = world.addEventHandler( self ) return self end --- Initializes the Events structure for the event -- @param #EVENT self -- @param Dcs.DCSWorld#world.event EventID -- @param Core.Base#BASE EventClass -- @return #EVENT.Events function EVENT:Init( EventID, EventClass ) self:F3( { _EVENTMETA[EventID].Text, EventClass } ) if not self.Events[EventID] then -- Create a WEAK table to ensure that the garbage collector is cleaning the event links when the object usage is cleaned. self.Events[EventID] = {} end -- Each event has a subtable of EventClasses, ordered by EventPriority. local EventPriority = EventClass:GetEventPriority() if not self.Events[EventID][EventPriority] then self.Events[EventID][EventPriority] = setmetatable( {}, { __mode = "k" } ) end if not self.Events[EventID][EventPriority][EventClass] then self.Events[EventID][EventPriority][EventClass] = {} end return self.Events[EventID][EventPriority][EventClass] end --- Removes a subscription -- @param #EVENT self -- @param Core.Base#BASE EventClass The self instance of the class for which the event is. -- @param Dcs.DCSWorld#world.event EventID -- @return #EVENT.Events function EVENT:RemoveEvent( EventClass, EventID ) self:F2( { "Removing subscription for class: ", EventClass:GetClassNameAndID() } ) local EventPriority = EventClass:GetEventPriority() self.Events = self.Events or {} self.Events[EventID] = self.Events[EventID] or {} self.Events[EventID][EventPriority] = self.Events[EventID][EventPriority] or {} self.Events[EventID][EventPriority][EventClass] = self.Events[EventID][EventPriority][EventClass] self.Events[EventID][EventPriority][EventClass] = nil end --- Resets subscriptions -- @param #EVENT self -- @param Core.Base#BASE EventClass The self instance of the class for which the event is. -- @param Dcs.DCSWorld#world.event EventID -- @return #EVENT.Events function EVENT:Reset( EventObject ) --R2.1 self:E( { "Resetting subscriptions for class: ", EventObject:GetClassNameAndID() } ) local EventPriority = EventObject:GetEventPriority() for EventID, EventData in pairs( self.Events ) do if self.EventsDead then if self.EventsDead[EventID] then if self.EventsDead[EventID][EventPriority] then if self.EventsDead[EventID][EventPriority][EventObject] then self.Events[EventID][EventPriority][EventObject] = self.EventsDead[EventID][EventPriority][EventObject] end end end end end end --- Clears all event subscriptions for a @{Base#BASE} derived object. -- @param #EVENT self -- @param Core.Base#BASE EventObject function EVENT:RemoveAll( EventObject ) self:F3( { EventObject:GetClassNameAndID() } ) local EventClass = EventObject:GetClassNameAndID() local EventPriority = EventClass:GetEventPriority() for EventID, EventData in pairs( self.Events ) do self.Events[EventID][EventPriority][EventClass] = nil end end --- Create an OnDead event handler for a group -- @param #EVENT self -- @param #table EventTemplate -- @param #function EventFunction The function to be called when the event occurs for the unit. -- @param EventClass The instance of the class for which the event is. -- @param #function OnEventFunction -- @return #EVENT function EVENT:OnEventForTemplate( EventTemplate, EventFunction, EventClass, EventID ) self:F2( EventTemplate.name ) for EventUnitID, EventUnit in pairs( EventTemplate.units ) do self:OnEventForUnit( EventUnit.name, EventFunction, EventClass, EventID ) end return self end --- Set a new listener for an S_EVENT_X event independent from a unit or a weapon. -- @param #EVENT self -- @param #function EventFunction The function to be called when the event occurs for the unit. -- @param Core.Base#BASE EventClass The self instance of the class for which the event is captured. When the event happens, the event process will be called in this class provided. -- @param EventID -- @return #EVENT function EVENT:OnEventGeneric( EventFunction, EventClass, EventID ) self:F2( { EventID } ) local EventData = self:Init( EventID, EventClass ) EventData.EventFunction = EventFunction return self end --- Set a new listener for an S_EVENT_X event for a UNIT. -- @param #EVENT self -- @param #string UnitName The name of the UNIT. -- @param #function EventFunction The function to be called when the event occurs for the GROUP. -- @param Core.Base#BASE EventClass The self instance of the class for which the event is. -- @param EventID -- @return #EVENT function EVENT:OnEventForUnit( UnitName, EventFunction, EventClass, EventID ) self:F2( UnitName ) local EventData = self:Init( EventID, EventClass ) EventData.EventUnit = true EventData.EventFunction = EventFunction return self end --- Set a new listener for an S_EVENT_X event for a GROUP. -- @param #EVENT self -- @param #string GroupName The name of the GROUP. -- @param #function EventFunction The function to be called when the event occurs for the GROUP. -- @param Core.Base#BASE EventClass The self instance of the class for which the event is. -- @param EventID -- @return #EVENT function EVENT:OnEventForGroup( GroupName, EventFunction, EventClass, EventID, ... ) self:E( GroupName ) local Event = self:Init( EventID, EventClass ) Event.EventGroup = true Event.EventFunction = EventFunction Event.Params = arg return self end do -- OnBirth --- Create an OnBirth event handler for a group -- @param #EVENT self -- @param Wrapper.Group#GROUP EventGroup -- @param #function EventFunction The function to be called when the event occurs for the unit. -- @param EventClass The self instance of the class for which the event is. -- @return #EVENT function EVENT:OnBirthForTemplate( EventTemplate, EventFunction, EventClass ) self:F2( EventTemplate.name ) self:OnEventForTemplate( EventTemplate, EventFunction, EventClass, EVENTS.Birth ) return self end end do -- OnCrash --- Create an OnCrash event handler for a group -- @param #EVENT self -- @param Wrapper.Group#GROUP EventGroup -- @param #function EventFunction The function to be called when the event occurs for the unit. -- @param EventClass The self instance of the class for which the event is. -- @return #EVENT function EVENT:OnCrashForTemplate( EventTemplate, EventFunction, EventClass ) self:F2( EventTemplate.name ) self:OnEventForTemplate( EventTemplate, EventFunction, EventClass, EVENTS.Crash ) return self end end do -- OnDead --- Create an OnDead event handler for a group -- @param #EVENT self -- @param Wrapper.Group#GROUP EventGroup -- @param #function EventFunction The function to be called when the event occurs for the unit. -- @param EventClass The self instance of the class for which the event is. -- @return #EVENT function EVENT:OnDeadForTemplate( EventTemplate, EventFunction, EventClass ) self:F2( EventTemplate.name ) self:OnEventForTemplate( EventTemplate, EventFunction, EventClass, EVENTS.Dead ) return self end end do -- OnLand --- Create an OnLand event handler for a group -- @param #EVENT self -- @param #table EventTemplate -- @param #function EventFunction The function to be called when the event occurs for the unit. -- @param EventClass The self instance of the class for which the event is. -- @return #EVENT function EVENT:OnLandForTemplate( EventTemplate, EventFunction, EventClass ) self:F2( EventTemplate.name ) self:OnEventForTemplate( EventTemplate, EventFunction, EventClass, EVENTS.Land ) return self end end do -- OnTakeOff --- Create an OnTakeOff event handler for a group -- @param #EVENT self -- @param #table EventTemplate -- @param #function EventFunction The function to be called when the event occurs for the unit. -- @param EventClass The self instance of the class for which the event is. -- @return #EVENT function EVENT:OnTakeOffForTemplate( EventTemplate, EventFunction, EventClass ) self:F2( EventTemplate.name ) self:OnEventForTemplate( EventTemplate, EventFunction, EventClass, EVENTS.Takeoff ) return self end end do -- OnEngineShutDown --- Create an OnDead event handler for a group -- @param #EVENT self -- @param #table EventTemplate -- @param #function EventFunction The function to be called when the event occurs for the unit. -- @param EventClass The self instance of the class for which the event is. -- @return #EVENT function EVENT:OnEngineShutDownForTemplate( EventTemplate, EventFunction, EventClass ) self:F2( EventTemplate.name ) self:OnEventForTemplate( EventTemplate, EventFunction, EventClass, EVENTS.EngineShutdown ) return self end end do -- Event Creation --- Creation of a New Cargo Event. -- @param #EVENT self -- @param AI.AI_Cargo#AI_CARGO Cargo The Cargo created. function EVENT:CreateEventNewCargo( Cargo ) self:F( { Cargo } ) local Event = { id = EVENTS.NewCargo, time = timer.getTime(), cargo = Cargo, } world.onEvent( Event ) end --- Creation of a Cargo Deletion Event. -- @param #EVENT self -- @param AI.AI_Cargo#AI_CARGO Cargo The Cargo created. function EVENT:CreateEventDeleteCargo( Cargo ) self:F( { Cargo } ) local Event = { id = EVENTS.DeleteCargo, time = timer.getTime(), cargo = Cargo, } world.onEvent( Event ) end --- Creation of a S_EVENT_PLAYER_ENTER_UNIT Event. -- @param #EVENT self -- @param Wrapper.Unit#UNIT PlayerUnit. function EVENT:CreateEventPlayerEnterUnit( PlayerUnit ) self:F( { PlayerUnit } ) local Event = { id = EVENTS.PlayerEnterUnit, time = timer.getTime(), initiator = PlayerUnit:GetDCSObject() } world.onEvent( Event ) end end --- @param #EVENT self -- @param #EVENTDATA Event function EVENT:onEvent( Event ) local ErrorHandler = function( errmsg ) env.info( "Error in SCHEDULER function:" .. errmsg ) if debug ~= nil then env.info( debug.traceback() ) end return errmsg end local EventMeta = _EVENTMETA[Event.id] if self and self.Events and self.Events[Event.id] and ( Event.initiator ~= nil or ( Event.initiator == nil and Event.id ~= EVENTS.PlayerLeaveUnit ) ) then if Event.initiator then Event.IniObjectCategory = Event.initiator:getCategory() if Event.IniObjectCategory == Object.Category.UNIT then Event.IniDCSUnit = Event.initiator Event.IniDCSUnitName = Event.IniDCSUnit:getName() Event.IniUnitName = Event.IniDCSUnitName Event.IniDCSGroup = Event.IniDCSUnit:getGroup() Event.IniUnit = UNIT:FindByName( Event.IniDCSUnitName ) if not Event.IniUnit then -- Unit can be a CLIENT. Most likely this will be the case ... Event.IniUnit = CLIENT:FindByName( Event.IniDCSUnitName, '', true ) end Event.IniDCSGroupName = "" if Event.IniDCSGroup and Event.IniDCSGroup:isExist() then Event.IniDCSGroupName = Event.IniDCSGroup:getName() Event.IniGroup = GROUP:FindByName( Event.IniDCSGroupName ) if Event.IniGroup then Event.IniGroupName = Event.IniDCSGroupName end end Event.IniPlayerName = Event.IniDCSUnit:getPlayerName() Event.IniCoalition = Event.IniDCSUnit:getCoalition() Event.IniTypeName = Event.IniDCSUnit:getTypeName() Event.IniCategory = Event.IniDCSUnit:getDesc().category end if Event.IniObjectCategory == Object.Category.STATIC then Event.IniDCSUnit = Event.initiator Event.IniDCSUnitName = Event.IniDCSUnit:getName() Event.IniUnitName = Event.IniDCSUnitName Event.IniUnit = STATIC:FindByName( Event.IniDCSUnitName, false ) Event.IniCoalition = Event.IniDCSUnit:getCoalition() Event.IniCategory = Event.IniDCSUnit:getDesc().category Event.IniTypeName = Event.IniDCSUnit:getTypeName() end if Event.IniObjectCategory == Object.Category.SCENERY then Event.IniDCSUnit = Event.initiator Event.IniDCSUnitName = Event.IniDCSUnit:getName() Event.IniUnitName = Event.IniDCSUnitName Event.IniUnit = SCENERY:Register( Event.IniDCSUnitName, Event.initiator ) Event.IniCategory = Event.IniDCSUnit:getDesc().category Event.IniTypeName = Event.initiator:isExist() and Event.IniDCSUnit:getTypeName() or "SCENERY" -- TODO: Bug fix for 2.1! end end if Event.target then Event.TgtObjectCategory = Event.target:getCategory() if Event.TgtObjectCategory == Object.Category.UNIT then Event.TgtDCSUnit = Event.target Event.TgtDCSGroup = Event.TgtDCSUnit:getGroup() Event.TgtDCSUnitName = Event.TgtDCSUnit:getName() Event.TgtUnitName = Event.TgtDCSUnitName Event.TgtUnit = UNIT:FindByName( Event.TgtDCSUnitName ) Event.TgtDCSGroupName = "" if Event.TgtDCSGroup and Event.TgtDCSGroup:isExist() then Event.TgtDCSGroupName = Event.TgtDCSGroup:getName() Event.TgtGroup = GROUP:FindByName( Event.TgtDCSGroupName ) if Event.TgtGroup then Event.TgtGroupName = Event.TgtDCSGroupName end end Event.TgtPlayerName = Event.TgtDCSUnit:getPlayerName() Event.TgtCoalition = Event.TgtDCSUnit:getCoalition() Event.TgtCategory = Event.TgtDCSUnit:getDesc().category Event.TgtTypeName = Event.TgtDCSUnit:getTypeName() end if Event.TgtObjectCategory == Object.Category.STATIC then Event.TgtDCSUnit = Event.target Event.TgtDCSUnitName = Event.TgtDCSUnit:getName() Event.TgtUnitName = Event.TgtDCSUnitName Event.TgtUnit = STATIC:FindByName( Event.TgtDCSUnitName ) Event.TgtCoalition = Event.TgtDCSUnit:getCoalition() Event.TgtCategory = Event.TgtDCSUnit:getDesc().category Event.TgtTypeName = Event.TgtDCSUnit:getTypeName() end if Event.TgtObjectCategory == Object.Category.SCENERY then Event.TgtDCSUnit = Event.target Event.TgtDCSUnitName = Event.TgtDCSUnit:getName() Event.TgtUnitName = Event.TgtDCSUnitName Event.TgtUnit = SCENERY:Register( Event.TgtDCSUnitName, Event.target ) Event.TgtCategory = Event.TgtDCSUnit:getDesc().category Event.TgtTypeName = Event.TgtDCSUnit:getTypeName() end end if Event.weapon then Event.Weapon = Event.weapon Event.WeaponName = Event.Weapon:getTypeName() Event.WeaponUNIT = CLIENT:Find( Event.Weapon, '', true ) -- Sometimes, the weapon is a player unit! Event.WeaponPlayerName = Event.WeaponUNIT and Event.Weapon:getPlayerName() Event.WeaponCoalition = Event.WeaponUNIT and Event.Weapon:getCoalition() Event.WeaponCategory = Event.WeaponUNIT and Event.Weapon:getDesc().category Event.WeaponTypeName = Event.WeaponUNIT and Event.Weapon:getTypeName() --Event.WeaponTgtDCSUnit = Event.Weapon:getTarget() end if Event.cargo then Event.Cargo = Event.cargo Event.CargoName = Event.cargo.Name end local PriorityOrder = EventMeta.Order local PriorityBegin = PriorityOrder == -1 and 5 or 1 local PriorityEnd = PriorityOrder == -1 and 1 or 5 if Event.IniObjectCategory ~= Object.Category.STATIC then self:E( { EventMeta.Text, Event, Event.IniDCSUnitName, Event.TgtDCSUnitName, PriorityOrder } ) end for EventPriority = PriorityBegin, PriorityEnd, PriorityOrder do if self.Events[Event.id][EventPriority] then -- Okay, we got the event from DCS. Now loop the SORTED self.EventSorted[] table for the received Event.id, and for each EventData registered, check if a function needs to be called. for EventClass, EventData in pairs( self.Events[Event.id][EventPriority] ) do --if Event.IniObjectCategory ~= Object.Category.STATIC then -- self:E( { "Evaluating: ", EventClass:GetClassNameAndID() } ) --end Event.IniGroup = GROUP:FindByName( Event.IniDCSGroupName ) Event.TgtGroup = GROUP:FindByName( Event.TgtDCSGroupName ) -- If the EventData is for a UNIT, the call directly the EventClass EventFunction for that UNIT. if EventData.EventUnit then -- So now the EventClass must be a UNIT class!!! We check if it is still "Alive". if EventClass:IsAlive() or Event.id == EVENTS.Crash or Event.id == EVENTS.Dead then local UnitName = EventClass:GetName() if ( EventMeta.Side == "I" and UnitName == Event.IniDCSUnitName ) or ( EventMeta.Side == "T" and UnitName == Event.TgtDCSUnitName ) then -- First test if a EventFunction is Set, otherwise search for the default function if EventData.EventFunction then if Event.IniObjectCategory ~= 3 then self:E( { "Calling EventFunction for UNIT ", EventClass:GetClassNameAndID(), ", Unit ", Event.IniUnitName, EventPriority } ) end local Result, Value = xpcall( function() return EventData.EventFunction( EventClass, Event ) end, ErrorHandler ) else -- There is no EventFunction defined, so try to find if a default OnEvent function is defined on the object. local EventFunction = EventClass[ EventMeta.Event ] if EventFunction and type( EventFunction ) == "function" then -- Now call the default event function. if Event.IniObjectCategory ~= 3 then self:E( { "Calling " .. EventMeta.Event .. " for Class ", EventClass:GetClassNameAndID(), EventPriority } ) end local Result, Value = xpcall( function() return EventFunction( EventClass, Event ) end, ErrorHandler ) end end end else -- The EventClass is not alive anymore, we remove it from the EventHandlers... self:RemoveEvent( EventClass, Event.id ) end else -- If the EventData is for a GROUP, the call directly the EventClass EventFunction for the UNIT in that GROUP. if EventData.EventGroup then -- So now the EventClass must be a GROUP class!!! We check if it is still "Alive". if EventClass:IsAlive() or Event.id == EVENTS.Crash or Event.id == EVENTS.Dead then -- We can get the name of the EventClass, which is now always a GROUP object. local GroupName = EventClass:GetName() if ( EventMeta.Side == "I" and GroupName == Event.IniDCSGroupName ) or ( EventMeta.Side == "T" and GroupName == Event.TgtDCSGroupName ) then -- First test if a EventFunction is Set, otherwise search for the default function if EventData.EventFunction then if Event.IniObjectCategory ~= 3 then self:E( { "Calling EventFunction for GROUP ", EventClass:GetClassNameAndID(), ", Unit ", Event.IniUnitName, EventPriority } ) end local Result, Value = xpcall( function() return EventData.EventFunction( EventClass, Event, unpack( EventData.Params ) ) end, ErrorHandler ) else -- There is no EventFunction defined, so try to find if a default OnEvent function is defined on the object. local EventFunction = EventClass[ EventMeta.Event ] if EventFunction and type( EventFunction ) == "function" then -- Now call the default event function. if Event.IniObjectCategory ~= 3 then self:E( { "Calling " .. EventMeta.Event .. " for GROUP ", EventClass:GetClassNameAndID(), EventPriority } ) end local Result, Value = xpcall( function() return EventFunction( EventClass, Event, unpack( EventData.Params ) ) end, ErrorHandler ) end end end else -- The EventClass is not alive anymore, we remove it from the EventHandlers... --self:RemoveEvent( EventClass, Event.id ) end else -- If the EventData is not bound to a specific unit, then call the EventClass EventFunction. -- Note that here the EventFunction will need to implement and determine the logic for the relevant source- or target unit, or weapon. if not EventData.EventUnit then -- First test if a EventFunction is Set, otherwise search for the default function if EventData.EventFunction then -- There is an EventFunction defined, so call the EventFunction. if Event.IniObjectCategory ~= 3 then self:F2( { "Calling EventFunction for Class ", EventClass:GetClassNameAndID(), EventPriority } ) end local Result, Value = xpcall( function() return EventData.EventFunction( EventClass, Event ) end, ErrorHandler ) else -- There is no EventFunction defined, so try to find if a default OnEvent function is defined on the object. local EventFunction = EventClass[ EventMeta.Event ] if EventFunction and type( EventFunction ) == "function" then -- Now call the default event function. if Event.IniObjectCategory ~= 3 then self:F2( { "Calling " .. EventMeta.Event .. " for Class ", EventClass:GetClassNameAndID(), EventPriority } ) end local Result, Value = xpcall( function() local Result, Value = EventFunction( EventClass, Event ) return Result, Value end, ErrorHandler ) end end end end end end end end else self:E( { EventMeta.Text, Event } ) end Event = nil end --- The EVENTHANDLER structure -- @type EVENTHANDLER -- @extends Core.Base#BASE EVENTHANDLER = { ClassName = "EVENTHANDLER", ClassID = 0, } --- The EVENTHANDLER constructor -- @param #EVENTHANDLER self -- @return #EVENTHANDLER function EVENTHANDLER:New() self = BASE:Inherit( self, BASE:New() ) -- #EVENTHANDLER return self end --- **Core** -- **SETTINGS** classe defines the format settings management for measurement. -- -- ![Banner Image](..\Presentations\SETTINGS\Dia1.JPG) -- -- ==== -- -- # Demo Missions -- -- ### [SETTINGS Demo Missions source code]() -- -- ### [SETTINGS Demo Missions, only for beta testers]() -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [SETTINGS YouTube Channel]() -- -- === -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @module Settings --- @type SETTINGS -- @field #number LL_Accuracy -- @field #boolean LL_DMS -- @field #number MGRS_Accuracy -- @field #string A2GSystem -- @field #string A2ASystem -- @extends Core.Base#BASE --- # SETTINGS class, extends @{Base#BASE} -- -- @field #SETTINGS SETTINGS = { ClassName = "SETTINGS", } do -- SETTINGS --- SETTINGS constructor. -- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:Set( PlayerName ) if PlayerName == nil then local self = BASE:Inherit( self, BASE:New() ) -- #SETTINGS self:SetMetric() -- Defaults self:SetA2G_BR() -- Defaults self:SetA2A_BRAA() -- Defaults self:SetLL_Accuracy( 3 ) -- Defaults self:SetMGRS_Accuracy( 5 ) -- Defaults self:SetMessageTime( MESSAGE.Type.Briefing, 180 ) self:SetMessageTime( MESSAGE.Type.Detailed, 60 ) self:SetMessageTime( MESSAGE.Type.Information, 30 ) self:SetMessageTime( MESSAGE.Type.Overview, 60 ) self:SetMessageTime( MESSAGE.Type.Update, 15 ) return self else local Settings = _DATABASE:GetPlayerSettings( PlayerName ) if not Settings then Settings = BASE:Inherit( self, BASE:New() ) -- #SETTINGS _DATABASE:SetPlayerSettings( PlayerName, Settings ) end return Settings end end --- Sets the SETTINGS metric. -- @param #SETTINGS self function SETTINGS:SetMetric() self.Metric = true end --- Gets if the SETTINGS is metric. -- @param #SETTINGS self -- @return #boolean true if metric. function SETTINGS:IsMetric() return ( self.Metric ~= nil and self.Metric == true ) or ( self.Metric == nil and _SETTINGS:IsMetric() ) end --- Sets the SETTINGS imperial. -- @param #SETTINGS self function SETTINGS:SetImperial() self.Metric = false end --- Gets if the SETTINGS is imperial. -- @param #SETTINGS self -- @return #boolean true if imperial. function SETTINGS:IsImperial() return ( self.Metric ~= nil and self.Metric == false ) or ( self.Metric == nil and _SETTINGS:IsMetric() ) end --- Sets the SETTINGS LL accuracy. -- @param #SETTINGS self -- @param #number LL_Accuracy -- @return #SETTINGS function SETTINGS:SetLL_Accuracy( LL_Accuracy ) self.LL_Accuracy = LL_Accuracy end --- Gets the SETTINGS LL accuracy. -- @param #SETTINGS self -- @return #number function SETTINGS:GetLL_DDM_Accuracy() return self.LL_DDM_Accuracy or _SETTINGS:GetLL_DDM_Accuracy() end --- Sets the SETTINGS MGRS accuracy. -- @param #SETTINGS self -- @param #number MGRS_Accuracy -- @return #SETTINGS function SETTINGS:SetMGRS_Accuracy( MGRS_Accuracy ) self.MGRS_Accuracy = MGRS_Accuracy end --- Gets the SETTINGS MGRS accuracy. -- @param #SETTINGS self -- @return #number function SETTINGS:GetMGRS_Accuracy() return self.MGRS_Accuracy or _SETTINGS:GetMGRS_Accuracy() end --- Sets the SETTINGS Message Display Timing of a MessageType -- @param #SETTINGS self -- @param Core.Message#MESSAGE MessageType The type of the message. -- @param #number MessageTime The display time duration in seconds of the MessageType. function SETTINGS:SetMessageTime( MessageType, MessageTime ) self.MessageTypeTimings = self.MessageTypeTimings or {} self.MessageTypeTimings[MessageType] = MessageTime end --- Gets the SETTINGS Message Display Timing of a MessageType -- @param #SETTINGS self -- @param Core.Message#MESSAGE MessageType The type of the message. -- @return #number function SETTINGS:GetMessageTime( MessageType ) return ( self.MessageTypeTimings and self.MessageTypeTimings[MessageType] ) or _SETTINGS:GetMessageTime( MessageType ) end --- Sets A2G LL DMS -- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:SetA2G_LL_DMS() self.A2GSystem = "LL DMS" end --- Sets A2G LL DDM -- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:SetA2G_LL_DDM() self.A2GSystem = "LL DDM" end --- Is LL DMS -- @param #SETTINGS self -- @return #boolean true if LL DMS function SETTINGS:IsA2G_LL_DMS() return ( self.A2GSystem and self.A2GSystem == "LL DMS" ) or ( not self.A2GSystem and _SETTINGS:IsA2G_LL_DMS() ) end --- Is LL DDM -- @param #SETTINGS self -- @return #boolean true if LL DDM function SETTINGS:IsA2G_LL_DDM() return ( self.A2GSystem and self.A2GSystem == "LL DDM" ) or ( not self.A2GSystem and _SETTINGS:IsA2G_LL_DDM() ) end --- Sets A2G MGRS -- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:SetA2G_MGRS() self.A2GSystem = "MGRS" end --- Is MGRS -- @param #SETTINGS self -- @return #boolean true if MGRS function SETTINGS:IsA2G_MGRS() return ( self.A2GSystem and self.A2GSystem == "MGRS" ) or ( not self.A2GSystem and _SETTINGS:IsA2G_MGRS() ) end --- Sets A2G BRA -- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:SetA2G_BR() self.A2GSystem = "BR" end --- Is BRA -- @param #SETTINGS self -- @return #boolean true if BRA function SETTINGS:IsA2G_BR() return ( self.A2GSystem and self.A2GSystem == "BR" ) or ( not self.A2GSystem and _SETTINGS:IsA2G_BR() ) end --- Sets A2A BRA -- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:SetA2A_BRAA() self.A2ASystem = "BRAA" end --- Is BRA -- @param #SETTINGS self -- @return #boolean true if BRA function SETTINGS:IsA2A_BRAA() self:E( { BRA = ( self.A2ASystem and self.A2ASystem == "BRAA" ) or ( not self.A2ASystem and _SETTINGS:IsA2A_BRAA() ) } ) return ( self.A2ASystem and self.A2ASystem == "BRAA" ) or ( not self.A2ASystem and _SETTINGS:IsA2A_BRAA() ) end --- Sets A2A BULLS -- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:SetA2A_BULLS() self.A2ASystem = "BULLS" end --- Is BULLS -- @param #SETTINGS self -- @return #boolean true if BULLS function SETTINGS:IsA2A_BULLS() return ( self.A2ASystem and self.A2ASystem == "BULLS" ) or ( not self.A2ASystem and _SETTINGS:IsA2A_BULLS() ) end --- Sets A2A LL DMS -- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:SetA2A_LL_DMS() self.A2ASystem = "LL DMS" end --- Sets A2A LL DDM -- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:SetA2A_LL_DDM() self.A2ASystem = "LL DDM" end --- Is LL DMS -- @param #SETTINGS self -- @return #boolean true if LL DMS function SETTINGS:IsA2A_LL_DMS() return ( self.A2ASystem and self.A2ASystem == "LL DMS" ) or ( not self.A2ASystem and _SETTINGS:IsA2A_LL_DMS() ) end --- Is LL DDM -- @param #SETTINGS self -- @return #boolean true if LL DDM function SETTINGS:IsA2A_LL_DDM() return ( self.A2ASystem and self.A2ASystem == "LL DDM" ) or ( not self.A2ASystem and _SETTINGS:IsA2A_LL_DDM() ) end --- Sets A2A MGRS -- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:SetA2A_MGRS() self.A2ASystem = "MGRS" end --- Is MGRS -- @param #SETTINGS self -- @return #boolean true if MGRS function SETTINGS:IsA2A_MGRS() return ( self.A2ASystem and self.A2ASystem == "MGRS" ) or ( not self.A2ASystem and _SETTINGS:IsA2A_MGRS() ) end --- @param #SETTINGS self -- @return #SETTINGS function SETTINGS:SetSystemMenu( MenuGroup, RootMenu ) local MenuText = "System Settings" local MenuTime = timer.getTime() local SettingsMenu = MENU_GROUP:New( MenuGroup, MenuText, RootMenu ):SetTime( MenuTime ) local A2GCoordinateMenu = MENU_GROUP:New( MenuGroup, "A2G Coordinate System", SettingsMenu ):SetTime( MenuTime ) if not self:IsA2G_LL_DMS() then MENU_GROUP_COMMAND:New( MenuGroup, "Lat/Lon Degree Min Sec (LL DMS)", A2GCoordinateMenu, self.A2GMenuSystem, self, MenuGroup, RootMenu, "LL DMS" ):SetTime( MenuTime ) end if not self:IsA2G_LL_DDM() then MENU_GROUP_COMMAND:New( MenuGroup, "Lat/Lon Degree Dec Min (LL DDM)", A2GCoordinateMenu, self.A2GMenuSystem, self, MenuGroup, RootMenu, "LL DDM" ):SetTime( MenuTime ) end if self:IsA2G_LL_DDM() then MENU_GROUP_COMMAND:New( MenuGroup, "LL DDM Accuracy 1", A2GCoordinateMenu, self.MenuLL_DDM_Accuracy, self, MenuGroup, RootMenu, 1 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "LL DDM Accuracy 2", A2GCoordinateMenu, self.MenuLL_DDM_Accuracy, self, MenuGroup, RootMenu, 2 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "LL DDM Accuracy 3", A2GCoordinateMenu, self.MenuLL_DDM_Accuracy, self, MenuGroup, RootMenu, 3 ):SetTime( MenuTime ) end if not self:IsA2G_BR() then MENU_GROUP_COMMAND:New( MenuGroup, "Bearing, Range (BR)", A2GCoordinateMenu, self.A2GMenuSystem, self, MenuGroup, RootMenu, "BR" ):SetTime( MenuTime ) end if not self:IsA2G_MGRS() then MENU_GROUP_COMMAND:New( MenuGroup, "Military Grid (MGRS)", A2GCoordinateMenu, self.A2GMenuSystem, self, MenuGroup, RootMenu, "MGRS" ):SetTime( MenuTime ) end if self:IsA2G_MGRS() then MENU_GROUP_COMMAND:New( MenuGroup, "MGRS Accuracy 1", A2GCoordinateMenu, self.MenuMGRS_Accuracy, self, MenuGroup, RootMenu, 1 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "MGRS Accuracy 2", A2GCoordinateMenu, self.MenuMGRS_Accuracy, self, MenuGroup, RootMenu, 2 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "MGRS Accuracy 3", A2GCoordinateMenu, self.MenuMGRS_Accuracy, self, MenuGroup, RootMenu, 3 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "MGRS Accuracy 4", A2GCoordinateMenu, self.MenuMGRS_Accuracy, self, MenuGroup, RootMenu, 4 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "MGRS Accuracy 5", A2GCoordinateMenu, self.MenuMGRS_Accuracy, self, MenuGroup, RootMenu, 5 ):SetTime( MenuTime ) end local A2ACoordinateMenu = MENU_GROUP:New( MenuGroup, "A2A Coordinate System", SettingsMenu ):SetTime( MenuTime ) if not self:IsA2A_LL_DMS() then MENU_GROUP_COMMAND:New( MenuGroup, "Lat/Lon Degree Min Sec (LL DMS)", A2ACoordinateMenu, self.A2AMenuSystem, self, MenuGroup, RootMenu, "LL DMS" ):SetTime( MenuTime ) end if not self:IsA2A_LL_DDM() then MENU_GROUP_COMMAND:New( MenuGroup, "Lat/Lon Degree Dec Min (LL DDM)", A2ACoordinateMenu, self.A2AMenuSystem, self, MenuGroup, RootMenu, "LL DDM" ):SetTime( MenuTime ) end if self:IsA2A_LL_DDM() then MENU_GROUP_COMMAND:New( MenuGroup, "LL DDM Accuracy 1", A2ACoordinateMenu, self.MenuLL_DDM_Accuracy, self, MenuGroup, RootMenu, 1 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "LL DDM Accuracy 2", A2ACoordinateMenu, self.MenuLL_DDM_Accuracy, self, MenuGroup, RootMenu, 2 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "LL DDM Accuracy 3", A2ACoordinateMenu, self.MenuLL_DDM_Accuracy, self, MenuGroup, RootMenu, 3 ):SetTime( MenuTime ) end if not self:IsA2A_BULLS() then MENU_GROUP_COMMAND:New( MenuGroup, "Bullseye (BULLS)", A2ACoordinateMenu, self.A2AMenuSystem, self, MenuGroup, RootMenu, "BULLS" ):SetTime( MenuTime ) end if not self:IsA2A_BRAA() then MENU_GROUP_COMMAND:New( MenuGroup, "Bearing Range Altitude Aspect (BRAA)", A2ACoordinateMenu, self.A2AMenuSystem, self, MenuGroup, RootMenu, "BRAA" ):SetTime( MenuTime ) end if not self:IsA2A_MGRS() then MENU_GROUP_COMMAND:New( MenuGroup, "Military Grid (MGRS)", A2ACoordinateMenu, self.A2AMenuSystem, self, MenuGroup, RootMenu, "MGRS" ):SetTime( MenuTime ) end if self:IsA2A_MGRS() then MENU_GROUP_COMMAND:New( MenuGroup, "MGRS Accuracy 1", A2ACoordinateMenu, self.MenuMGRS_Accuracy, self, MenuGroup, RootMenu, 1 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "MGRS Accuracy 2", A2ACoordinateMenu, self.MenuMGRS_Accuracy, self, MenuGroup, RootMenu, 2 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "MGRS Accuracy 3", A2ACoordinateMenu, self.MenuMGRS_Accuracy, self, MenuGroup, RootMenu, 3 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "MGRS Accuracy 4", A2ACoordinateMenu, self.MenuMGRS_Accuracy, self, MenuGroup, RootMenu, 4 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "MGRS Accuracy 5", A2ACoordinateMenu, self.MenuMGRS_Accuracy, self, MenuGroup, RootMenu, 5 ):SetTime( MenuTime ) end local MetricsMenu = MENU_GROUP:New( MenuGroup, "Measures and Weights System", SettingsMenu ):SetTime( MenuTime ) if self:IsMetric() then MENU_GROUP_COMMAND:New( MenuGroup, "Imperial (Miles,Feet)", MetricsMenu, self.MenuMWSystem, self, MenuGroup, RootMenu, false ):SetTime( MenuTime ) end if self:IsImperial() then MENU_GROUP_COMMAND:New( MenuGroup, "Metric (Kilometers,Meters)", MetricsMenu, self.MenuMWSystem, self, MenuGroup, RootMenu, true ):SetTime( MenuTime ) end local MessagesMenu = MENU_GROUP:New( MenuGroup, "Messages and Reports", SettingsMenu ):SetTime( MenuTime ) local UpdateMessagesMenu = MENU_GROUP:New( MenuGroup, "Update Messages", MessagesMenu ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "Off", UpdateMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Update, 0 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "5 seconds", UpdateMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Update, 5 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "10 seconds", UpdateMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Update, 10 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "15 seconds", UpdateMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Update, 15 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "30 seconds", UpdateMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Update, 30 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "1 minute", UpdateMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Update, 60 ):SetTime( MenuTime ) local InformationMessagesMenu = MENU_GROUP:New( MenuGroup, "Information Messages", MessagesMenu ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "5 seconds", InformationMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Information, 5 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "10 seconds", InformationMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Information, 10 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "15 seconds", InformationMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Information, 15 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "30 seconds", InformationMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Information, 30 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "1 minute", InformationMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Information, 60 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "2 minutes", InformationMessagesMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Information, 120 ):SetTime( MenuTime ) local BriefingReportsMenu = MENU_GROUP:New( MenuGroup, "Briefing Reports", MessagesMenu ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "15 seconds", BriefingReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Briefing, 15 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "30 seconds", BriefingReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Briefing, 30 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "1 minute", BriefingReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Briefing, 60 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "2 minutes", BriefingReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Briefing, 120 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "3 minutes", BriefingReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Briefing, 180 ):SetTime( MenuTime ) local OverviewReportsMenu = MENU_GROUP:New( MenuGroup, "Overview Reports", MessagesMenu ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "15 seconds", OverviewReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Overview, 15 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "30 seconds", OverviewReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Overview, 30 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "1 minute", OverviewReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Overview, 60 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "2 minutes", OverviewReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Overview, 120 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "3 minutes", OverviewReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.Overview, 180 ):SetTime( MenuTime ) local DetailedReportsMenu = MENU_GROUP:New( MenuGroup, "Detailed Reports", MessagesMenu ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "15 seconds", DetailedReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.DetailedReportsMenu, 15 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "30 seconds", DetailedReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.DetailedReportsMenu, 30 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "1 minute", DetailedReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.DetailedReportsMenu, 60 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "2 minutes", DetailedReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.DetailedReportsMenu, 120 ):SetTime( MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, "3 minutes", DetailedReportsMenu, self.MenuMessageTimingsSystem, self, MenuGroup, RootMenu, MESSAGE.Type.DetailedReportsMenu, 180 ):SetTime( MenuTime ) SettingsMenu:Remove( MenuTime ) return self end --- @param #SETTINGS self -- @param RootMenu -- @param Wrapper.Client#CLIENT PlayerUnit -- @param #string MenuText -- @return #SETTINGS function SETTINGS:SetPlayerMenu( PlayerUnit ) local PlayerGroup = PlayerUnit:GetGroup() local PlayerName = PlayerUnit:GetPlayerName() local PlayerNames = PlayerGroup:GetPlayerNames() local PlayerMenu = MENU_GROUP:New( PlayerGroup, 'Settings "' .. PlayerName .. '"' ) self.PlayerMenu = PlayerMenu local A2GCoordinateMenu = MENU_GROUP:New( PlayerGroup, "A2G Coordinate System", PlayerMenu ) if not self:IsA2G_LL_DMS() then MENU_GROUP_COMMAND:New( PlayerGroup, "Lat/Lon Degree Min Sec (LL DMS)", A2GCoordinateMenu, self.MenuGroupA2GSystem, self, PlayerUnit, PlayerGroup, PlayerName, "LL DMS" ) end if not self:IsA2G_LL_DDM() then MENU_GROUP_COMMAND:New( PlayerGroup, "Lat/Lon Degree Dec Min (LL DDM)", A2GCoordinateMenu, self.MenuGroupA2GSystem, self, PlayerUnit, PlayerGroup, PlayerName, "LL DDM" ) end if self:IsA2G_LL_DDM() then MENU_GROUP_COMMAND:New( PlayerGroup, "LL DDM Accuracy 1", A2GCoordinateMenu, self.MenuGroupLL_DDM_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 1 ) MENU_GROUP_COMMAND:New( PlayerGroup, "LL DDM Accuracy 2", A2GCoordinateMenu, self.MenuGroupLL_DDM_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 2 ) MENU_GROUP_COMMAND:New( PlayerGroup, "LL DDM Accuracy 3", A2GCoordinateMenu, self.MenuGroupLL_DDM_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 3 ) end if not self:IsA2G_BR() then MENU_GROUP_COMMAND:New( PlayerGroup, "Bearing, Range (BR)", A2GCoordinateMenu, self.MenuGroupA2GSystem, self, PlayerUnit, PlayerGroup, PlayerName, "BR" ) end if not self:IsA2G_MGRS() then MENU_GROUP_COMMAND:New( PlayerGroup, "Military Grid (MGRS)", A2GCoordinateMenu, self.MenuGroupA2GSystem, self, PlayerUnit, PlayerGroup, PlayerName, "MGRS" ) end if self:IsA2G_MGRS() then MENU_GROUP_COMMAND:New( PlayerGroup, "MGRS Accuracy 1", A2GCoordinateMenu, self.MenuGroupMGRS_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 1 ) MENU_GROUP_COMMAND:New( PlayerGroup, "MGRS Accuracy 2", A2GCoordinateMenu, self.MenuGroupMGRS_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 2 ) MENU_GROUP_COMMAND:New( PlayerGroup, "MGRS Accuracy 3", A2GCoordinateMenu, self.MenuGroupMGRS_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 3 ) MENU_GROUP_COMMAND:New( PlayerGroup, "MGRS Accuracy 4", A2GCoordinateMenu, self.MenuGroupMGRS_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 4 ) MENU_GROUP_COMMAND:New( PlayerGroup, "MGRS Accuracy 5", A2GCoordinateMenu, self.MenuGroupMGRS_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 5 ) end local A2ACoordinateMenu = MENU_GROUP:New( PlayerGroup, "A2A Coordinate System", PlayerMenu ) if not self:IsA2A_LL_DMS() then MENU_GROUP_COMMAND:New( PlayerGroup, "Lat/Lon Degree Min Sec (LL DMS)", A2GCoordinateMenu, self.MenuGroupA2GSystem, self, PlayerUnit, PlayerGroup, PlayerName, "LL DMS" ) end if not self:IsA2A_LL_DDM() then MENU_GROUP_COMMAND:New( PlayerGroup, "Lat/Lon Degree Dec Min (LL DDM)", A2GCoordinateMenu, self.MenuGroupA2GSystem, self, PlayerUnit, PlayerGroup, PlayerName, "LL DDM" ) end if self:IsA2A_LL_DDM() then MENU_GROUP_COMMAND:New( PlayerGroup, "LL DDM Accuracy 1", A2GCoordinateMenu, self.MenuGroupLL_DDM_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 1 ) MENU_GROUP_COMMAND:New( PlayerGroup, "LL DDM Accuracy 2", A2GCoordinateMenu, self.MenuGroupLL_DDM_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 2 ) MENU_GROUP_COMMAND:New( PlayerGroup, "LL DDM Accuracy 3", A2GCoordinateMenu, self.MenuGroupLL_DDM_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 3 ) end if not self:IsA2A_BULLS() then MENU_GROUP_COMMAND:New( PlayerGroup, "Bullseye (BULLS)", A2ACoordinateMenu, self.MenuGroupA2ASystem, self, PlayerUnit, PlayerGroup, PlayerName, "BULLS" ) end if not self:IsA2A_BRAA() then MENU_GROUP_COMMAND:New( PlayerGroup, "Bearing Range Altitude Aspect (BRAA)", A2ACoordinateMenu, self.MenuGroupA2ASystem, self, PlayerUnit, PlayerGroup, PlayerName, "BRAA" ) end if not self:IsA2A_MGRS() then MENU_GROUP_COMMAND:New( PlayerGroup, "Military Grid (MGRS)", A2ACoordinateMenu, self.MenuGroupA2ASystem, self, PlayerUnit, PlayerGroup, PlayerName, "MGRS" ) end if self:IsA2A_MGRS() then MENU_GROUP_COMMAND:New( PlayerGroup, "Military Grid (MGRS) Accuracy 1", A2ACoordinateMenu, self.MenuGroupMGRS_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 1 ) MENU_GROUP_COMMAND:New( PlayerGroup, "Military Grid (MGRS) Accuracy 2", A2ACoordinateMenu, self.MenuGroupMGRS_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 2 ) MENU_GROUP_COMMAND:New( PlayerGroup, "Military Grid (MGRS) Accuracy 3", A2ACoordinateMenu, self.MenuGroupMGRS_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 3 ) MENU_GROUP_COMMAND:New( PlayerGroup, "Military Grid (MGRS) Accuracy 4", A2ACoordinateMenu, self.MenuGroupMGRS_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 4 ) MENU_GROUP_COMMAND:New( PlayerGroup, "Military Grid (MGRS) Accuracy 5", A2ACoordinateMenu, self.MenuGroupMGRS_AccuracySystem, self, PlayerUnit, PlayerGroup, PlayerName, 5 ) end local MetricsMenu = MENU_GROUP:New( PlayerGroup, "Measures and Weights System", PlayerMenu ) if self:IsMetric() then MENU_GROUP_COMMAND:New( PlayerGroup, "Imperial (Miles,Feet)", MetricsMenu, self.MenuGroupMWSystem, self, PlayerUnit, PlayerGroup, PlayerName, false ) end if self:IsImperial() then MENU_GROUP_COMMAND:New( PlayerGroup, "Metric (Kilometers,Meters)", MetricsMenu, self.MenuGroupMWSystem, self, PlayerUnit, PlayerGroup, PlayerName, true ) end local MessagesMenu = MENU_GROUP:New( PlayerGroup, "Messages and Reports", PlayerMenu ) local UpdateMessagesMenu = MENU_GROUP:New( PlayerGroup, "Update Messages", MessagesMenu ) MENU_GROUP_COMMAND:New( PlayerGroup, "Off", UpdateMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Update, 0 ) MENU_GROUP_COMMAND:New( PlayerGroup, "5 seconds", UpdateMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Update, 5 ) MENU_GROUP_COMMAND:New( PlayerGroup, "10 seconds", UpdateMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Update, 10 ) MENU_GROUP_COMMAND:New( PlayerGroup, "15 seconds", UpdateMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Update, 15 ) MENU_GROUP_COMMAND:New( PlayerGroup, "30 seconds", UpdateMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Update, 30 ) MENU_GROUP_COMMAND:New( PlayerGroup, "1 minute", UpdateMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Update, 60 ) local InformationMessagesMenu = MENU_GROUP:New( PlayerGroup, "Information Messages", MessagesMenu ) MENU_GROUP_COMMAND:New( PlayerGroup, "5 seconds", InformationMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Information, 5 ) MENU_GROUP_COMMAND:New( PlayerGroup, "10 seconds", InformationMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Information, 10 ) MENU_GROUP_COMMAND:New( PlayerGroup, "15 seconds", InformationMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Information, 15 ) MENU_GROUP_COMMAND:New( PlayerGroup, "30 seconds", InformationMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Information, 30 ) MENU_GROUP_COMMAND:New( PlayerGroup, "1 minute", InformationMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Information, 60 ) MENU_GROUP_COMMAND:New( PlayerGroup, "2 minutes", InformationMessagesMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Information, 120 ) local BriefingReportsMenu = MENU_GROUP:New( PlayerGroup, "Briefing Reports", MessagesMenu ) MENU_GROUP_COMMAND:New( PlayerGroup, "15 seconds", BriefingReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Briefing, 15 ) MENU_GROUP_COMMAND:New( PlayerGroup, "30 seconds", BriefingReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Briefing, 30 ) MENU_GROUP_COMMAND:New( PlayerGroup, "1 minute", BriefingReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Briefing, 60 ) MENU_GROUP_COMMAND:New( PlayerGroup, "2 minutes", BriefingReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Briefing, 120 ) MENU_GROUP_COMMAND:New( PlayerGroup, "3 minutes", BriefingReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Briefing, 180 ) local OverviewReportsMenu = MENU_GROUP:New( PlayerGroup, "Overview Reports", MessagesMenu ) MENU_GROUP_COMMAND:New( PlayerGroup, "15 seconds", OverviewReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Overview, 15 ) MENU_GROUP_COMMAND:New( PlayerGroup, "30 seconds", OverviewReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Overview, 30 ) MENU_GROUP_COMMAND:New( PlayerGroup, "1 minute", OverviewReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Overview, 60 ) MENU_GROUP_COMMAND:New( PlayerGroup, "2 minutes", OverviewReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Overview, 120 ) MENU_GROUP_COMMAND:New( PlayerGroup, "3 minutes", OverviewReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.Overview, 180 ) local DetailedReportsMenu = MENU_GROUP:New( PlayerGroup, "Detailed Reports", MessagesMenu ) MENU_GROUP_COMMAND:New( PlayerGroup, "15 seconds", DetailedReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.DetailedReportsMenu, 15 ) MENU_GROUP_COMMAND:New( PlayerGroup, "30 seconds", DetailedReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.DetailedReportsMenu, 30 ) MENU_GROUP_COMMAND:New( PlayerGroup, "1 minute", DetailedReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.DetailedReportsMenu, 60 ) MENU_GROUP_COMMAND:New( PlayerGroup, "2 minutes", DetailedReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.DetailedReportsMenu, 120 ) MENU_GROUP_COMMAND:New( PlayerGroup, "3 minutes", DetailedReportsMenu, self.MenuGroupMessageTimingsSystem, self, PlayerUnit, PlayerGroup, PlayerName, MESSAGE.Type.DetailedReportsMenu, 180 ) return self end --- @param #SETTINGS self -- @param RootMenu -- @param Wrapper.Client#CLIENT PlayerUnit -- @return #SETTINGS function SETTINGS:RemovePlayerMenu( PlayerUnit ) if self.PlayerMenu then self.PlayerMenu:Remove() end return self end --- @param #SETTINGS self function SETTINGS:A2GMenuSystem( MenuGroup, RootMenu, A2GSystem ) self.A2GSystem = A2GSystem MESSAGE:New( string.format("Settings: Default A2G coordinate system set to %s for all players!", A2GSystem ), 5 ):ToAll() self:SetSystemMenu( MenuGroup, RootMenu ) end --- @param #SETTINGS self function SETTINGS:A2AMenuSystem( MenuGroup, RootMenu, A2ASystem ) self.A2ASystem = A2ASystem MESSAGE:New( string.format("Settings: Default A2A coordinate system set to %s for all players!", A2ASystem ), 5 ):ToAll() self:SetSystemMenu( MenuGroup, RootMenu ) end --- @param #SETTINGS self function SETTINGS:MenuLL_DDM_Accuracy( MenuGroup, RootMenu, LL_Accuracy ) self.LL_Accuracy = LL_Accuracy MESSAGE:New( string.format("Settings: Default LL accuracy set to %s for all players!", LL_Accuracy ), 5 ):ToAll() self:SetSystemMenu( MenuGroup, RootMenu ) end --- @param #SETTINGS self function SETTINGS:MenuMGRS_Accuracy( MenuGroup, RootMenu, MGRS_Accuracy ) self.MGRS_Accuracy = MGRS_Accuracy MESSAGE:New( string.format("Settings: Default MGRS accuracy set to %s for all players!", MGRS_Accuracy ), 5 ):ToAll() self:SetSystemMenu( MenuGroup, RootMenu ) end --- @param #SETTINGS self function SETTINGS:MenuMWSystem( MenuGroup, RootMenu, MW ) self.Metric = MW MESSAGE:New( string.format("Settings: Default measurement format set to %s for all players!", MW and "Metric" or "Imperial" ), 5 ):ToAll() self:SetSystemMenu( MenuGroup, RootMenu ) end --- @param #SETTINGS self function SETTINGS:MenuMessageTimingsSystem( MenuGroup, RootMenu, MessageType, MessageTime ) self:SetMessageTime( MessageType, MessageTime ) MESSAGE:New( string.format( "Settings: Default message time set for %s to %d.", MessageType, MessageTime ), 5 ):ToAll() end do --- @param #SETTINGS self function SETTINGS:MenuGroupA2GSystem( PlayerUnit, PlayerGroup, PlayerName, A2GSystem ) BASE:E( {self, PlayerUnit:GetName(), A2GSystem} ) self.A2GSystem = A2GSystem MESSAGE:New( string.format( "Settings: A2G format set to %s for player %s.", A2GSystem, PlayerName ), 5 ):ToGroup( PlayerGroup ) self:RemovePlayerMenu(PlayerUnit) self:SetPlayerMenu(PlayerUnit) end --- @param #SETTINGS self function SETTINGS:MenuGroupA2ASystem( PlayerUnit, PlayerGroup, PlayerName, A2ASystem ) self.A2ASystem = A2ASystem MESSAGE:New( string.format( "Settings: A2A format set to %s for player %s.", A2ASystem, PlayerName ), 5 ):ToGroup( PlayerGroup ) self:RemovePlayerMenu(PlayerUnit) self:SetPlayerMenu(PlayerUnit) end --- @param #SETTINGS self function SETTINGS:MenuGroupLL_DDM_AccuracySystem( PlayerUnit, PlayerGroup, PlayerName, LL_Accuracy ) self.LL_Accuracy = LL_Accuracy MESSAGE:New( string.format( "Settings: A2G LL format accuracy set to %d for player %s.", LL_Accuracy, PlayerName ), 5 ):ToGroup( PlayerGroup ) self:RemovePlayerMenu(PlayerUnit) self:SetPlayerMenu(PlayerUnit) end --- @param #SETTINGS self function SETTINGS:MenuGroupMGRS_AccuracySystem( PlayerUnit, PlayerGroup, PlayerName, MGRS_Accuracy ) self.MGRS_Accuracy = MGRS_Accuracy MESSAGE:New( string.format( "Settings: A2G MGRS format accuracy set to %d for player %s.", MGRS_Accuracy, PlayerName ), 5 ):ToGroup( PlayerGroup ) self:RemovePlayerMenu(PlayerUnit) self:SetPlayerMenu(PlayerUnit) end --- @param #SETTINGS self function SETTINGS:MenuGroupMWSystem( PlayerUnit, PlayerGroup, PlayerName, MW ) self.Metric = MW MESSAGE:New( string.format( "Settings: Measurement format set to %s for player %s.", MW and "Metric" or "Imperial", PlayerName ), 5 ):ToGroup( PlayerGroup ) self:RemovePlayerMenu(PlayerUnit) self:SetPlayerMenu(PlayerUnit) end --- @param #SETTINGS self function SETTINGS:MenuGroupMessageTimingsSystem( PlayerUnit, PlayerGroup, PlayerName, MessageType, MessageTime ) self:SetMessageTime( MessageType, MessageTime ) MESSAGE:New( string.format( "Settings: Default message time set for %s to %d.", MessageType, MessageTime ), 5 ):ToGroup( PlayerGroup ) end end end --- **Core** -- MENU_ classes model the definition of **hierarchical menu structures** and **commands for players** within a mission. -- -- === -- -- DCS Menus can be managed using the MENU classes. -- The advantage of using MENU classes is that it hides the complexity of dealing with menu management in more advanced scanerios where you need to -- set menus and later remove them, and later set them again. You'll find while using use normal DCS scripting functions, that setting and removing -- menus is not a easy feat if you have complex menu hierarchies defined. -- Using the MOOSE menu classes, the removal and refreshing of menus are nicely being handled within these classes, and becomes much more easy. -- On top, MOOSE implements **variable parameter** passing for command menus. -- -- There are basically two different MENU class types that you need to use: -- -- ### To manage **main menus**, the classes begin with **MENU_**: -- -- * @{Menu#MENU_MISSION}: Manages main menus for whole mission file. -- * @{Menu#MENU_COALITION}: Manages main menus for whole coalition. -- * @{Menu#MENU_GROUP}: Manages main menus for GROUPs. -- * @{Menu#MENU_CLIENT}: Manages main menus for CLIENTs. This manages menus for units with the skill level "Client". -- -- ### To manage **command menus**, which are menus that allow the player to issue **functions**, the classes begin with **MENU_COMMAND_**: -- -- * @{Menu#MENU_MISSION_COMMAND}: Manages command menus for whole mission file. -- * @{Menu#MENU_COALITION_COMMAND}: Manages command menus for whole coalition. -- * @{Menu#MENU_GROUP_COMMAND}: Manages command menus for GROUPs. -- * @{Menu#MENU_CLIENT_COMMAND}: Manages command menus for CLIENTs. This manages menus for units with the skill level "Client". -- -- === --- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @module Menu do -- MENU_BASE --- @type MENU_BASE -- @extends Base#BASE --- # MENU_BASE class, extends @{Base#BASE} -- The MENU_BASE class defines the main MENU class where other MENU classes are derived from. -- This is an abstract class, so don't use it. -- @field #MENU_BASE MENU_BASE = { ClassName = "MENU_BASE", MenuPath = nil, MenuText = "", MenuParentPath = nil } --- Consructor -- @param #MENU_BASE -- @return #MENU_BASE function MENU_BASE:New( MenuText, ParentMenu ) local MenuParentPath = {} if ParentMenu ~= nil then MenuParentPath = ParentMenu.MenuPath end local self = BASE:Inherit( self, BASE:New() ) self.MenuPath = nil self.MenuText = MenuText self.MenuParentPath = MenuParentPath self.Menus = {} self.MenuCount = 0 self.MenuRemoveParent = false self.MenuTime = timer.getTime() return self end --- Gets a @{Menu} from a parent @{Menu} -- @param #MENU_BASE self -- @param #string MenuText The text of the child menu. -- @return #MENU_BASE function MENU_BASE:GetMenu( MenuText ) self:F2( { Menu = self.Menus[MenuText] } ) return self.Menus[MenuText] end --- Sets a @{Menu} to remove automatically the parent menu when the menu removed is the last child menu of that parent @{Menu}. -- @param #MENU_BASE self -- @param #boolean RemoveParent If true, the parent menu is automatically removed when this menu is the last child menu of that parent @{Menu}. -- @return #MENU_BASE function MENU_BASE:SetRemoveParent( RemoveParent ) self:F2( { RemoveParent } ) self.MenuRemoveParent = RemoveParent return self end --- Sets a time stamp for later prevention of menu removal. -- @param #MENU_BASE self -- @param MenuTime -- @return #MENU_BASE function MENU_BASE:SetTime( MenuTime ) self.MenuTime = MenuTime return self end --- Sets a tag for later selection of menu refresh. -- @param #MENU_BASE self -- @param #string MenuTag A Tag or Key that will filter only menu items set with this key. -- @return #MENU_BASE function MENU_BASE:SetTag( MenuTag ) self.MenuTag = MenuTag return self end end do -- MENU_COMMAND_BASE --- @type MENU_COMMAND_BASE -- @field #function MenuCallHandler -- @extends Core.Menu#MENU_BASE --- # MENU_COMMAND_BASE class, extends @{Base#BASE} -- ---------------------------------------------------------- -- The MENU_COMMAND_BASE class defines the main MENU class where other MENU COMMAND_ -- classes are derived from, in order to set commands. -- -- @field #MENU_COMMAND_BASE MENU_COMMAND_BASE = { ClassName = "MENU_COMMAND_BASE", CommandMenuFunction = nil, CommandMenuArgument = nil, MenuCallHandler = nil, } --- Constructor -- @param #MENU_COMMAND_BASE -- @return #MENU_COMMAND_BASE function MENU_COMMAND_BASE:New( MenuText, ParentMenu, CommandMenuFunction, CommandMenuArguments ) local self = BASE:Inherit( self, MENU_BASE:New( MenuText, ParentMenu ) ) -- #MENU_COMMAND_BASE -- When a menu function goes into error, DCS displays an obscure menu message. -- This error handler catches the menu error and displays the full call stack. local ErrorHandler = function( errmsg ) env.info( "MOOSE error in MENU COMMAND function: " .. errmsg ) if debug ~= nil then env.info( debug.traceback() ) end return errmsg end self:SetCommandMenuFunction( CommandMenuFunction ) self:SetCommandMenuArguments( CommandMenuArguments ) self.MenuCallHandler = function() local function MenuFunction() return self.CommandMenuFunction( unpack( self.CommandMenuArguments ) ) end local Status, Result = xpcall( MenuFunction, ErrorHandler ) end return self end --- This sets the new command function of a menu, -- so that if a menu is regenerated, or if command function changes, -- that the function set for the menu is loosely coupled with the menu itself!!! -- If the function changes, no new menu needs to be generated if the menu text is the same!!! -- @param #MENU_COMMAND_BASE -- @return #MENU_COMMAND_BASE function MENU_COMMAND_BASE:SetCommandMenuFunction( CommandMenuFunction ) self.CommandMenuFunction = CommandMenuFunction return self end --- This sets the new command arguments of a menu, -- so that if a menu is regenerated, or if command arguments change, -- that the arguments set for the menu are loosely coupled with the menu itself!!! -- If the arguments change, no new menu needs to be generated if the menu text is the same!!! -- @param #MENU_COMMAND_BASE -- @return #MENU_COMMAND_BASE function MENU_COMMAND_BASE:SetCommandMenuArguments( CommandMenuArguments ) self.CommandMenuArguments = CommandMenuArguments return self end end do -- MENU_MISSION --- @type MENU_MISSION -- @extends Core.Menu#MENU_BASE --- # MENU_MISSION class, extends @{Menu#MENU_BASE} -- -- The MENU_MISSION class manages the main menus for a complete mission. -- You can add menus with the @{#MENU_MISSION.New} method, which constructs a MENU_MISSION object and returns you the object reference. -- Using this object reference, you can then remove ALL the menus and submenus underlying automatically with @{#MENU_MISSION.Remove}. -- @field #MENU_MISSION MENU_MISSION = { ClassName = "MENU_MISSION" } --- MENU_MISSION constructor. Creates a new MENU_MISSION object and creates the menu for a complete mission file. -- @param #MENU_MISSION self -- @param #string MenuText The text for the menu. -- @param #table ParentMenu The parent menu. This parameter can be ignored if you want the menu to be located at the perent menu of DCS world (under F10 other). -- @return #MENU_MISSION function MENU_MISSION:New( MenuText, ParentMenu ) local self = BASE:Inherit( self, MENU_BASE:New( MenuText, ParentMenu ) ) self:F( { MenuText, ParentMenu } ) self.MenuText = MenuText self.ParentMenu = ParentMenu self.Menus = {} self:T( { MenuText } ) self.MenuPath = missionCommands.addSubMenu( MenuText, self.MenuParentPath ) self:T( { self.MenuPath } ) if ParentMenu and ParentMenu.Menus then ParentMenu.Menus[self.MenuPath] = self end return self end --- Removes the sub menus recursively of this MENU_MISSION. Note that the main menu is kept! -- @param #MENU_MISSION self -- @return #MENU_MISSION function MENU_MISSION:RemoveSubMenus() self:F( self.MenuPath ) for MenuID, Menu in pairs( self.Menus ) do Menu:Remove() end end --- Removes the main menu and the sub menus recursively of this MENU_MISSION. -- @param #MENU_MISSION self -- @return #nil function MENU_MISSION:Remove() self:F( self.MenuPath ) self:RemoveSubMenus() missionCommands.removeItem( self.MenuPath ) if self.ParentMenu then self.ParentMenu.Menus[self.MenuPath] = nil end return nil end end do -- MENU_MISSION_COMMAND --- @type MENU_MISSION_COMMAND -- @extends Core.Menu#MENU_COMMAND_BASE --- # MENU_MISSION_COMMAND class, extends @{Menu#MENU_COMMAND_BASE} -- -- The MENU_MISSION_COMMAND class manages the command menus for a complete mission, which allow players to execute functions during mission execution. -- You can add menus with the @{#MENU_MISSION_COMMAND.New} method, which constructs a MENU_MISSION_COMMAND object and returns you the object reference. -- Using this object reference, you can then remove ALL the menus and submenus underlying automatically with @{#MENU_MISSION_COMMAND.Remove}. -- -- @field #MENU_MISSION_COMMAND MENU_MISSION_COMMAND = { ClassName = "MENU_MISSION_COMMAND" } --- MENU_MISSION constructor. Creates a new radio command item for a complete mission file, which can invoke a function with parameters. -- @param #MENU_MISSION_COMMAND self -- @param #string MenuText The text for the menu. -- @param Menu#MENU_MISSION ParentMenu The parent menu. -- @param CommandMenuFunction A function that is called when the menu key is pressed. -- @param CommandMenuArgument An argument for the function. There can only be ONE argument given. So multiple arguments must be wrapped into a table. See the below example how to do this. -- @return #MENU_MISSION_COMMAND self function MENU_MISSION_COMMAND:New( MenuText, ParentMenu, CommandMenuFunction, ... ) local self = BASE:Inherit( self, MENU_COMMAND_BASE:New( MenuText, ParentMenu, CommandMenuFunction, arg ) ) self.MenuText = MenuText self.ParentMenu = ParentMenu self:T( { MenuText, CommandMenuFunction, arg } ) self.MenuPath = missionCommands.addCommand( MenuText, self.MenuParentPath, self.MenuCallHandler ) ParentMenu.Menus[self.MenuPath] = self return self end --- Removes a radio command item for a coalition -- @param #MENU_MISSION_COMMAND self -- @return #nil function MENU_MISSION_COMMAND:Remove() self:F( self.MenuPath ) missionCommands.removeItem( self.MenuPath ) if self.ParentMenu then self.ParentMenu.Menus[self.MenuPath] = nil end return nil end end do -- MENU_COALITION --- @type MENU_COALITION -- @extends Core.Menu#MENU_BASE --- # MENU_COALITION class, extends @{Menu#MENU_BASE} -- -- The @{Menu#MENU_COALITION} class manages the main menus for coalitions. -- You can add menus with the @{#MENU_COALITION.New} method, which constructs a MENU_COALITION object and returns you the object reference. -- Using this object reference, you can then remove ALL the menus and submenus underlying automatically with @{#MENU_COALITION.Remove}. -- -- -- @usage -- -- This demo creates a menu structure for the planes within the red coalition. -- -- To test, join the planes, then look at the other radio menus (Option F10). -- -- Then switch planes and check if the menu is still there. -- -- local Plane1 = CLIENT:FindByName( "Plane 1" ) -- local Plane2 = CLIENT:FindByName( "Plane 2" ) -- -- -- -- This would create a menu for the red coalition under the main DCS "Others" menu. -- local MenuCoalitionRed = MENU_COALITION:New( coalition.side.RED, "Manage Menus" ) -- -- -- local function ShowStatus( StatusText, Coalition ) -- -- MESSAGE:New( Coalition, 15 ):ToRed() -- Plane1:Message( StatusText, 15 ) -- Plane2:Message( StatusText, 15 ) -- end -- -- local MenuStatus -- Menu#MENU_COALITION -- local MenuStatusShow -- Menu#MENU_COALITION_COMMAND -- -- local function RemoveStatusMenu() -- MenuStatus:Remove() -- end -- -- local function AddStatusMenu() -- -- -- This would create a menu for the red coalition under the MenuCoalitionRed menu object. -- MenuStatus = MENU_COALITION:New( coalition.side.RED, "Status for Planes" ) -- MenuStatusShow = MENU_COALITION_COMMAND:New( coalition.side.RED, "Show Status", MenuStatus, ShowStatus, "Status of planes is ok!", "Message to Red Coalition" ) -- end -- -- local MenuAdd = MENU_COALITION_COMMAND:New( coalition.side.RED, "Add Status Menu", MenuCoalitionRed, AddStatusMenu ) -- local MenuRemove = MENU_COALITION_COMMAND:New( coalition.side.RED, "Remove Status Menu", MenuCoalitionRed, RemoveStatusMenu ) -- -- @field #MENU_COALITION MENU_COALITION = { ClassName = "MENU_COALITION" } --- MENU_COALITION constructor. Creates a new MENU_COALITION object and creates the menu for a complete coalition. -- @param #MENU_COALITION self -- @param Dcs.DCSCoalition#coalition.side Coalition The coalition owning the menu. -- @param #string MenuText The text for the menu. -- @param #table ParentMenu The parent menu. This parameter can be ignored if you want the menu to be located at the perent menu of DCS world (under F10 other). -- @return #MENU_COALITION self function MENU_COALITION:New( Coalition, MenuText, ParentMenu ) local self = BASE:Inherit( self, MENU_BASE:New( MenuText, ParentMenu ) ) self:F( { Coalition, MenuText, ParentMenu } ) self.Coalition = Coalition self.MenuText = MenuText self.ParentMenu = ParentMenu self.Menus = {} self:T( { MenuText } ) self.MenuPath = missionCommands.addSubMenuForCoalition( Coalition, MenuText, self.MenuParentPath ) self:T( { self.MenuPath } ) if ParentMenu and ParentMenu.Menus then ParentMenu.Menus[self.MenuPath] = self end return self end --- Removes the sub menus recursively of this MENU_COALITION. Note that the main menu is kept! -- @param #MENU_COALITION self -- @return #MENU_COALITION function MENU_COALITION:RemoveSubMenus() self:F( self.MenuPath ) for MenuID, Menu in pairs( self.Menus ) do Menu:Remove() end end --- Removes the main menu and the sub menus recursively of this MENU_COALITION. -- @param #MENU_COALITION self -- @return #nil function MENU_COALITION:Remove() self:F( self.MenuPath ) self:RemoveSubMenus() missionCommands.removeItemForCoalition( self.Coalition, self.MenuPath ) if self.ParentMenu then self.ParentMenu.Menus[self.MenuPath] = nil end return nil end end do -- MENU_COALITION_COMMAND --- @type MENU_COALITION_COMMAND -- @extends Core.Menu#MENU_COMMAND_BASE --- # MENU_COALITION_COMMAND class, extends @{Menu#MENU_COMMAND_BASE} -- -- The MENU_COALITION_COMMAND class manages the command menus for coalitions, which allow players to execute functions during mission execution. -- You can add menus with the @{#MENU_COALITION_COMMAND.New} method, which constructs a MENU_COALITION_COMMAND object and returns you the object reference. -- Using this object reference, you can then remove ALL the menus and submenus underlying automatically with @{#MENU_COALITION_COMMAND.Remove}. -- -- @field #MENU_COALITION_COMMAND MENU_COALITION_COMMAND = { ClassName = "MENU_COALITION_COMMAND" } --- MENU_COALITION constructor. Creates a new radio command item for a coalition, which can invoke a function with parameters. -- @param #MENU_COALITION_COMMAND self -- @param Dcs.DCSCoalition#coalition.side Coalition The coalition owning the menu. -- @param #string MenuText The text for the menu. -- @param Menu#MENU_COALITION ParentMenu The parent menu. -- @param CommandMenuFunction A function that is called when the menu key is pressed. -- @param CommandMenuArgument An argument for the function. There can only be ONE argument given. So multiple arguments must be wrapped into a table. See the below example how to do this. -- @return #MENU_COALITION_COMMAND function MENU_COALITION_COMMAND:New( Coalition, MenuText, ParentMenu, CommandMenuFunction, ... ) local self = BASE:Inherit( self, MENU_COMMAND_BASE:New( MenuText, ParentMenu, CommandMenuFunction, arg ) ) self.MenuCoalition = Coalition self.MenuText = MenuText self.ParentMenu = ParentMenu self:T( { MenuText, CommandMenuFunction, arg } ) self.MenuPath = missionCommands.addCommandForCoalition( self.MenuCoalition, MenuText, self.MenuParentPath, self.MenuCallHandler ) ParentMenu.Menus[self.MenuPath] = self return self end --- Removes a radio command item for a coalition -- @param #MENU_COALITION_COMMAND self -- @return #nil function MENU_COALITION_COMMAND:Remove() self:F( self.MenuPath ) missionCommands.removeItemForCoalition( self.MenuCoalition, self.MenuPath ) if self.ParentMenu then self.ParentMenu.Menus[self.MenuPath] = nil end return nil end end do -- MENU_CLIENT -- This local variable is used to cache the menus registered under clients. -- Menus don't dissapear when clients are destroyed and restarted. -- So every menu for a client created must be tracked so that program logic accidentally does not create -- the same menus twice during initialization logic. -- These menu classes are handling this logic with this variable. local _MENUCLIENTS = {} --- MENU_COALITION constructor. Creates a new radio command item for a coalition, which can invoke a function with parameters. -- @type MENU_CLIENT -- @extends Core.Menu#MENU_BASE --- # MENU_CLIENT class, extends @{Menu#MENU_BASE} -- -- The MENU_CLIENT class manages the main menus for coalitions. -- You can add menus with the @{#MENU_CLIENT.New} method, which constructs a MENU_CLIENT object and returns you the object reference. -- Using this object reference, you can then remove ALL the menus and submenus underlying automatically with @{#MENU_CLIENT.Remove}. -- -- @usage -- -- This demo creates a menu structure for the two clients of planes. -- -- Each client will receive a different menu structure. -- -- To test, join the planes, then look at the other radio menus (Option F10). -- -- Then switch planes and check if the menu is still there. -- -- And play with the Add and Remove menu options. -- -- -- Note that in multi player, this will only work after the DCS clients bug is solved. -- -- local function ShowStatus( PlaneClient, StatusText, Coalition ) -- -- MESSAGE:New( Coalition, 15 ):ToRed() -- PlaneClient:Message( StatusText, 15 ) -- end -- -- local MenuStatus = {} -- -- local function RemoveStatusMenu( MenuClient ) -- local MenuClientName = MenuClient:GetName() -- MenuStatus[MenuClientName]:Remove() -- end -- -- --- @param Wrapper.Client#CLIENT MenuClient -- local function AddStatusMenu( MenuClient ) -- local MenuClientName = MenuClient:GetName() -- -- This would create a menu for the red coalition under the MenuCoalitionRed menu object. -- MenuStatus[MenuClientName] = MENU_CLIENT:New( MenuClient, "Status for Planes" ) -- MENU_CLIENT_COMMAND:New( MenuClient, "Show Status", MenuStatus[MenuClientName], ShowStatus, MenuClient, "Status of planes is ok!", "Message to Red Coalition" ) -- end -- -- SCHEDULER:New( nil, -- function() -- local PlaneClient = CLIENT:FindByName( "Plane 1" ) -- if PlaneClient and PlaneClient:IsAlive() then -- local MenuManage = MENU_CLIENT:New( PlaneClient, "Manage Menus" ) -- MENU_CLIENT_COMMAND:New( PlaneClient, "Add Status Menu Plane 1", MenuManage, AddStatusMenu, PlaneClient ) -- MENU_CLIENT_COMMAND:New( PlaneClient, "Remove Status Menu Plane 1", MenuManage, RemoveStatusMenu, PlaneClient ) -- end -- end, {}, 10, 10 ) -- -- SCHEDULER:New( nil, -- function() -- local PlaneClient = CLIENT:FindByName( "Plane 2" ) -- if PlaneClient and PlaneClient:IsAlive() then -- local MenuManage = MENU_CLIENT:New( PlaneClient, "Manage Menus" ) -- MENU_CLIENT_COMMAND:New( PlaneClient, "Add Status Menu Plane 2", MenuManage, AddStatusMenu, PlaneClient ) -- MENU_CLIENT_COMMAND:New( PlaneClient, "Remove Status Menu Plane 2", MenuManage, RemoveStatusMenu, PlaneClient ) -- end -- end, {}, 10, 10 ) -- -- @field #MENU_CLIENT MENU_CLIENT = { ClassName = "MENU_CLIENT" } --- MENU_CLIENT constructor. Creates a new radio menu item for a client. -- @param #MENU_CLIENT self -- @param Wrapper.Client#CLIENT Client The Client owning the menu. -- @param #string MenuText The text for the menu. -- @param #table ParentMenu The parent menu. -- @return #MENU_CLIENT self function MENU_CLIENT:New( Client, MenuText, ParentMenu ) -- Arrange meta tables local MenuParentPath = {} if ParentMenu ~= nil then MenuParentPath = ParentMenu.MenuPath end local self = BASE:Inherit( self, MENU_BASE:New( MenuText, MenuParentPath ) ) self:F( { Client, MenuText, ParentMenu } ) self.MenuClient = Client self.MenuClientGroupID = Client:GetClientGroupID() self.MenuParentPath = MenuParentPath self.MenuText = MenuText self.ParentMenu = ParentMenu self.Menus = {} if not _MENUCLIENTS[self.MenuClientGroupID] then _MENUCLIENTS[self.MenuClientGroupID] = {} end local MenuPath = _MENUCLIENTS[self.MenuClientGroupID] self:T( { Client:GetClientGroupName(), MenuPath[table.concat(MenuParentPath)], MenuParentPath, MenuText } ) local MenuPathID = table.concat(MenuParentPath) .. "/" .. MenuText if MenuPath[MenuPathID] then missionCommands.removeItemForGroup( self.MenuClient:GetClientGroupID(), MenuPath[MenuPathID] ) end self.MenuPath = missionCommands.addSubMenuForGroup( self.MenuClient:GetClientGroupID(), MenuText, MenuParentPath ) MenuPath[MenuPathID] = self.MenuPath self:T( { Client:GetClientGroupName(), self.MenuPath } ) if ParentMenu and ParentMenu.Menus then ParentMenu.Menus[self.MenuPath] = self end return self end --- Removes the sub menus recursively of this @{#MENU_CLIENT}. -- @param #MENU_CLIENT self -- @return #MENU_CLIENT self function MENU_CLIENT:RemoveSubMenus() self:F( self.MenuPath ) for MenuID, Menu in pairs( self.Menus ) do Menu:Remove() end end --- Removes the sub menus recursively of this MENU_CLIENT. -- @param #MENU_CLIENT self -- @return #nil function MENU_CLIENT:Remove() self:F( self.MenuPath ) self:RemoveSubMenus() if not _MENUCLIENTS[self.MenuClientGroupID] then _MENUCLIENTS[self.MenuClientGroupID] = {} end local MenuPath = _MENUCLIENTS[self.MenuClientGroupID] if MenuPath[table.concat(self.MenuParentPath) .. "/" .. self.MenuText] then MenuPath[table.concat(self.MenuParentPath) .. "/" .. self.MenuText] = nil end missionCommands.removeItemForGroup( self.MenuClient:GetClientGroupID(), self.MenuPath ) self.ParentMenu.Menus[self.MenuPath] = nil return nil end --- @type MENU_CLIENT_COMMAND -- @extends Core.Menu#MENU_COMMAND --- # MENU_CLIENT_COMMAND class, extends @{Menu#MENU_COMMAND_BASE} -- -- The MENU_CLIENT_COMMAND class manages the command menus for coalitions, which allow players to execute functions during mission execution. -- You can add menus with the @{#MENU_CLIENT_COMMAND.New} method, which constructs a MENU_CLIENT_COMMAND object and returns you the object reference. -- Using this object reference, you can then remove ALL the menus and submenus underlying automatically with @{#MENU_CLIENT_COMMAND.Remove}. -- -- @field #MENU_CLIENT_COMMAND MENU_CLIENT_COMMAND = { ClassName = "MENU_CLIENT_COMMAND" } --- MENU_CLIENT_COMMAND constructor. Creates a new radio command item for a client, which can invoke a function with parameters. -- @param #MENU_CLIENT_COMMAND self -- @param Wrapper.Client#CLIENT Client The Client owning the menu. -- @param #string MenuText The text for the menu. -- @param #MENU_BASE ParentMenu The parent menu. -- @param CommandMenuFunction A function that is called when the menu key is pressed. -- @return Menu#MENU_CLIENT_COMMAND self function MENU_CLIENT_COMMAND:New( Client, MenuText, ParentMenu, CommandMenuFunction, ... ) -- Arrange meta tables local MenuParentPath = {} if ParentMenu ~= nil then MenuParentPath = ParentMenu.MenuPath end local self = BASE:Inherit( self, MENU_COMMAND_BASE:New( MenuText, MenuParentPath, CommandMenuFunction, arg ) ) -- Menu#MENU_CLIENT_COMMAND self.MenuClient = Client self.MenuClientGroupID = Client:GetClientGroupID() self.MenuParentPath = MenuParentPath self.MenuText = MenuText self.ParentMenu = ParentMenu if not _MENUCLIENTS[self.MenuClientGroupID] then _MENUCLIENTS[self.MenuClientGroupID] = {} end local MenuPath = _MENUCLIENTS[self.MenuClientGroupID] self:T( { Client:GetClientGroupName(), MenuPath[table.concat(MenuParentPath)], MenuParentPath, MenuText, CommandMenuFunction, arg } ) local MenuPathID = table.concat(MenuParentPath) .. "/" .. MenuText if MenuPath[MenuPathID] then missionCommands.removeItemForGroup( self.MenuClient:GetClientGroupID(), MenuPath[MenuPathID] ) end self.MenuPath = missionCommands.addCommandForGroup( self.MenuClient:GetClientGroupID(), MenuText, MenuParentPath, self.MenuCallHandler ) MenuPath[MenuPathID] = self.MenuPath if ParentMenu and ParentMenu.Menus then ParentMenu.Menus[self.MenuPath] = self end return self end --- Removes a menu structure for a client. -- @param #MENU_CLIENT_COMMAND self -- @return #nil function MENU_CLIENT_COMMAND:Remove() self:F( self.MenuPath ) if not _MENUCLIENTS[self.MenuClientGroupID] then _MENUCLIENTS[self.MenuClientGroupID] = {} end local MenuPath = _MENUCLIENTS[self.MenuClientGroupID] if MenuPath[table.concat(self.MenuParentPath) .. "/" .. self.MenuText] then MenuPath[table.concat(self.MenuParentPath) .. "/" .. self.MenuText] = nil end missionCommands.removeItemForGroup( self.MenuClient:GetClientGroupID(), self.MenuPath ) self.ParentMenu.Menus[self.MenuPath] = nil return nil end end --- MENU_GROUP do -- This local variable is used to cache the menus registered under groups. -- Menus don't dissapear when groups for players are destroyed and restarted. -- So every menu for a client created must be tracked so that program logic accidentally does not create. -- the same menus twice during initialization logic. -- These menu classes are handling this logic with this variable. local _MENUGROUPS = {} --- @type MENU_GROUP -- @extends Core.Menu#MENU_BASE --- #MENU_GROUP class, extends @{Menu#MENU_BASE} -- -- The MENU_GROUP class manages the main menus for coalitions. -- You can add menus with the @{#MENU_GROUP.New} method, which constructs a MENU_GROUP object and returns you the object reference. -- Using this object reference, you can then remove ALL the menus and submenus underlying automatically with @{#MENU_GROUP.Remove}. -- -- @usage -- -- This demo creates a menu structure for the two groups of planes. -- -- Each group will receive a different menu structure. -- -- To test, join the planes, then look at the other radio menus (Option F10). -- -- Then switch planes and check if the menu is still there. -- -- And play with the Add and Remove menu options. -- -- -- Note that in multi player, this will only work after the DCS groups bug is solved. -- -- local function ShowStatus( PlaneGroup, StatusText, Coalition ) -- -- MESSAGE:New( Coalition, 15 ):ToRed() -- PlaneGroup:Message( StatusText, 15 ) -- end -- -- local MenuStatus = {} -- -- local function RemoveStatusMenu( MenuGroup ) -- local MenuGroupName = MenuGroup:GetName() -- MenuStatus[MenuGroupName]:Remove() -- end -- -- --- @param Wrapper.Group#GROUP MenuGroup -- local function AddStatusMenu( MenuGroup ) -- local MenuGroupName = MenuGroup:GetName() -- -- This would create a menu for the red coalition under the MenuCoalitionRed menu object. -- MenuStatus[MenuGroupName] = MENU_GROUP:New( MenuGroup, "Status for Planes" ) -- MENU_GROUP_COMMAND:New( MenuGroup, "Show Status", MenuStatus[MenuGroupName], ShowStatus, MenuGroup, "Status of planes is ok!", "Message to Red Coalition" ) -- end -- -- SCHEDULER:New( nil, -- function() -- local PlaneGroup = GROUP:FindByName( "Plane 1" ) -- if PlaneGroup and PlaneGroup:IsAlive() then -- local MenuManage = MENU_GROUP:New( PlaneGroup, "Manage Menus" ) -- MENU_GROUP_COMMAND:New( PlaneGroup, "Add Status Menu Plane 1", MenuManage, AddStatusMenu, PlaneGroup ) -- MENU_GROUP_COMMAND:New( PlaneGroup, "Remove Status Menu Plane 1", MenuManage, RemoveStatusMenu, PlaneGroup ) -- end -- end, {}, 10, 10 ) -- -- SCHEDULER:New( nil, -- function() -- local PlaneGroup = GROUP:FindByName( "Plane 2" ) -- if PlaneGroup and PlaneGroup:IsAlive() then -- local MenuManage = MENU_GROUP:New( PlaneGroup, "Manage Menus" ) -- MENU_GROUP_COMMAND:New( PlaneGroup, "Add Status Menu Plane 2", MenuManage, AddStatusMenu, PlaneGroup ) -- MENU_GROUP_COMMAND:New( PlaneGroup, "Remove Status Menu Plane 2", MenuManage, RemoveStatusMenu, PlaneGroup ) -- end -- end, {}, 10, 10 ) -- -- @field #MENU_GROUP MENU_GROUP = { ClassName = "MENU_GROUP" } --- MENU_GROUP constructor. Creates a new radio menu item for a group. -- @param #MENU_GROUP self -- @param Wrapper.Group#GROUP MenuGroup The Group owning the menu. -- @param #string MenuText The text for the menu. -- @param #table ParentMenu The parent menu. -- @return #MENU_GROUP self function MENU_GROUP:New( MenuGroup, MenuText, ParentMenu ) -- Determine if the menu was not already created and already visible at the group. -- If it is visible, then return the cached self, otherwise, create self and cache it. MenuGroup._Menus = MenuGroup._Menus or {} local Path = ( ParentMenu and ( table.concat( ParentMenu.MenuPath or {}, "@" ) .. "@" .. MenuText ) ) or MenuText if MenuGroup._Menus[Path] then self = MenuGroup._Menus[Path] else self = BASE:Inherit( self, MENU_BASE:New( MenuText, ParentMenu ) ) --if MenuGroup:IsAlive() then MenuGroup._Menus[Path] = self --end self.MenuGroup = MenuGroup self.Path = Path self.MenuGroupID = MenuGroup:GetID() self.MenuText = MenuText self.ParentMenu = ParentMenu self:T( { "Adding Menu ", MenuText, self.MenuParentPath } ) self.MenuPath = missionCommands.addSubMenuForGroup( self.MenuGroupID, MenuText, self.MenuParentPath ) if self.ParentMenu and self.ParentMenu.Menus then self.ParentMenu.Menus[MenuText] = self self:F( { self.ParentMenu.Menus, MenuText } ) self.ParentMenu.MenuCount = self.ParentMenu.MenuCount + 1 end end --self:F( { MenuGroup:GetName(), MenuText, ParentMenu.MenuPath } ) return self end --- Removes the sub menus recursively of this MENU_GROUP. -- @param #MENU_GROUP self -- @param MenuTime -- @param MenuTag A Tag or Key to filter the menus to be refreshed with the Tag set. -- @return #MENU_GROUP self function MENU_GROUP:RemoveSubMenus( MenuTime, MenuTag ) --self:F2( { self.MenuPath, MenuTime, self.MenuTime } ) self:T( { "Removing Group SubMenus:", MenuTime, MenuTag, self.MenuGroup:GetName(), self.MenuPath } ) for MenuText, Menu in pairs( self.Menus ) do Menu:Remove( MenuTime, MenuTag ) end end --- Removes the main menu and sub menus recursively of this MENU_GROUP. -- @param #MENU_GROUP self -- @param MenuTime -- @param MenuTag A Tag or Key to filter the menus to be refreshed with the Tag set. -- @return #nil function MENU_GROUP:Remove( MenuTime, MenuTag ) --self:F2( { self.MenuGroupID, self.MenuPath, MenuTime, self.MenuTime } ) self:RemoveSubMenus( MenuTime, MenuTag ) if not MenuTime or self.MenuTime ~= MenuTime then if ( not MenuTag ) or ( MenuTag and self.MenuTag and MenuTag == self.MenuTag ) then if self.MenuGroup._Menus[self.Path] then self = self.MenuGroup._Menus[self.Path] missionCommands.removeItemForGroup( self.MenuGroupID, self.MenuPath ) if self.ParentMenu then self.ParentMenu.Menus[self.MenuText] = nil self.ParentMenu.MenuCount = self.ParentMenu.MenuCount - 1 if self.ParentMenu.MenuCount == 0 then if self.MenuRemoveParent == true then self:T2( "Removing Parent Menu " ) self.ParentMenu:Remove() end end end end self:T( { "Removing Group Menu:", MenuGroup = self.MenuGroup:GetName() } ) self.MenuGroup._Menus[self.Path] = nil self = nil end end return nil end --- @type MENU_GROUP_COMMAND -- @extends Core.Menu#MENU_COMMAND_BASE --- # MENU_GROUP_COMMAND class, extends @{Menu#MENU_COMMAND_BASE} -- -- The @{Menu#MENU_GROUP_COMMAND} class manages the command menus for coalitions, which allow players to execute functions during mission execution. -- You can add menus with the @{#MENU_GROUP_COMMAND.New} method, which constructs a MENU_GROUP_COMMAND object and returns you the object reference. -- Using this object reference, you can then remove ALL the menus and submenus underlying automatically with @{#MENU_GROUP_COMMAND.Remove}. -- -- @field #MENU_GROUP_COMMAND MENU_GROUP_COMMAND = { ClassName = "MENU_GROUP_COMMAND" } --- Creates a new radio command item for a group -- @param #MENU_GROUP_COMMAND self -- @param Wrapper.Group#GROUP MenuGroup The Group owning the menu. -- @param MenuText The text for the menu. -- @param ParentMenu The parent menu. -- @param CommandMenuFunction A function that is called when the menu key is pressed. -- @param CommandMenuArgument An argument for the function. -- @return #MENU_GROUP_COMMAND function MENU_GROUP_COMMAND:New( MenuGroup, MenuText, ParentMenu, CommandMenuFunction, ... ) MenuGroup._Menus = MenuGroup._Menus or {} local Path = ( ParentMenu and ( table.concat( ParentMenu.MenuPath or {}, "@" ) .. "@" .. MenuText ) ) or MenuText if MenuGroup._Menus[Path] then self = MenuGroup._Menus[Path] --self:E( { Path=Path } ) --self:E( { self.MenuTag, self.MenuTime, "Re-using Group Command Menu:", MenuGroup:GetName(), MenuText } ) self:SetCommandMenuFunction( CommandMenuFunction ) self:SetCommandMenuArguments( arg ) return self end self = BASE:Inherit( self, MENU_COMMAND_BASE:New( MenuText, ParentMenu, CommandMenuFunction, arg ) ) --if MenuGroup:IsAlive() then MenuGroup._Menus[Path] = self --end --self:E({Path=Path}) self.Path = Path self.MenuGroup = MenuGroup self.MenuGroupID = MenuGroup:GetID() self.MenuText = MenuText self.ParentMenu = ParentMenu self:F( { "Adding Group Command Menu:", MenuGroup = MenuGroup:GetName(), MenuText = MenuText, MenuPath = self.MenuParentPath } ) self.MenuPath = missionCommands.addCommandForGroup( self.MenuGroupID, MenuText, self.MenuParentPath, self.MenuCallHandler ) if self.ParentMenu and self.ParentMenu.Menus then self.ParentMenu.Menus[MenuText] = self self.ParentMenu.MenuCount = self.ParentMenu.MenuCount + 1 self:F2( { ParentMenu.Menus, MenuText } ) end -- end return self end --- Removes a menu structure for a group. -- @param #MENU_GROUP_COMMAND self -- @param MenuTime -- @param MenuTag A Tag or Key to filter the menus to be refreshed with the Tag set. -- @return #nil function MENU_GROUP_COMMAND:Remove( MenuTime, MenuTag ) --self:F2( { self.MenuGroupID, self.MenuPath, MenuTime, self.MenuTime } ) --self:E( { MenuTag = MenuTag, MenuTime = self.MenuTime, Path = self.Path } ) if not MenuTime or self.MenuTime ~= MenuTime then if ( not MenuTag ) or ( MenuTag and self.MenuTag and MenuTag == self.MenuTag ) then if self.MenuGroup._Menus[self.Path] then self = self.MenuGroup._Menus[self.Path] missionCommands.removeItemForGroup( self.MenuGroupID, self.MenuPath ) --self:E( { "Removing Group Command Menu:", MenuGroup = self.MenuGroup:GetName(), MenuText = self.MenuText, MenuPath = self.Path } ) self.ParentMenu.Menus[self.MenuText] = nil self.ParentMenu.MenuCount = self.ParentMenu.MenuCount - 1 if self.ParentMenu.MenuCount == 0 then if self.MenuRemoveParent == true then self:T2( "Removing Parent Menu " ) self.ParentMenu:Remove() end end self.MenuGroup._Menus[self.Path] = nil self = nil end end end return nil end end --- **Core** -- ZONE classes define **zones** within your mission of **various forms**, with **various capabilities**. -- -- ![Banner Image](..\Presentations\ZONE\Dia1.JPG) -- -- ==== -- -- There are essentially two core functions that zones accomodate: -- -- * Test if an object is within the zone boundaries. -- * Provide the zone behaviour. Some zones are static, while others are moveable. -- -- The object classes are using the zone classes to test the zone boundaries, which can take various forms: -- -- * Test if completely within the zone. -- * Test if partly within the zone (for @{Group#GROUP} objects). -- * Test if not in the zone. -- * Distance to the nearest intersecting point of the zone. -- * Distance to the center of the zone. -- * ... -- -- Each of these ZONE classes have a zone name, and specific parameters defining the zone type: -- -- * @{#ZONE_BASE}: The ZONE_BASE class defining the base for all other zone classes. -- * @{#ZONE_RADIUS}: The ZONE_RADIUS class defined by a zone name, a location and a radius. -- * @{#ZONE}: The ZONE class, defined by the zone name as defined within the Mission Editor. -- * @{#ZONE_UNIT}: The ZONE_UNIT class defines by a zone around a @{Unit#UNIT} with a radius. -- * @{#ZONE_GROUP}: The ZONE_GROUP class defines by a zone around a @{Group#GROUP} with a radius. -- * @{#ZONE_POLYGON}: The ZONE_POLYGON class defines by a sequence of @{Group#GROUP} waypoints within the Mission Editor, forming a polygon. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @module Zone --- @type ZONE_BASE -- @field #string ZoneName Name of the zone. -- @field #number ZoneProbability A value between 0 and 1. 0 = 0% and 1 = 100% probability. -- @extends Core.Base#BASE --- # ZONE_BASE class, extends @{Base#BASE} -- -- This class is an abstract BASE class for derived classes, and is not meant to be instantiated. -- -- ## Each zone has a name: -- -- * @{#ZONE_BASE.GetName}(): Returns the name of the zone. -- -- ## Each zone implements two polymorphic functions defined in @{Zone#ZONE_BASE}: -- -- * @{#ZONE_BASE.IsVec2InZone}(): Returns if a 2D vector is within the zone. -- * @{#ZONE_BASE.IsVec3InZone}(): Returns if a 3D vector is within the zone. -- * @{#ZONE_BASE.IsPointVec2InZone}(): Returns if a 2D point vector is within the zone. -- * @{#ZONE_BASE.IsPointVec3InZone}(): Returns if a 3D point vector is within the zone. -- -- ## A zone has a probability factor that can be set to randomize a selection between zones: -- -- * @{#ZONE_BASE.SetZoneProbability}(): Set the randomization probability of a zone to be selected, taking a value between 0 and 1 ( 0 = 0%, 1 = 100% ) -- * @{#ZONE_BASE.GetZoneProbability}(): Get the randomization probability of a zone to be selected, passing a value between 0 and 1 ( 0 = 0%, 1 = 100% ) -- * @{#ZONE_BASE.GetZoneMaybe}(): Get the zone taking into account the randomization probability. nil is returned if this zone is not a candidate. -- -- ## A zone manages vectors: -- -- * @{#ZONE_BASE.GetVec2}(): Returns the 2D vector coordinate of the zone. -- * @{#ZONE_BASE.GetVec3}(): Returns the 3D vector coordinate of the zone. -- * @{#ZONE_BASE.GetPointVec2}(): Returns the 2D point vector coordinate of the zone. -- * @{#ZONE_BASE.GetPointVec3}(): Returns the 3D point vector coordinate of the zone. -- * @{#ZONE_BASE.GetRandomVec2}(): Define a random 2D vector within the zone. -- * @{#ZONE_BASE.GetRandomPointVec2}(): Define a random 2D point vector within the zone. -- * @{#ZONE_BASE.GetRandomPointVec3}(): Define a random 3D point vector within the zone. -- -- ## A zone has a bounding square: -- -- * @{#ZONE_BASE.GetBoundingSquare}(): Get the outer most bounding square of the zone. -- -- ## A zone can be marked: -- -- * @{#ZONE_BASE.SmokeZone}(): Smokes the zone boundaries in a color. -- * @{#ZONE_BASE.FlareZone}(): Flares the zone boundaries in a color. -- -- @field #ZONE_BASE ZONE_BASE = { ClassName = "ZONE_BASE", ZoneName = "", ZoneProbability = 1, } --- The ZONE_BASE.BoundingSquare -- @type ZONE_BASE.BoundingSquare -- @field Dcs.DCSTypes#Distance x1 The lower x coordinate (left down) -- @field Dcs.DCSTypes#Distance y1 The lower y coordinate (left down) -- @field Dcs.DCSTypes#Distance x2 The higher x coordinate (right up) -- @field Dcs.DCSTypes#Distance y2 The higher y coordinate (right up) --- ZONE_BASE constructor -- @param #ZONE_BASE self -- @param #string ZoneName Name of the zone. -- @return #ZONE_BASE self function ZONE_BASE:New( ZoneName ) local self = BASE:Inherit( self, BASE:New() ) self:F( ZoneName ) self.ZoneName = ZoneName return self end --- Returns the name of the zone. -- @param #ZONE_BASE self -- @return #string The name of the zone. function ZONE_BASE:GetName() self:F2() return self.ZoneName end --- Returns if a Vec2 is within the zone. -- @param #ZONE_BASE self -- @param Dcs.DCSTypes#Vec2 Vec2 The Vec2 to test. -- @return #boolean true if the Vec2 is within the zone. function ZONE_BASE:IsVec2InZone( Vec2 ) self:F2( Vec2 ) return false end --- Returns if a Vec3 is within the zone. -- @param #ZONE_BASE self -- @param Dcs.DCSTypes#Vec3 Vec3 The point to test. -- @return #boolean true if the Vec3 is within the zone. function ZONE_BASE:IsVec3InZone( Vec3 ) self:F2( Vec3 ) local InZone = self:IsVec2InZone( { x = Vec3.x, y = Vec3.z } ) return InZone end --- Returns if a PointVec2 is within the zone. -- @param #ZONE_BASE self -- @param Core.Point#POINT_VEC2 PointVec2 The PointVec2 to test. -- @return #boolean true if the PointVec2 is within the zone. function ZONE_BASE:IsPointVec2InZone( PointVec2 ) self:F2( PointVec2 ) local InZone = self:IsVec2InZone( PointVec2:GetVec2() ) return InZone end --- Returns if a PointVec3 is within the zone. -- @param #ZONE_BASE self -- @param Core.Point#POINT_VEC3 PointVec3 The PointVec3 to test. -- @return #boolean true if the PointVec3 is within the zone. function ZONE_BASE:IsPointVec3InZone( PointVec3 ) self:F2( PointVec3 ) local InZone = self:IsPointVec2InZone( PointVec3 ) return InZone end --- Returns the @{DCSTypes#Vec2} coordinate of the zone. -- @param #ZONE_BASE self -- @return #nil. function ZONE_BASE:GetVec2() self:F2( self.ZoneName ) return nil end --- Returns a @{Point#POINT_VEC2} of the zone. -- @param #ZONE_BASE self -- @param Dcs.DCSTypes#Distance Height The height to add to the land height where the center of the zone is located. -- @return Core.Point#POINT_VEC2 The PointVec2 of the zone. function ZONE_BASE:GetPointVec2() self:F2( self.ZoneName ) local Vec2 = self:GetVec2() local PointVec2 = POINT_VEC2:NewFromVec2( Vec2 ) self:T2( { PointVec2 } ) return PointVec2 end --- Returns a @{Point#COORDINATE} of the zone. -- @param #ZONE_BASE self -- @return Core.Point#COORDINATE The Coordinate of the zone. function ZONE_BASE:GetCoordinate() self:F2( self.ZoneName ) local Vec2 = self:GetVec2() local Coordinate = COORDINATE:NewFromVec2( Vec2 ) self:T2( { Coordinate } ) return Coordinate end --- Returns the @{DCSTypes#Vec3} of the zone. -- @param #ZONE_BASE self -- @param Dcs.DCSTypes#Distance Height The height to add to the land height where the center of the zone is located. -- @return Dcs.DCSTypes#Vec3 The Vec3 of the zone. function ZONE_BASE:GetVec3( Height ) self:F2( self.ZoneName ) Height = Height or 0 local Vec2 = self:GetVec2() local Vec3 = { x = Vec2.x, y = Height and Height or land.getHeight( self:GetVec2() ), z = Vec2.y } self:T2( { Vec3 } ) return Vec3 end --- Returns a @{Point#POINT_VEC3} of the zone. -- @param #ZONE_BASE self -- @param Dcs.DCSTypes#Distance Height The height to add to the land height where the center of the zone is located. -- @return Core.Point#POINT_VEC3 The PointVec3 of the zone. function ZONE_BASE:GetPointVec3( Height ) self:F2( self.ZoneName ) local Vec3 = self:GetVec3( Height ) local PointVec3 = POINT_VEC3:NewFromVec3( Vec3 ) self:T2( { PointVec3 } ) return PointVec3 end --- Returns a @{Point#COORDINATE} of the zone. -- @param #ZONE_BASE self -- @param Dcs.DCSTypes#Distance Height The height to add to the land height where the center of the zone is located. -- @return Core.Point#COORDINATE The Coordinate of the zone. function ZONE_BASE:GetCoordinate( Height ) --R2.1 self:F2( self.ZoneName ) local Vec3 = self:GetVec3( Height ) local PointVec3 = COORDINATE:NewFromVec3( Vec3 ) self:T2( { PointVec3 } ) return PointVec3 end --- Define a random @{DCSTypes#Vec2} within the zone. -- @param #ZONE_BASE self -- @return Dcs.DCSTypes#Vec2 The Vec2 coordinates. function ZONE_BASE:GetRandomVec2() return nil end --- Define a random @{Point#POINT_VEC2} within the zone. -- @param #ZONE_BASE self -- @return Core.Point#POINT_VEC2 The PointVec2 coordinates. function ZONE_BASE:GetRandomPointVec2() return nil end --- Define a random @{Point#POINT_VEC3} within the zone. -- @param #ZONE_BASE self -- @return Core.Point#POINT_VEC3 The PointVec3 coordinates. function ZONE_BASE:GetRandomPointVec3() return nil end --- Get the bounding square the zone. -- @param #ZONE_BASE self -- @return #nil The bounding square. function ZONE_BASE:GetBoundingSquare() --return { x1 = 0, y1 = 0, x2 = 0, y2 = 0 } return nil end --- Bound the zone boundaries with a tires. -- @param #ZONE_BASE self function ZONE_BASE:BoundZone() self:F2() end --- Smokes the zone boundaries in a color. -- @param #ZONE_BASE self -- @param Utilities.Utils#SMOKECOLOR SmokeColor The smoke color. function ZONE_BASE:SmokeZone( SmokeColor ) self:F2( SmokeColor ) end --- Set the randomization probability of a zone to be selected. -- @param #ZONE_BASE self -- @param ZoneProbability A value between 0 and 1. 0 = 0% and 1 = 100% probability. function ZONE_BASE:SetZoneProbability( ZoneProbability ) self:F2( ZoneProbability ) self.ZoneProbability = ZoneProbability or 1 return self end --- Get the randomization probability of a zone to be selected. -- @param #ZONE_BASE self -- @return #number A value between 0 and 1. 0 = 0% and 1 = 100% probability. function ZONE_BASE:GetZoneProbability() self:F2() return self.ZoneProbability end --- Get the zone taking into account the randomization probability of a zone to be selected. -- @param #ZONE_BASE self -- @return #ZONE_BASE The zone is selected taking into account the randomization probability factor. -- @return #nil The zone is not selected taking into account the randomization probability factor. function ZONE_BASE:GetZoneMaybe() self:F2() local Randomization = math.random() if Randomization <= self.ZoneProbability then return self else return nil end end --- The ZONE_RADIUS class, defined by a zone name, a location and a radius. -- @type ZONE_RADIUS -- @field Dcs.DCSTypes#Vec2 Vec2 The current location of the zone. -- @field Dcs.DCSTypes#Distance Radius The radius of the zone. -- @extends #ZONE_BASE --- # ZONE_RADIUS class, extends @{Zone#ZONE_BASE} -- -- The ZONE_RADIUS class defined by a zone name, a location and a radius. -- This class implements the inherited functions from Core.Zone#ZONE_BASE taking into account the own zone format and properties. -- -- ## ZONE_RADIUS constructor -- -- * @{#ZONE_RADIUS.New}(): Constructor. -- -- ## Manage the radius of the zone -- -- * @{#ZONE_RADIUS.SetRadius}(): Sets the radius of the zone. -- * @{#ZONE_RADIUS.GetRadius}(): Returns the radius of the zone. -- -- ## Manage the location of the zone -- -- * @{#ZONE_RADIUS.SetVec2}(): Sets the @{DCSTypes#Vec2} of the zone. -- * @{#ZONE_RADIUS.GetVec2}(): Returns the @{DCSTypes#Vec2} of the zone. -- * @{#ZONE_RADIUS.GetVec3}(): Returns the @{DCSTypes#Vec3} of the zone, taking an additional height parameter. -- -- ## Zone point randomization -- -- Various functions exist to find random points within the zone. -- -- * @{#ZONE_RADIUS.GetRandomVec2}(): Gets a random 2D point in the zone. -- * @{#ZONE_RADIUS.GetRandomPointVec2}(): Gets a @{Point#POINT_VEC2} object representing a random 2D point in the zone. -- * @{#ZONE_RADIUS.GetRandomPointVec3}(): Gets a @{Point#POINT_VEC3} object representing a random 3D point in the zone. Note that the height of the point is at landheight. -- -- @field #ZONE_RADIUS ZONE_RADIUS = { ClassName="ZONE_RADIUS", } --- Constructor of @{#ZONE_RADIUS}, taking the zone name, the zone location and a radius. -- @param #ZONE_RADIUS self -- @param #string ZoneName Name of the zone. -- @param Dcs.DCSTypes#Vec2 Vec2 The location of the zone. -- @param Dcs.DCSTypes#Distance Radius The radius of the zone. -- @return #ZONE_RADIUS self function ZONE_RADIUS:New( ZoneName, Vec2, Radius ) local self = BASE:Inherit( self, ZONE_BASE:New( ZoneName ) ) -- #ZONE_RADIUS self:F( { ZoneName, Vec2, Radius } ) self.Radius = Radius self.Vec2 = Vec2 return self end --- Bounds the zone with tires. -- @param #ZONE_RADIUS self -- @param #number Points (optional) The amount of points in the circle. -- @param #boolean UnBound If true the tyres will be destroyed. -- @return #ZONE_RADIUS self function ZONE_RADIUS:BoundZone( Points, CountryID, UnBound ) local Point = {} local Vec2 = self:GetVec2() Points = Points and Points or 360 local Angle local RadialBase = math.pi*2 -- for Angle = 0, 360, (360 / Points ) do local Radial = Angle * RadialBase / 360 Point.x = Vec2.x + math.cos( Radial ) * self:GetRadius() Point.y = Vec2.y + math.sin( Radial ) * self:GetRadius() local CountryName = _DATABASE.COUNTRY_NAME[CountryID] local Tire = { ["country"] = CountryName, ["category"] = "Fortifications", ["canCargo"] = false, ["shape_name"] = "H-tyre_B_WF", ["type"] = "Black_Tyre_WF", --["unitId"] = Angle + 10000, ["y"] = Point.y, ["x"] = Point.x, ["name"] = string.format( "%s-Tire #%0d", self:GetName(), Angle ), ["heading"] = 0, } -- end of ["group"] local Group = coalition.addStaticObject( CountryID, Tire ) if UnBound and UnBound == true then Group:destroy() end end return self end --- Smokes the zone boundaries in a color. -- @param #ZONE_RADIUS self -- @param Utilities.Utils#SMOKECOLOR SmokeColor The smoke color. -- @param #number Points (optional) The amount of points in the circle. -- @return #ZONE_RADIUS self function ZONE_RADIUS:SmokeZone( SmokeColor, Points ) self:F2( SmokeColor ) local Point = {} local Vec2 = self:GetVec2() Points = Points and Points or 360 local Angle local RadialBase = math.pi*2 for Angle = 0, 360, 360 / Points do local Radial = Angle * RadialBase / 360 Point.x = Vec2.x + math.cos( Radial ) * self:GetRadius() Point.y = Vec2.y + math.sin( Radial ) * self:GetRadius() POINT_VEC2:New( Point.x, Point.y ):Smoke( SmokeColor ) end return self end --- Flares the zone boundaries in a color. -- @param #ZONE_RADIUS self -- @param Utilities.Utils#FLARECOLOR FlareColor The flare color. -- @param #number Points (optional) The amount of points in the circle. -- @param Dcs.DCSTypes#Azimuth Azimuth (optional) Azimuth The azimuth of the flare. -- @return #ZONE_RADIUS self function ZONE_RADIUS:FlareZone( FlareColor, Points, Azimuth ) self:F2( { FlareColor, Azimuth } ) local Point = {} local Vec2 = self:GetVec2() Points = Points and Points or 360 local Angle local RadialBase = math.pi*2 for Angle = 0, 360, 360 / Points do local Radial = Angle * RadialBase / 360 Point.x = Vec2.x + math.cos( Radial ) * self:GetRadius() Point.y = Vec2.y + math.sin( Radial ) * self:GetRadius() POINT_VEC2:New( Point.x, Point.y ):Flare( FlareColor, Azimuth ) end return self end --- Returns the radius of the zone. -- @param #ZONE_RADIUS self -- @return Dcs.DCSTypes#Distance The radius of the zone. function ZONE_RADIUS:GetRadius() self:F2( self.ZoneName ) self:T2( { self.Radius } ) return self.Radius end --- Sets the radius of the zone. -- @param #ZONE_RADIUS self -- @param Dcs.DCSTypes#Distance Radius The radius of the zone. -- @return Dcs.DCSTypes#Distance The radius of the zone. function ZONE_RADIUS:SetRadius( Radius ) self:F2( self.ZoneName ) self.Radius = Radius self:T2( { self.Radius } ) return self.Radius end --- Returns the @{DCSTypes#Vec2} of the zone. -- @param #ZONE_RADIUS self -- @return Dcs.DCSTypes#Vec2 The location of the zone. function ZONE_RADIUS:GetVec2() self:F2( self.ZoneName ) self:T2( { self.Vec2 } ) return self.Vec2 end --- Sets the @{DCSTypes#Vec2} of the zone. -- @param #ZONE_RADIUS self -- @param Dcs.DCSTypes#Vec2 Vec2 The new location of the zone. -- @return Dcs.DCSTypes#Vec2 The new location of the zone. function ZONE_RADIUS:SetVec2( Vec2 ) self:F2( self.ZoneName ) self.Vec2 = Vec2 self:T2( { self.Vec2 } ) return self.Vec2 end --- Returns the @{DCSTypes#Vec3} of the ZONE_RADIUS. -- @param #ZONE_RADIUS self -- @param Dcs.DCSTypes#Distance Height The height to add to the land height where the center of the zone is located. -- @return Dcs.DCSTypes#Vec3 The point of the zone. function ZONE_RADIUS:GetVec3( Height ) self:F2( { self.ZoneName, Height } ) Height = Height or 0 local Vec2 = self:GetVec2() local Vec3 = { x = Vec2.x, y = land.getHeight( self:GetVec2() ) + Height, z = Vec2.y } self:T2( { Vec3 } ) return Vec3 end --- Returns if a location is within the zone. -- @param #ZONE_RADIUS self -- @param Dcs.DCSTypes#Vec2 Vec2 The location to test. -- @return #boolean true if the location is within the zone. function ZONE_RADIUS:IsVec2InZone( Vec2 ) self:F2( Vec2 ) local ZoneVec2 = self:GetVec2() if ZoneVec2 then if (( Vec2.x - ZoneVec2.x )^2 + ( Vec2.y - ZoneVec2.y ) ^2 ) ^ 0.5 <= self:GetRadius() then return true end end return false end --- Returns if a point is within the zone. -- @param #ZONE_RADIUS self -- @param Dcs.DCSTypes#Vec3 Vec3 The point to test. -- @return #boolean true if the point is within the zone. function ZONE_RADIUS:IsVec3InZone( Vec3 ) self:F2( Vec3 ) local InZone = self:IsVec2InZone( { x = Vec3.x, y = Vec3.z } ) return InZone end --- Returns a random Vec2 location within the zone. -- @param #ZONE_RADIUS self -- @param #number inner (optional) Minimal distance from the center of the zone. Default is 0. -- @param #number outer (optional) Maximal distance from the outer edge of the zone. Default is the radius of the zone. -- @return Dcs.DCSTypes#Vec2 The random location within the zone. function ZONE_RADIUS:GetRandomVec2( inner, outer ) self:F( self.ZoneName, inner, outer ) local Point = {} local Vec2 = self:GetVec2() local _inner = inner or 0 local _outer = outer or self:GetRadius() local angle = math.random() * math.pi * 2; Point.x = Vec2.x + math.cos( angle ) * math.random(_inner, _outer); Point.y = Vec2.y + math.sin( angle ) * math.random(_inner, _outer); self:T( { Point } ) return Point end --- Returns a @{Point#POINT_VEC2} object reflecting a random 2D location within the zone. -- @param #ZONE_RADIUS self -- @param #number inner (optional) Minimal distance from the center of the zone. Default is 0. -- @param #number outer (optional) Maximal distance from the outer edge of the zone. Default is the radius of the zone. -- @return Core.Point#POINT_VEC2 The @{Point#POINT_VEC2} object reflecting the random 3D location within the zone. function ZONE_RADIUS:GetRandomPointVec2( inner, outer ) self:F( self.ZoneName, inner, outer ) local PointVec2 = POINT_VEC2:NewFromVec2( self:GetRandomVec2() ) self:T3( { PointVec2 } ) return PointVec2 end --- Returns a @{Point#POINT_VEC3} object reflecting a random 3D location within the zone. -- @param #ZONE_RADIUS self -- @param #number inner (optional) Minimal distance from the center of the zone. Default is 0. -- @param #number outer (optional) Maximal distance from the outer edge of the zone. Default is the radius of the zone. -- @return Core.Point#POINT_VEC3 The @{Point#POINT_VEC3} object reflecting the random 3D location within the zone. function ZONE_RADIUS:GetRandomPointVec3( inner, outer ) self:F( self.ZoneName, inner, outer ) local PointVec3 = POINT_VEC3:NewFromVec2( self:GetRandomVec2() ) self:T3( { PointVec3 } ) return PointVec3 end --- Returns a @{Point#COORDINATE} object reflecting a random 3D location within the zone. -- @param #ZONE_RADIUS self -- @param #number inner (optional) Minimal distance from the center of the zone. Default is 0. -- @param #number outer (optional) Maximal distance from the outer edge of the zone. Default is the radius of the zone. -- @return Core.Point#COORDINATE function ZONE_RADIUS:GetRandomCoordinate( inner, outer ) self:F( self.ZoneName, inner, outer ) local Coordinate = COORDINATE:NewFromVec2( self:GetRandomVec2() ) self:T3( { Coordinate = Coordinate } ) return Coordinate end --- @type ZONE -- @extends #ZONE_RADIUS --- # ZONE class, extends @{Zone#ZONE_RADIUS} -- -- The ZONE class, defined by the zone name as defined within the Mission Editor. -- This class implements the inherited functions from @{#ZONE_RADIUS} taking into account the own zone format and properties. -- -- @field #ZONE ZONE = { ClassName="ZONE", } --- Constructor of ZONE, taking the zone name. -- @param #ZONE self -- @param #string ZoneName The name of the zone as defined within the mission editor. -- @return #ZONE function ZONE:New( ZoneName ) local Zone = trigger.misc.getZone( ZoneName ) if not Zone then error( "Zone " .. ZoneName .. " does not exist." ) return nil end local self = BASE:Inherit( self, ZONE_RADIUS:New( ZoneName, { x = Zone.point.x, y = Zone.point.z }, Zone.radius ) ) self:F( ZoneName ) self.Zone = Zone return self end --- @type ZONE_UNIT -- @field Wrapper.Unit#UNIT ZoneUNIT -- @extends Core.Zone#ZONE_RADIUS --- # ZONE_UNIT class, extends @{Zone#ZONE_RADIUS} -- -- The ZONE_UNIT class defined by a zone around a @{Unit#UNIT} with a radius. -- This class implements the inherited functions from @{#ZONE_RADIUS} taking into account the own zone format and properties. -- -- @field #ZONE_UNIT ZONE_UNIT = { ClassName="ZONE_UNIT", } --- Constructor to create a ZONE_UNIT instance, taking the zone name, a zone unit and a radius. -- @param #ZONE_UNIT self -- @param #string ZoneName Name of the zone. -- @param Wrapper.Unit#UNIT ZoneUNIT The unit as the center of the zone. -- @param Dcs.DCSTypes#Distance Radius The radius of the zone. -- @return #ZONE_UNIT self function ZONE_UNIT:New( ZoneName, ZoneUNIT, Radius ) local self = BASE:Inherit( self, ZONE_RADIUS:New( ZoneName, ZoneUNIT:GetVec2(), Radius ) ) self:F( { ZoneName, ZoneUNIT:GetVec2(), Radius } ) self.ZoneUNIT = ZoneUNIT self.LastVec2 = ZoneUNIT:GetVec2() return self end --- Returns the current location of the @{Unit#UNIT}. -- @param #ZONE_UNIT self -- @return Dcs.DCSTypes#Vec2 The location of the zone based on the @{Unit#UNIT}location. function ZONE_UNIT:GetVec2() self:F2( self.ZoneName ) local ZoneVec2 = self.ZoneUNIT:GetVec2() if ZoneVec2 then self.LastVec2 = ZoneVec2 return ZoneVec2 else return self.LastVec2 end self:T2( { ZoneVec2 } ) return nil end --- Returns a random location within the zone. -- @param #ZONE_UNIT self -- @return Dcs.DCSTypes#Vec2 The random location within the zone. function ZONE_UNIT:GetRandomVec2() self:F( self.ZoneName ) local RandomVec2 = {} local Vec2 = self.ZoneUNIT:GetVec2() if not Vec2 then Vec2 = self.LastVec2 end local angle = math.random() * math.pi*2; RandomVec2.x = Vec2.x + math.cos( angle ) * math.random() * self:GetRadius(); RandomVec2.y = Vec2.y + math.sin( angle ) * math.random() * self:GetRadius(); self:T( { RandomVec2 } ) return RandomVec2 end --- Returns the @{DCSTypes#Vec3} of the ZONE_UNIT. -- @param #ZONE_UNIT self -- @param Dcs.DCSTypes#Distance Height The height to add to the land height where the center of the zone is located. -- @return Dcs.DCSTypes#Vec3 The point of the zone. function ZONE_UNIT:GetVec3( Height ) self:F2( self.ZoneName ) Height = Height or 0 local Vec2 = self:GetVec2() local Vec3 = { x = Vec2.x, y = land.getHeight( self:GetVec2() ) + Height, z = Vec2.y } self:T2( { Vec3 } ) return Vec3 end --- @type ZONE_GROUP -- @extends #ZONE_RADIUS --- # ZONE_GROUP class, extends @{Zone#ZONE_RADIUS} -- -- The ZONE_GROUP class defines by a zone around a @{Group#GROUP} with a radius. The current leader of the group defines the center of the zone. -- This class implements the inherited functions from @{Zone#ZONE_RADIUS} taking into account the own zone format and properties. -- -- @field #ZONE_GROUP ZONE_GROUP = { ClassName="ZONE_GROUP", } --- Constructor to create a ZONE_GROUP instance, taking the zone name, a zone @{Group#GROUP} and a radius. -- @param #ZONE_GROUP self -- @param #string ZoneName Name of the zone. -- @param Wrapper.Group#GROUP ZoneGROUP The @{Group} as the center of the zone. -- @param Dcs.DCSTypes#Distance Radius The radius of the zone. -- @return #ZONE_GROUP self function ZONE_GROUP:New( ZoneName, ZoneGROUP, Radius ) local self = BASE:Inherit( self, ZONE_RADIUS:New( ZoneName, ZoneGROUP:GetVec2(), Radius ) ) self:F( { ZoneName, ZoneGROUP:GetVec2(), Radius } ) self._.ZoneGROUP = ZoneGROUP return self end --- Returns the current location of the @{Group}. -- @param #ZONE_GROUP self -- @return Dcs.DCSTypes#Vec2 The location of the zone based on the @{Group} location. function ZONE_GROUP:GetVec2() self:F( self.ZoneName ) local ZoneVec2 = self._.ZoneGROUP:GetVec2() self:T( { ZoneVec2 } ) return ZoneVec2 end --- Returns a random location within the zone of the @{Group}. -- @param #ZONE_GROUP self -- @return Dcs.DCSTypes#Vec2 The random location of the zone based on the @{Group} location. function ZONE_GROUP:GetRandomVec2() self:F( self.ZoneName ) local Point = {} local Vec2 = self._.ZoneGROUP:GetVec2() local angle = math.random() * math.pi*2; Point.x = Vec2.x + math.cos( angle ) * math.random() * self:GetRadius(); Point.y = Vec2.y + math.sin( angle ) * math.random() * self:GetRadius(); self:T( { Point } ) return Point end --- Returns a @{Point#POINT_VEC2} object reflecting a random 2D location within the zone. -- @param #ZONE_GROUP self -- @param #number inner (optional) Minimal distance from the center of the zone. Default is 0. -- @param #number outer (optional) Maximal distance from the outer edge of the zone. Default is the radius of the zone. -- @return Core.Point#POINT_VEC2 The @{Point#POINT_VEC2} object reflecting the random 3D location within the zone. function ZONE_GROUP:GetRandomPointVec2( inner, outer ) self:F( self.ZoneName, inner, outer ) local PointVec2 = POINT_VEC2:NewFromVec2( self:GetRandomVec2() ) self:T3( { PointVec2 } ) return PointVec2 end --- @type ZONE_POLYGON_BASE -- --@field #ZONE_POLYGON_BASE.ListVec2 Polygon The polygon defined by an array of @{DCSTypes#Vec2}. -- @extends #ZONE_BASE --- # ZONE_POLYGON_BASE class, extends @{Zone#ZONE_BASE} -- -- The ZONE_POLYGON_BASE class defined by a sequence of @{Group#GROUP} waypoints within the Mission Editor, forming a polygon. -- This class implements the inherited functions from @{Zone#ZONE_RADIUS} taking into account the own zone format and properties. -- This class is an abstract BASE class for derived classes, and is not meant to be instantiated. -- -- ## Zone point randomization -- -- Various functions exist to find random points within the zone. -- -- * @{#ZONE_POLYGON_BASE.GetRandomVec2}(): Gets a random 2D point in the zone. -- * @{#ZONE_POLYGON_BASE.GetRandomPointVec2}(): Return a @{Point#POINT_VEC2} object representing a random 2D point within the zone. -- * @{#ZONE_POLYGON_BASE.GetRandomPointVec3}(): Return a @{Point#POINT_VEC3} object representing a random 3D point at landheight within the zone. -- -- @field #ZONE_POLYGON_BASE ZONE_POLYGON_BASE = { ClassName="ZONE_POLYGON_BASE", } --- A points array. -- @type ZONE_POLYGON_BASE.ListVec2 -- @list --- Constructor to create a ZONE_POLYGON_BASE instance, taking the zone name and an array of @{DCSTypes#Vec2}, forming a polygon. -- The @{Group#GROUP} waypoints define the polygon corners. The first and the last point are automatically connected. -- @param #ZONE_POLYGON_BASE self -- @param #string ZoneName Name of the zone. -- @param #ZONE_POLYGON_BASE.ListVec2 PointsArray An array of @{DCSTypes#Vec2}, forming a polygon.. -- @return #ZONE_POLYGON_BASE self function ZONE_POLYGON_BASE:New( ZoneName, PointsArray ) local self = BASE:Inherit( self, ZONE_BASE:New( ZoneName ) ) self:F( { ZoneName, PointsArray } ) local i = 0 self._.Polygon = {} for i = 1, #PointsArray do self._.Polygon[i] = {} self._.Polygon[i].x = PointsArray[i].x self._.Polygon[i].y = PointsArray[i].y end return self end --- Returns the center location of the polygon. -- @param #ZONE_GROUP self -- @return Dcs.DCSTypes#Vec2 The location of the zone based on the @{Group} location. function ZONE_POLYGON_BASE:GetVec2() self:F( self.ZoneName ) local Bounds = self:GetBoundingSquare() return { x = ( Bounds.x2 + Bounds.x1 ) / 2, y = ( Bounds.y2 + Bounds.y1 ) / 2 } end --- Flush polygon coordinates as a table in DCS.log. -- @param #ZONE_POLYGON_BASE self -- @return #ZONE_POLYGON_BASE self function ZONE_POLYGON_BASE:Flush() self:F2() self:E( { Polygon = self.ZoneName, Coordinates = self._.Polygon } ) return self end --- Smokes the zone boundaries in a color. -- @param #ZONE_POLYGON_BASE self -- @param #boolean UnBound If true, the tyres will be destroyed. -- @return #ZONE_POLYGON_BASE self function ZONE_POLYGON_BASE:BoundZone( UnBound ) local i local j local Segments = 10 i = 1 j = #self._.Polygon while i <= #self._.Polygon do self:T( { i, j, self._.Polygon[i], self._.Polygon[j] } ) local DeltaX = self._.Polygon[j].x - self._.Polygon[i].x local DeltaY = self._.Polygon[j].y - self._.Polygon[i].y for Segment = 0, Segments do -- We divide each line in 5 segments and smoke a point on the line. local PointX = self._.Polygon[i].x + ( Segment * DeltaX / Segments ) local PointY = self._.Polygon[i].y + ( Segment * DeltaY / Segments ) local Tire = { ["country"] = "USA", ["category"] = "Fortifications", ["canCargo"] = false, ["shape_name"] = "H-tyre_B_WF", ["type"] = "Black_Tyre_WF", ["y"] = PointY, ["x"] = PointX, ["name"] = string.format( "%s-Tire #%0d", self:GetName(), ((i - 1) * Segments) + Segment ), ["heading"] = 0, } -- end of ["group"] local Group = coalition.addStaticObject( country.id.USA, Tire ) if UnBound and UnBound == true then Group:destroy() end end j = i i = i + 1 end return self end --- Smokes the zone boundaries in a color. -- @param #ZONE_POLYGON_BASE self -- @param Utilities.Utils#SMOKECOLOR SmokeColor The smoke color. -- @return #ZONE_POLYGON_BASE self function ZONE_POLYGON_BASE:SmokeZone( SmokeColor ) self:F2( SmokeColor ) local i local j local Segments = 10 i = 1 j = #self._.Polygon while i <= #self._.Polygon do self:T( { i, j, self._.Polygon[i], self._.Polygon[j] } ) local DeltaX = self._.Polygon[j].x - self._.Polygon[i].x local DeltaY = self._.Polygon[j].y - self._.Polygon[i].y for Segment = 0, Segments do -- We divide each line in 5 segments and smoke a point on the line. local PointX = self._.Polygon[i].x + ( Segment * DeltaX / Segments ) local PointY = self._.Polygon[i].y + ( Segment * DeltaY / Segments ) POINT_VEC2:New( PointX, PointY ):Smoke( SmokeColor ) end j = i i = i + 1 end return self end --- Returns if a location is within the zone. -- Source learned and taken from: https://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html -- @param #ZONE_POLYGON_BASE self -- @param Dcs.DCSTypes#Vec2 Vec2 The location to test. -- @return #boolean true if the location is within the zone. function ZONE_POLYGON_BASE:IsVec2InZone( Vec2 ) self:F2( Vec2 ) local Next local Prev local InPolygon = false Next = 1 Prev = #self._.Polygon while Next <= #self._.Polygon do self:T( { Next, Prev, self._.Polygon[Next], self._.Polygon[Prev] } ) if ( ( ( self._.Polygon[Next].y > Vec2.y ) ~= ( self._.Polygon[Prev].y > Vec2.y ) ) and ( Vec2.x < ( self._.Polygon[Prev].x - self._.Polygon[Next].x ) * ( Vec2.y - self._.Polygon[Next].y ) / ( self._.Polygon[Prev].y - self._.Polygon[Next].y ) + self._.Polygon[Next].x ) ) then InPolygon = not InPolygon end self:T2( { InPolygon = InPolygon } ) Prev = Next Next = Next + 1 end self:T( { InPolygon = InPolygon } ) return InPolygon end --- Define a random @{DCSTypes#Vec2} within the zone. -- @param #ZONE_POLYGON_BASE self -- @return Dcs.DCSTypes#Vec2 The Vec2 coordinate. function ZONE_POLYGON_BASE:GetRandomVec2() self:F2() --- It is a bit tricky to find a random point within a polygon. Right now i am doing it the dirty and inefficient way... local Vec2Found = false local Vec2 local BS = self:GetBoundingSquare() self:T2( BS ) while Vec2Found == false do Vec2 = { x = math.random( BS.x1, BS.x2 ), y = math.random( BS.y1, BS.y2 ) } self:T2( Vec2 ) if self:IsVec2InZone( Vec2 ) then Vec2Found = true end end self:T2( Vec2 ) return Vec2 end --- Return a @{Point#POINT_VEC2} object representing a random 2D point at landheight within the zone. -- @param #ZONE_POLYGON_BASE self -- @return @{Point#POINT_VEC2} function ZONE_POLYGON_BASE:GetRandomPointVec2() self:F2() local PointVec2 = POINT_VEC2:NewFromVec2( self:GetRandomVec2() ) self:T2( PointVec2 ) return PointVec2 end --- Return a @{Point#POINT_VEC3} object representing a random 3D point at landheight within the zone. -- @param #ZONE_POLYGON_BASE self -- @return @{Point#POINT_VEC3} function ZONE_POLYGON_BASE:GetRandomPointVec3() self:F2() local PointVec3 = POINT_VEC3:NewFromVec2( self:GetRandomVec2() ) self:T2( PointVec3 ) return PointVec3 end --- Return a @{Point#COORDINATE} object representing a random 3D point at landheight within the zone. -- @param #ZONE_POLYGON_BASE self -- @return Core.Point#COORDINATE function ZONE_POLYGON_BASE:GetRandomCoordinate() self:F2() local Coordinate = COORDINATE:NewFromVec2( self:GetRandomVec2() ) self:T2( Coordinate ) return Coordinate end --- Get the bounding square the zone. -- @param #ZONE_POLYGON_BASE self -- @return #ZONE_POLYGON_BASE.BoundingSquare The bounding square. function ZONE_POLYGON_BASE:GetBoundingSquare() local x1 = self._.Polygon[1].x local y1 = self._.Polygon[1].y local x2 = self._.Polygon[1].x local y2 = self._.Polygon[1].y for i = 2, #self._.Polygon do self:T2( { self._.Polygon[i], x1, y1, x2, y2 } ) x1 = ( x1 > self._.Polygon[i].x ) and self._.Polygon[i].x or x1 x2 = ( x2 < self._.Polygon[i].x ) and self._.Polygon[i].x or x2 y1 = ( y1 > self._.Polygon[i].y ) and self._.Polygon[i].y or y1 y2 = ( y2 < self._.Polygon[i].y ) and self._.Polygon[i].y or y2 end return { x1 = x1, y1 = y1, x2 = x2, y2 = y2 } end --- @type ZONE_POLYGON -- @extends #ZONE_POLYGON_BASE --- # ZONE_POLYGON class, extends @{Zone#ZONE_POLYGON_BASE} -- -- The ZONE_POLYGON class defined by a sequence of @{Group#GROUP} waypoints within the Mission Editor, forming a polygon. -- This class implements the inherited functions from @{Zone#ZONE_RADIUS} taking into account the own zone format and properties. -- -- @field #ZONE_POLYGON ZONE_POLYGON = { ClassName="ZONE_POLYGON", } --- Constructor to create a ZONE_POLYGON instance, taking the zone name and the name of the @{Group#GROUP} defined within the Mission Editor. -- The @{Group#GROUP} waypoints define the polygon corners. The first and the last point are automatically connected by ZONE_POLYGON. -- @param #ZONE_POLYGON self -- @param #string ZoneName Name of the zone. -- @param Wrapper.Group#GROUP ZoneGroup The GROUP waypoints as defined within the Mission Editor define the polygon shape. -- @return #ZONE_POLYGON self function ZONE_POLYGON:New( ZoneName, ZoneGroup ) local GroupPoints = ZoneGroup:GetTaskRoute() local self = BASE:Inherit( self, ZONE_POLYGON_BASE:New( ZoneName, GroupPoints ) ) self:F( { ZoneName, ZoneGroup, self._.Polygon } ) return self end --- **Core** -- DATABASE manages the database of mission objects. -- -- ==== -- -- 1) @{#DATABASE} class, extends @{Base#BASE} -- =================================================== -- Mission designers can use the DATABASE class to refer to: -- -- * STATICS -- * UNITS -- * GROUPS -- * CLIENTS -- * AIRBASES -- * PLAYERSJOINED -- * PLAYERS -- * CARGOS -- -- On top, for internal MOOSE administration purposes, the DATBASE administers the Unit and Group TEMPLATES as defined within the Mission Editor. -- -- Moose will automatically create one instance of the DATABASE class into the **global** object _DATABASE. -- Moose refers to _DATABASE within the framework extensively, but you can also refer to the _DATABASE object within your missions if required. -- -- 1.1) DATABASE iterators -- ----------------------- -- You can iterate the database with the available iterator methods. -- The iterator methods will walk the DATABASE set, and call for each element within the set a function that you provide. -- The following iterator methods are currently available within the DATABASE: -- -- * @{#DATABASE.ForEachUnit}: Calls a function for each @{UNIT} it finds within the DATABASE. -- * @{#DATABASE.ForEachGroup}: Calls a function for each @{GROUP} it finds within the DATABASE. -- * @{#DATABASE.ForEachPlayer}: Calls a function for each alive player it finds within the DATABASE. -- * @{#DATABASE.ForEachPlayerJoined}: Calls a function for each joined player it finds within the DATABASE. -- * @{#DATABASE.ForEachClient}: Calls a function for each @{CLIENT} it finds within the DATABASE. -- * @{#DATABASE.ForEachClientAlive}: Calls a function for each alive @{CLIENT} it finds within the DATABASE. -- -- === -- -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- @module Database --- DATABASE class -- @type DATABASE -- @extends Core.Base#BASE DATABASE = { ClassName = "DATABASE", Templates = { Units = {}, Groups = {}, Statics = {}, ClientsByName = {}, ClientsByID = {}, }, UNITS = {}, UNITS_Index = {}, STATICS = {}, GROUPS = {}, PLAYERS = {}, PLAYERSJOINED = {}, PLAYERUNITS = {}, CLIENTS = {}, CARGOS = {}, AIRBASES = {}, COUNTRY_ID = {}, COUNTRY_NAME = {}, NavPoints = {}, PLAYERSETTINGS = {}, ZONENAMES = {}, } local _DATABASECoalition = { [1] = "Red", [2] = "Blue", } local _DATABASECategory = { ["plane"] = Unit.Category.AIRPLANE, ["helicopter"] = Unit.Category.HELICOPTER, ["vehicle"] = Unit.Category.GROUND_UNIT, ["ship"] = Unit.Category.SHIP, ["static"] = Unit.Category.STRUCTURE, } --- Creates a new DATABASE object, building a set of units belonging to a coalitions, categories, countries, types or with defined prefix names. -- @param #DATABASE self -- @return #DATABASE -- @usage -- -- Define a new DATABASE Object. This DBObject will contain a reference to all Group and Unit Templates defined within the ME and the DCSRTE. -- DBObject = DATABASE:New() function DATABASE:New() -- Inherits from BASE local self = BASE:Inherit( self, BASE:New() ) -- #DATABASE self:SetEventPriority( 1 ) self:HandleEvent( EVENTS.Birth, self._EventOnBirth ) self:HandleEvent( EVENTS.Dead, self._EventOnDeadOrCrash ) self:HandleEvent( EVENTS.Crash, self._EventOnDeadOrCrash ) self:HandleEvent( EVENTS.NewCargo ) self:HandleEvent( EVENTS.DeleteCargo ) -- Follow alive players and clients self:HandleEvent( EVENTS.PlayerEnterUnit, self._EventOnPlayerEnterUnit ) self:HandleEvent( EVENTS.PlayerLeaveUnit, self._EventOnPlayerLeaveUnit ) self:_RegisterTemplates() self:_RegisterGroupsAndUnits() self:_RegisterClients() self:_RegisterStatics() --self:_RegisterPlayers() self:_RegisterAirbases() self.UNITS_Position = 0 --- @param #DATABASE self local function CheckPlayers( self ) local CoalitionsData = { AlivePlayersRed = coalition.getPlayers( coalition.side.RED ), AlivePlayersBlue = coalition.getPlayers( coalition.side.BLUE ) } for CoalitionId, CoalitionData in pairs( CoalitionsData ) do --self:E( { "CoalitionData:", CoalitionData } ) for UnitId, UnitData in pairs( CoalitionData ) do if UnitData and UnitData:isExist() then local UnitName = UnitData:getName() local PlayerName = UnitData:getPlayerName() local PlayerUnit = UNIT:Find( UnitData ) --self:T( { "UnitData:", UnitData, UnitName, PlayerName, PlayerUnit } ) if PlayerName and PlayerName ~= "" then if self.PLAYERS[PlayerName] == nil or self.PLAYERS[PlayerName] ~= UnitName then --self:E( { "Add player for unit:", UnitName, PlayerName } ) self:AddPlayer( UnitName, PlayerName ) --_EVENTDISPATCHER:CreateEventPlayerEnterUnit( PlayerUnit ) local Settings = SETTINGS:Set( PlayerName ) Settings:SetPlayerMenu( PlayerUnit ) end end end end end end self:E( "Scheduling" ) PlayerCheckSchedule = SCHEDULER:New( nil, CheckPlayers, { self }, 1, 1 ) return self end --- Finds a Unit based on the Unit Name. -- @param #DATABASE self -- @param #string UnitName -- @return Wrapper.Unit#UNIT The found Unit. function DATABASE:FindUnit( UnitName ) local UnitFound = self.UNITS[UnitName] return UnitFound end --- Adds a Unit based on the Unit Name in the DATABASE. -- @param #DATABASE self function DATABASE:AddUnit( DCSUnitName ) if not self.UNITS[DCSUnitName] then local UnitRegister = UNIT:Register( DCSUnitName ) self.UNITS[DCSUnitName] = UNIT:Register( DCSUnitName ) table.insert( self.UNITS_Index, DCSUnitName ) end return self.UNITS[DCSUnitName] end --- Deletes a Unit from the DATABASE based on the Unit Name. -- @param #DATABASE self function DATABASE:DeleteUnit( DCSUnitName ) self.UNITS[DCSUnitName] = nil end --- Adds a Static based on the Static Name in the DATABASE. -- @param #DATABASE self function DATABASE:AddStatic( DCSStaticName ) if not self.STATICS[DCSStaticName] then self.STATICS[DCSStaticName] = STATIC:Register( DCSStaticName ) end end --- Deletes a Static from the DATABASE based on the Static Name. -- @param #DATABASE self function DATABASE:DeleteStatic( DCSStaticName ) --self.STATICS[DCSStaticName] = nil end --- Finds a STATIC based on the StaticName. -- @param #DATABASE self -- @param #string StaticName -- @return Wrapper.Static#STATIC The found STATIC. function DATABASE:FindStatic( StaticName ) local StaticFound = self.STATICS[StaticName] return StaticFound end --- Finds a AIRBASE based on the AirbaseName. -- @param #DATABASE self -- @param #string AirbaseName -- @return Wrapper.Airbase#AIRBASE The found AIRBASE. function DATABASE:FindAirbase( AirbaseName ) local AirbaseFound = self.AIRBASES[AirbaseName] return AirbaseFound end --- Adds a Airbase based on the Airbase Name in the DATABASE. -- @param #DATABASE self -- @param #string AirbaseName The name of the airbase function DATABASE:AddAirbase( AirbaseName ) if not self.AIRBASES[AirbaseName] then self.AIRBASES[AirbaseName] = AIRBASE:Register( AirbaseName ) end end --- Deletes a Airbase from the DATABASE based on the Airbase Name. -- @param #DATABASE self -- @param #string AirbaseName The name of the airbase function DATABASE:DeleteAirbase( AirbaseName ) self.AIRBASES[AirbaseName] = nil end --- Finds an AIRBASE based on the AirbaseName. -- @param #DATABASE self -- @param #string AirbaseName -- @return Wrapper.Airbase#AIRBASE The found AIRBASE. function DATABASE:FindAirbase( AirbaseName ) local AirbaseFound = self.AIRBASES[AirbaseName] return AirbaseFound end --- Adds a Cargo based on the Cargo Name in the DATABASE. -- @param #DATABASE self -- @param #string CargoName The name of the airbase function DATABASE:AddCargo( Cargo ) if not self.CARGOS[Cargo.Name] then self.CARGOS[Cargo.Name] = Cargo end end --- Deletes a Cargo from the DATABASE based on the Cargo Name. -- @param #DATABASE self -- @param #string CargoName The name of the airbase function DATABASE:DeleteCargo( CargoName ) self.CARGOS[CargoName] = nil end --- Finds an CARGO based on the CargoName. -- @param #DATABASE self -- @param #string CargoName -- @return Wrapper.Cargo#CARGO The found CARGO. function DATABASE:FindCargo( CargoName ) local CargoFound = self.CARGOS[CargoName] return CargoFound end --- Finds a CLIENT based on the ClientName. -- @param #DATABASE self -- @param #string ClientName -- @return Wrapper.Client#CLIENT The found CLIENT. function DATABASE:FindClient( ClientName ) local ClientFound = self.CLIENTS[ClientName] return ClientFound end --- Adds a CLIENT based on the ClientName in the DATABASE. -- @param #DATABASE self function DATABASE:AddClient( ClientName ) if not self.CLIENTS[ClientName] then self.CLIENTS[ClientName] = CLIENT:Register( ClientName ) end return self.CLIENTS[ClientName] end --- Finds a GROUP based on the GroupName. -- @param #DATABASE self -- @param #string GroupName -- @return Wrapper.Group#GROUP The found GROUP. function DATABASE:FindGroup( GroupName ) local GroupFound = self.GROUPS[GroupName] return GroupFound end --- Adds a GROUP based on the GroupName in the DATABASE. -- @param #DATABASE self function DATABASE:AddGroup( GroupName ) if not self.GROUPS[GroupName] then self:E( { "Add GROUP:", GroupName } ) self.GROUPS[GroupName] = GROUP:Register( GroupName ) end return self.GROUPS[GroupName] end --- Adds a player based on the Player Name in the DATABASE. -- @param #DATABASE self function DATABASE:AddPlayer( UnitName, PlayerName ) if PlayerName then self:E( { "Add player for unit:", UnitName, PlayerName } ) self.PLAYERS[PlayerName] = UnitName self.PLAYERUNITS[UnitName] = PlayerName self.PLAYERSJOINED[PlayerName] = PlayerName end end --- Deletes a player from the DATABASE based on the Player Name. -- @param #DATABASE self function DATABASE:DeletePlayer( UnitName, PlayerName ) if PlayerName then self:E( { "Clean player:", PlayerName } ) self.PLAYERS[PlayerName] = nil self.PLAYERUNITS[UnitName] = PlayerName end end --- Instantiate new Groups within the DCSRTE. -- This method expects EXACTLY the same structure as a structure within the ME, and needs 2 additional fields defined: -- SpawnCountryID, SpawnCategoryID -- This method is used by the SPAWN class. -- @param #DATABASE self -- @param #table SpawnTemplate -- @return #DATABASE self function DATABASE:Spawn( SpawnTemplate ) self:F( SpawnTemplate.name ) self:T( { SpawnTemplate.SpawnCountryID, SpawnTemplate.SpawnCategoryID } ) -- Copy the spawn variables of the template in temporary storage, nullify, and restore the spawn variables. local SpawnCoalitionID = SpawnTemplate.CoalitionID local SpawnCountryID = SpawnTemplate.CountryID local SpawnCategoryID = SpawnTemplate.CategoryID -- Nullify SpawnTemplate.CoalitionID = nil SpawnTemplate.CountryID = nil SpawnTemplate.CategoryID = nil self:_RegisterGroupTemplate( SpawnTemplate, SpawnCoalitionID, SpawnCategoryID, SpawnCountryID ) self:T3( SpawnTemplate ) coalition.addGroup( SpawnCountryID, SpawnCategoryID, SpawnTemplate ) -- Restore SpawnTemplate.CoalitionID = SpawnCoalitionID SpawnTemplate.CountryID = SpawnCountryID SpawnTemplate.CategoryID = SpawnCategoryID -- Ensure that for the spawned group and its units, there are GROUP and UNIT objects created in the DATABASE. local SpawnGroup = self:AddGroup( SpawnTemplate.name ) for UnitID, UnitData in pairs( SpawnTemplate.units ) do self:AddUnit( UnitData.name ) end return SpawnGroup end --- Set a status to a Group within the Database, this to check crossing events for example. function DATABASE:SetStatusGroup( GroupName, Status ) self:F2( Status ) self.Templates.Groups[GroupName].Status = Status end --- Get a status to a Group within the Database, this to check crossing events for example. function DATABASE:GetStatusGroup( GroupName ) self:F2( Status ) if self.Templates.Groups[GroupName] then return self.Templates.Groups[GroupName].Status else return "" end end --- Private method that registers new Group Templates within the DATABASE Object. -- @param #DATABASE self -- @param #table GroupTemplate -- @return #DATABASE self function DATABASE:_RegisterGroupTemplate( GroupTemplate, CoalitionID, CategoryID, CountryID ) local GroupTemplateName = env.getValueDictByKey(GroupTemplate.name) local TraceTable = {} if not self.Templates.Groups[GroupTemplateName] then self.Templates.Groups[GroupTemplateName] = {} self.Templates.Groups[GroupTemplateName].Status = nil end -- Delete the spans from the route, it is not needed and takes memory. if GroupTemplate.route and GroupTemplate.route.spans then GroupTemplate.route.spans = nil end GroupTemplate.CategoryID = CategoryID GroupTemplate.CoalitionID = CoalitionID GroupTemplate.CountryID = CountryID self.Templates.Groups[GroupTemplateName].GroupName = GroupTemplateName self.Templates.Groups[GroupTemplateName].Template = GroupTemplate self.Templates.Groups[GroupTemplateName].groupId = GroupTemplate.groupId self.Templates.Groups[GroupTemplateName].UnitCount = #GroupTemplate.units self.Templates.Groups[GroupTemplateName].Units = GroupTemplate.units self.Templates.Groups[GroupTemplateName].CategoryID = CategoryID self.Templates.Groups[GroupTemplateName].CoalitionID = CoalitionID self.Templates.Groups[GroupTemplateName].CountryID = CountryID TraceTable[#TraceTable+1] = "Group" TraceTable[#TraceTable+1] = self.Templates.Groups[GroupTemplateName].GroupName TraceTable[#TraceTable+1] = "Coalition" TraceTable[#TraceTable+1] = self.Templates.Groups[GroupTemplateName].CoalitionID TraceTable[#TraceTable+1] = "Category" TraceTable[#TraceTable+1] = self.Templates.Groups[GroupTemplateName].CategoryID TraceTable[#TraceTable+1] = "Country" TraceTable[#TraceTable+1] = self.Templates.Groups[GroupTemplateName].CountryID TraceTable[#TraceTable+1] = "Units" for unit_num, UnitTemplate in pairs( GroupTemplate.units ) do UnitTemplate.name = env.getValueDictByKey(UnitTemplate.name) self.Templates.Units[UnitTemplate.name] = {} self.Templates.Units[UnitTemplate.name].UnitName = UnitTemplate.name self.Templates.Units[UnitTemplate.name].Template = UnitTemplate self.Templates.Units[UnitTemplate.name].GroupName = GroupTemplateName self.Templates.Units[UnitTemplate.name].GroupTemplate = GroupTemplate self.Templates.Units[UnitTemplate.name].GroupId = GroupTemplate.groupId self.Templates.Units[UnitTemplate.name].CategoryID = CategoryID self.Templates.Units[UnitTemplate.name].CoalitionID = CoalitionID self.Templates.Units[UnitTemplate.name].CountryID = CountryID if UnitTemplate.skill and (UnitTemplate.skill == "Client" or UnitTemplate.skill == "Player") then self.Templates.ClientsByName[UnitTemplate.name] = UnitTemplate self.Templates.ClientsByName[UnitTemplate.name].CategoryID = CategoryID self.Templates.ClientsByName[UnitTemplate.name].CoalitionID = CoalitionID self.Templates.ClientsByName[UnitTemplate.name].CountryID = CountryID self.Templates.ClientsByID[UnitTemplate.unitId] = UnitTemplate end TraceTable[#TraceTable+1] = self.Templates.Units[UnitTemplate.name].UnitName end self:E( TraceTable ) end function DATABASE:GetGroupTemplate( GroupName ) local GroupTemplate = self.Templates.Groups[GroupName].Template GroupTemplate.SpawnCoalitionID = self.Templates.Groups[GroupName].CoalitionID GroupTemplate.SpawnCategoryID = self.Templates.Groups[GroupName].CategoryID GroupTemplate.SpawnCountryID = self.Templates.Groups[GroupName].CountryID return GroupTemplate end --- Private method that registers new Static Templates within the DATABASE Object. -- @param #DATABASE self -- @param #table GroupTemplate -- @return #DATABASE self function DATABASE:_RegisterStaticTemplate( StaticTemplate, CoalitionID, CategoryID, CountryID ) local TraceTable = {} local StaticTemplateName = env.getValueDictByKey(StaticTemplate.name) self.Templates.Statics[StaticTemplateName] = self.Templates.Statics[StaticTemplateName] or {} StaticTemplate.CategoryID = CategoryID StaticTemplate.CoalitionID = CoalitionID StaticTemplate.CountryID = CountryID self.Templates.Statics[StaticTemplateName].StaticName = StaticTemplateName self.Templates.Statics[StaticTemplateName].GroupTemplate = StaticTemplate self.Templates.Statics[StaticTemplateName].UnitTemplate = StaticTemplate.units[1] self.Templates.Statics[StaticTemplateName].CategoryID = CategoryID self.Templates.Statics[StaticTemplateName].CoalitionID = CoalitionID self.Templates.Statics[StaticTemplateName].CountryID = CountryID TraceTable[#TraceTable+1] = "Static" TraceTable[#TraceTable+1] = self.Templates.Statics[StaticTemplateName].GroupName TraceTable[#TraceTable+1] = "Coalition" TraceTable[#TraceTable+1] = self.Templates.Statics[StaticTemplateName].CoalitionID TraceTable[#TraceTable+1] = "Category" TraceTable[#TraceTable+1] = self.Templates.Statics[StaticTemplateName].CategoryID TraceTable[#TraceTable+1] = "Country" TraceTable[#TraceTable+1] = self.Templates.Statics[StaticTemplateName].CountryID self:E( TraceTable ) end --- @param #DATABASE self function DATABASE:GetStaticUnitTemplate( StaticName ) local StaticTemplate = self.Templates.Statics[StaticName].UnitTemplate StaticTemplate.SpawnCoalitionID = self.Templates.Statics[StaticName].CoalitionID StaticTemplate.SpawnCategoryID = self.Templates.Statics[StaticName].CategoryID StaticTemplate.SpawnCountryID = self.Templates.Statics[StaticName].CountryID return StaticTemplate end function DATABASE:GetGroupNameFromUnitName( UnitName ) return self.Templates.Units[UnitName].GroupName end function DATABASE:GetGroupTemplateFromUnitName( UnitName ) return self.Templates.Units[UnitName].GroupTemplate end function DATABASE:GetCoalitionFromClientTemplate( ClientName ) return self.Templates.ClientsByName[ClientName].CoalitionID end function DATABASE:GetCategoryFromClientTemplate( ClientName ) return self.Templates.ClientsByName[ClientName].CategoryID end function DATABASE:GetCountryFromClientTemplate( ClientName ) return self.Templates.ClientsByName[ClientName].CountryID end --- Airbase function DATABASE:GetCoalitionFromAirbase( AirbaseName ) return self.AIRBASES[AirbaseName]:GetCoalition() end function DATABASE:GetCategoryFromAirbase( AirbaseName ) return self.AIRBASES[AirbaseName]:GetCategory() end --- Private method that registers all alive players in the mission. -- @param #DATABASE self -- @return #DATABASE self function DATABASE:_RegisterPlayers() local CoalitionsData = { AlivePlayersRed = coalition.getPlayers( coalition.side.RED ), AlivePlayersBlue = coalition.getPlayers( coalition.side.BLUE ) } for CoalitionId, CoalitionData in pairs( CoalitionsData ) do for UnitId, UnitData in pairs( CoalitionData ) do self:T3( { "UnitData:", UnitData } ) if UnitData and UnitData:isExist() then local UnitName = UnitData:getName() local PlayerName = UnitData:getPlayerName() if not self.PLAYERS[PlayerName] then self:E( { "Add player for unit:", UnitName, PlayerName } ) self:AddPlayer( UnitName, PlayerName ) end end end end return self end --- Private method that registers all Groups and Units within in the mission. -- @param #DATABASE self -- @return #DATABASE self function DATABASE:_RegisterGroupsAndUnits() local CoalitionsData = { GroupsRed = coalition.getGroups( coalition.side.RED ), GroupsBlue = coalition.getGroups( coalition.side.BLUE ) } for CoalitionId, CoalitionData in pairs( CoalitionsData ) do for DCSGroupId, DCSGroup in pairs( CoalitionData ) do if DCSGroup:isExist() then local DCSGroupName = DCSGroup:getName() self:E( { "Register Group:", DCSGroupName } ) self:AddGroup( DCSGroupName ) for DCSUnitId, DCSUnit in pairs( DCSGroup:getUnits() ) do local DCSUnitName = DCSUnit:getName() self:E( { "Register Unit:", DCSUnitName } ) self:AddUnit( DCSUnitName ) end else self:E( { "Group does not exist: ", DCSGroup } ) end end end return self end --- Private method that registers all Units of skill Client or Player within in the mission. -- @param #DATABASE self -- @return #DATABASE self function DATABASE:_RegisterClients() for ClientName, ClientTemplate in pairs( self.Templates.ClientsByName ) do self:E( { "Register Client:", ClientName } ) self:AddClient( ClientName ) end return self end --- @param #DATABASE self function DATABASE:_RegisterStatics() local CoalitionsData = { GroupsRed = coalition.getStaticObjects( coalition.side.RED ), GroupsBlue = coalition.getStaticObjects( coalition.side.BLUE ) } for CoalitionId, CoalitionData in pairs( CoalitionsData ) do for DCSStaticId, DCSStatic in pairs( CoalitionData ) do if DCSStatic:isExist() then local DCSStaticName = DCSStatic:getName() self:E( { "Register Static:", DCSStaticName } ) self:AddStatic( DCSStaticName ) else self:E( { "Static does not exist: ", DCSStatic } ) end end end return self end --- @param #DATABASE self function DATABASE:_RegisterAirbases() local CoalitionsData = { AirbasesRed = coalition.getAirbases( coalition.side.RED ), AirbasesBlue = coalition.getAirbases( coalition.side.BLUE ), AirbasesNeutral = coalition.getAirbases( coalition.side.NEUTRAL ) } for CoalitionId, CoalitionData in pairs( CoalitionsData ) do for DCSAirbaseId, DCSAirbase in pairs( CoalitionData ) do local DCSAirbaseName = DCSAirbase:getName() self:E( { "Register Airbase:", DCSAirbaseName } ) self:AddAirbase( DCSAirbaseName ) end end return self end --- Events --- Handles the OnBirth event for the alive units set. -- @param #DATABASE self -- @param Core.Event#EVENTDATA Event function DATABASE:_EventOnBirth( Event ) self:F2( { Event } ) if Event.IniDCSUnit then if Event.IniObjectCategory == 3 then self:AddStatic( Event.IniDCSUnitName ) else if Event.IniObjectCategory == 1 then self:AddUnit( Event.IniDCSUnitName ) self:AddGroup( Event.IniDCSGroupName ) end end --self:_EventOnPlayerEnterUnit( Event ) end end --- Handles the OnDead or OnCrash event for alive units set. -- @param #DATABASE self -- @param Core.Event#EVENTDATA Event function DATABASE:_EventOnDeadOrCrash( Event ) self:F2( { Event } ) if Event.IniDCSUnit then if Event.IniObjectCategory == 3 then if self.STATICS[Event.IniDCSUnitName] then self:DeleteStatic( Event.IniDCSUnitName ) end else if Event.IniObjectCategory == 1 then if self.UNITS[Event.IniDCSUnitName] then self:DeleteUnit( Event.IniDCSUnitName ) end end end end end --- Handles the OnPlayerEnterUnit event to fill the active players table (with the unit filter applied). -- @param #DATABASE self -- @param Core.Event#EVENTDATA Event function DATABASE:_EventOnPlayerEnterUnit( Event ) self:F2( { Event } ) if Event.IniUnit then if Event.IniObjectCategory == 1 then self:AddUnit( Event.IniDCSUnitName ) self:AddGroup( Event.IniDCSGroupName ) local PlayerName = Event.IniUnit:GetPlayerName() if not self.PLAYERS[PlayerName] then self:AddPlayer( Event.IniUnitName, PlayerName ) end local Settings = SETTINGS:Set( PlayerName ) Settings:SetPlayerMenu( Event.IniUnit ) end end end --- Handles the OnPlayerLeaveUnit event to clean the active players table. -- @param #DATABASE self -- @param Core.Event#EVENTDATA Event function DATABASE:_EventOnPlayerLeaveUnit( Event ) self:F2( { Event } ) if Event.IniUnit then if Event.IniObjectCategory == 1 then local PlayerName = Event.IniUnit:GetPlayerName() if self.PLAYERS[PlayerName] then local Settings = SETTINGS:Set( PlayerName ) Settings:RemovePlayerMenu( Event.IniUnit ) self:DeletePlayer( Event.IniUnit, PlayerName ) end end end end --- Iterators --- Iterate the DATABASE and call an iterator function for the given set, providing the Object for each element within the set and optional parameters. -- @param #DATABASE self -- @param #function IteratorFunction The function that will be called when there is an alive player in the database. -- @return #DATABASE self function DATABASE:ForEach( IteratorFunction, FinalizeFunction, arg, Set ) self:F2( arg ) local function CoRoutine() local Count = 0 for ObjectID, Object in pairs( Set ) do self:T2( Object ) IteratorFunction( Object, unpack( arg ) ) Count = Count + 1 -- if Count % 100 == 0 then -- coroutine.yield( false ) -- end end return true end -- local co = coroutine.create( CoRoutine ) local co = CoRoutine local function Schedule() -- local status, res = coroutine.resume( co ) local status, res = co() self:T3( { status, res } ) if status == false then error( res ) end if res == false then return true -- resume next time the loop end if FinalizeFunction then FinalizeFunction( unpack( arg ) ) end return false end local Scheduler = SCHEDULER:New( self, Schedule, {}, 0.001, 0.001, 0 ) return self end --- Iterate the DATABASE and call an iterator function for each **alive** STATIC, providing the STATIC and optional parameters. -- @param #DATABASE self -- @param #function IteratorFunction The function that will be called for each object in the database. The function needs to accept a STATIC parameter. -- @return #DATABASE self function DATABASE:ForEachStatic( IteratorFunction, FinalizeFunction, ... ) --R2.1 self:F2( arg ) self:ForEach( IteratorFunction, FinalizeFunction, arg, self.STATICS ) return self end --- Iterate the DATABASE and call an iterator function for each **alive** UNIT, providing the UNIT and optional parameters. -- @param #DATABASE self -- @param #function IteratorFunction The function that will be called for each object in the database. The function needs to accept a UNIT parameter. -- @return #DATABASE self function DATABASE:ForEachUnit( IteratorFunction, FinalizeFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, FinalizeFunction, arg, self.UNITS ) return self end --- Iterate the DATABASE and call an iterator function for each **alive** GROUP, providing the GROUP and optional parameters. -- @param #DATABASE self -- @param #function IteratorFunction The function that will be called for each object in the database. The function needs to accept a GROUP parameter. -- @return #DATABASE self function DATABASE:ForEachGroup( IteratorFunction, FinalizeFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, FinalizeFunction, arg, self.GROUPS ) return self end --- Iterate the DATABASE and call an iterator function for each **ALIVE** player, providing the player name and optional parameters. -- @param #DATABASE self -- @param #function IteratorFunction The function that will be called for each object in the database. The function needs to accept the player name. -- @return #DATABASE self function DATABASE:ForEachPlayer( IteratorFunction, FinalizeFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, FinalizeFunction, arg, self.PLAYERS ) return self end --- Iterate the DATABASE and call an iterator function for each player who has joined the mission, providing the Unit of the player and optional parameters. -- @param #DATABASE self -- @param #function IteratorFunction The function that will be called for each object in the database. The function needs to accept a UNIT parameter. -- @return #DATABASE self function DATABASE:ForEachPlayerJoined( IteratorFunction, FinalizeFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, FinalizeFunction, arg, self.PLAYERSJOINED ) return self end --- Iterate the DATABASE and call an iterator function for each **ALIVE** player UNIT, providing the player UNIT and optional parameters. -- @param #DATABASE self -- @param #function IteratorFunction The function that will be called for each object in the database. The function needs to accept the player name. -- @return #DATABASE self function DATABASE:ForEachPlayerUnit( IteratorFunction, FinalizeFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, FinalizeFunction, arg, self.PLAYERUNITS ) return self end --- Iterate the DATABASE and call an iterator function for each CLIENT, providing the CLIENT to the function and optional parameters. -- @param #DATABASE self -- @param #function IteratorFunction The function that will be called object in the database. The function needs to accept a CLIENT parameter. -- @return #DATABASE self function DATABASE:ForEachClient( IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.CLIENTS ) return self end --- Iterate the DATABASE and call an iterator function for each CARGO, providing the CARGO object to the function and optional parameters. -- @param #DATABASE self -- @param #function IteratorFunction The function that will be called for each object in the database. The function needs to accept a CLIENT parameter. -- @return #DATABASE self function DATABASE:ForEachCargo( IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.CARGOS ) return self end --- Handles the OnEventNewCargo event. -- @param #DATABASE self -- @param Core.Event#EVENTDATA EventData function DATABASE:OnEventNewCargo( EventData ) self:F2( { EventData } ) if EventData.Cargo then self:AddCargo( EventData.Cargo ) end end --- Handles the OnEventDeleteCargo. -- @param #DATABASE self -- @param Core.Event#EVENTDATA EventData function DATABASE:OnEventDeleteCargo( EventData ) self:F2( { EventData } ) if EventData.Cargo then self:DeleteCargo( EventData.Cargo.Name ) end end --- Gets the player settings -- @param #DATABASE self -- @param #string PlayerName -- @return Core.Settings#SETTINGS function DATABASE:GetPlayerSettings( PlayerName ) self:F2( { PlayerName } ) return self.PLAYERSETTINGS[PlayerName] end --- Sets the player settings -- @param #DATABASE self -- @param #string PlayerName -- @param Core.Settings#SETTINGS Settings -- @return Core.Settings#SETTINGS function DATABASE:SetPlayerSettings( PlayerName, Settings ) self:F2( { PlayerName, Settings } ) self.PLAYERSETTINGS[PlayerName] = Settings end --- @param #DATABASE self function DATABASE:_RegisterTemplates() self:F2() self.Navpoints = {} self.UNITS = {} --Build routines.db.units and self.Navpoints for CoalitionName, coa_data in pairs(env.mission.coalition) do if (CoalitionName == 'red' or CoalitionName == 'blue') and type(coa_data) == 'table' then --self.Units[coa_name] = {} local CoalitionSide = coalition.side[string.upper(CoalitionName)] ---------------------------------------------- -- build nav points DB self.Navpoints[CoalitionName] = {} if coa_data.nav_points then --navpoints for nav_ind, nav_data in pairs(coa_data.nav_points) do if type(nav_data) == 'table' then self.Navpoints[CoalitionName][nav_ind] = routines.utils.deepCopy(nav_data) self.Navpoints[CoalitionName][nav_ind]['name'] = nav_data.callsignStr -- name is a little bit more self-explanatory. self.Navpoints[CoalitionName][nav_ind]['point'] = {} -- point is used by SSE, support it. self.Navpoints[CoalitionName][nav_ind]['point']['x'] = nav_data.x self.Navpoints[CoalitionName][nav_ind]['point']['y'] = 0 self.Navpoints[CoalitionName][nav_ind]['point']['z'] = nav_data.y end end end ------------------------------------------------- if coa_data.country then --there is a country table for cntry_id, cntry_data in pairs(coa_data.country) do local CountryName = string.upper(cntry_data.name) local CountryID = cntry_data.id self.COUNTRY_ID[CountryName] = CountryID self.COUNTRY_NAME[CountryID] = CountryName --self.Units[coa_name][countryName] = {} --self.Units[coa_name][countryName]["countryId"] = cntry_data.id if type(cntry_data) == 'table' then --just making sure for obj_type_name, obj_type_data in pairs(cntry_data) do if obj_type_name == "helicopter" or obj_type_name == "ship" or obj_type_name == "plane" or obj_type_name == "vehicle" or obj_type_name == "static" then --should be an unncessary check local CategoryName = obj_type_name if ((type(obj_type_data) == 'table') and obj_type_data.group and (type(obj_type_data.group) == 'table') and (#obj_type_data.group > 0)) then --there's a group! --self.Units[coa_name][countryName][category] = {} for group_num, Template in pairs(obj_type_data.group) do if obj_type_name ~= "static" and Template and Template.units and type(Template.units) == 'table' then --making sure again- this is a valid group self:_RegisterGroupTemplate( Template, CoalitionSide, _DATABASECategory[string.lower(CategoryName)], CountryID ) else self:_RegisterStaticTemplate( Template, CoalitionSide, _DATABASECategory[string.lower(CategoryName)], CountryID ) end --if GroupTemplate and GroupTemplate.units then end --for group_num, GroupTemplate in pairs(obj_type_data.group) do end --if ((type(obj_type_data) == 'table') and obj_type_data.group and (type(obj_type_data.group) == 'table') and (#obj_type_data.group > 0)) then end --if obj_type_name == "helicopter" or obj_type_name == "ship" or obj_type_name == "plane" or obj_type_name == "vehicle" or obj_type_name == "static" then end --for obj_type_name, obj_type_data in pairs(cntry_data) do end --if type(cntry_data) == 'table' then end --for cntry_id, cntry_data in pairs(coa_data.country) do end --if coa_data.country then --there is a country table end --if coa_name == 'red' or coa_name == 'blue' and type(coa_data) == 'table' then end --for coa_name, coa_data in pairs(mission.coalition) do for ZoneID, ZoneData in pairs( env.mission.triggers.zones ) do local ZoneName = ZoneData.name self.ZONENAMES[ZoneName] = ZoneName end return self end --- **Core** -- SET_ classes define **collections** of objects to perform **bulk actions** and logically **group** objects. -- -- ![Banner Image](..\Presentations\SET\Dia1.JPG) -- -- === -- -- SET_ classes group objects of the same type into a collection, which is either: -- -- * Manually managed using the **:Add...()** or **:Remove...()** methods. The initial SET can be filtered with the **@{#SET_BASE.FilterOnce}()** method -- * Dynamically updated when new objects are created or objects are destroyed using the **@{#SET_BASE.FilterStart}()** method. -- -- Various types of SET_ classes are available: -- -- * @{#SET_UNIT}: Defines a colleciton of @{Unit}s filtered by filter criteria. -- * @{#SET_GROUP}: Defines a collection of @{Group}s filtered by filter criteria. -- * @{#SET_CLIENT}: Defines a collection of @{Client}s filterd by filter criteria. -- * @{#SET_AIRBASE}: Defines a collection of @{Airbase}s filtered by filter criteria. -- -- These classes are derived from @{#SET_BASE}, which contains the main methods to manage SETs. -- -- A multitude of other methods are available in SET_ classes that allow to: -- -- * Validate the presence of objects in the SET. -- * Trigger events when objects in the SET change a zone presence. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @module Set --- @type SET_BASE -- @field #table Filter -- @field #table Set -- @field #table List -- @field Core.Scheduler#SCHEDULER CallScheduler -- @extends Core.Base#BASE --- # 1) SET_BASE class, extends @{Base#BASE} -- The @{Set#SET_BASE} class defines the core functions that define a collection of objects. -- A SET provides iterators to iterate the SET, but will **temporarily** yield the ForEach interator loop at defined **"intervals"** to the mail simulator loop. -- In this way, large loops can be done while not blocking the simulator main processing loop. -- The default **"yield interval"** is after 10 objects processed. -- The default **"time interval"** is after 0.001 seconds. -- -- ## 1.1) Add or remove objects from the SET -- -- Some key core functions are @{Set#SET_BASE.Add} and @{Set#SET_BASE.Remove} to add or remove objects from the SET in your logic. -- -- ## 1.2) Define the SET iterator **"yield interval"** and the **"time interval"** -- -- Modify the iterator intervals with the @{Set#SET_BASE.SetInteratorIntervals} method. -- You can set the **"yield interval"**, and the **"time interval"**. (See above). -- -- @field #SET_BASE SET_BASE SET_BASE = { ClassName = "SET_BASE", Filter = {}, Set = {}, List = {}, Index = {}, } --- Creates a new SET_BASE object, building a set of units belonging to a coalitions, categories, countries, types or with defined prefix names. -- @param #SET_BASE self -- @return #SET_BASE -- @usage -- -- Define a new SET_BASE Object. This DBObject will contain a reference to all Group and Unit Templates defined within the ME and the DCSRTE. -- DBObject = SET_BASE:New() function SET_BASE:New( Database ) -- Inherits from BASE local self = BASE:Inherit( self, BASE:New() ) -- Core.Set#SET_BASE self.Database = Database self.YieldInterval = 10 self.TimeInterval = 0.001 self.Set = {} self.Index = {} self.CallScheduler = SCHEDULER:New( self ) self:SetEventPriority( 2 ) return self end --- Finds an @{Base#BASE} object based on the object Name. -- @param #SET_BASE self -- @param #string ObjectName -- @return Core.Base#BASE The Object found. function SET_BASE:_Find( ObjectName ) local ObjectFound = self.Set[ObjectName] return ObjectFound end --- Gets the Set. -- @param #SET_BASE self -- @return #SET_BASE self function SET_BASE:GetSet() self:F2() return self.Set end --- Adds a @{Base#BASE} object in the @{Set#SET_BASE}, using a given ObjectName as the index. -- @param #SET_BASE self -- @param #string ObjectName -- @param Core.Base#BASE Object -- @return Core.Base#BASE The added BASE Object. function SET_BASE:Add( ObjectName, Object ) self:F( ObjectName ) self.Set[ObjectName] = Object table.insert( self.Index, ObjectName ) end --- Adds a @{Base#BASE} object in the @{Set#SET_BASE}, using the Object Name as the index. -- @param #SET_BASE self -- @param Wrapper.Object#OBJECT Object -- @return Core.Base#BASE The added BASE Object. function SET_BASE:AddObject( Object ) self:F2( Object.ObjectName ) self:T( Object.UnitName ) self:T( Object.ObjectName ) self:Add( Object.ObjectName, Object ) end --- Removes a @{Base#BASE} object from the @{Set#SET_BASE} and derived classes, based on the Object Name. -- @param #SET_BASE self -- @param #string ObjectName function SET_BASE:Remove( ObjectName ) local Object = self.Set[ObjectName] self:F3( { ObjectName, Object } ) if Object then for Index, Key in ipairs( self.Index ) do if Key == ObjectName then table.remove( self.Index, Index ) self.Set[ObjectName] = nil break end end end end --- Gets a @{Base#BASE} object from the @{Set#SET_BASE} and derived classes, based on the Object Name. -- @param #SET_BASE self -- @param #string ObjectName -- @return Core.Base#BASE function SET_BASE:Get( ObjectName ) self:F( ObjectName ) local Object = self.Set[ObjectName] self:T3( { ObjectName, Object } ) return Object end --- Gets the first object from the @{Set#SET_BASE} and derived classes. -- @param #SET_BASE self -- @return Core.Base#BASE function SET_BASE:GetFirst() local ObjectName = self.Index[1] local FirstObject = self.Set[ObjectName] self:T3( { FirstObject } ) return FirstObject end --- Gets the last object from the @{Set#SET_BASE} and derived classes. -- @param #SET_BASE self -- @return Core.Base#BASE function SET_BASE:GetLast() local ObjectName = self.Index[#self.Index] local LastObject = self.Set[ObjectName] self:T3( { LastObject } ) return LastObject end --- Gets a random object from the @{Set#SET_BASE} and derived classes. -- @param #SET_BASE self -- @return Core.Base#BASE function SET_BASE:GetRandom() local RandomItem = self.Set[self.Index[math.random(#self.Index)]] self:T3( { RandomItem } ) return RandomItem end --- Retrieves the amount of objects in the @{Set#SET_BASE} and derived classes. -- @param #SET_BASE self -- @return #number Count function SET_BASE:Count() return self.Index and #self.Index or 0 end --- Copies the Filter criteria from a given Set (for rebuilding a new Set based on an existing Set). -- @param #SET_BASE self -- @param #SET_BASE BaseSet -- @return #SET_BASE function SET_BASE:SetDatabase( BaseSet ) -- Copy the filter criteria of the BaseSet local OtherFilter = routines.utils.deepCopy( BaseSet.Filter ) self.Filter = OtherFilter -- Now base the new Set on the BaseSet self.Database = BaseSet:GetSet() return self end --- Define the SET iterator **"yield interval"** and the **"time interval"**. -- @param #SET_BASE self -- @param #number YieldInterval Sets the frequency when the iterator loop will yield after the number of objects processed. The default frequency is 10 objects processed. -- @param #number TimeInterval Sets the time in seconds when the main logic will resume the iterator loop. The default time is 0.001 seconds. -- @return #SET_BASE self function SET_BASE:SetIteratorIntervals( YieldInterval, TimeInterval ) self.YieldInterval = YieldInterval self.TimeInterval = TimeInterval return self end --- Filters for the defined collection. -- @param #SET_BASE self -- @return #SET_BASE self function SET_BASE:FilterOnce() for ObjectName, Object in pairs( self.Database ) do if self:IsIncludeObject( Object ) then self:Add( ObjectName, Object ) end end return self end --- Starts the filtering for the defined collection. -- @param #SET_BASE self -- @return #SET_BASE self function SET_BASE:_FilterStart() for ObjectName, Object in pairs( self.Database ) do if self:IsIncludeObject( Object ) then self:E( { "Adding Object:", ObjectName } ) self:Add( ObjectName, Object ) end end self:HandleEvent( EVENTS.Birth, self._EventOnBirth ) self:HandleEvent( EVENTS.Dead, self._EventOnDeadOrCrash ) self:HandleEvent( EVENTS.Crash, self._EventOnDeadOrCrash ) -- Follow alive players and clients self:HandleEvent( EVENTS.PlayerEnterUnit, self._EventOnPlayerEnterUnit ) self:HandleEvent( EVENTS.PlayerLeaveUnit, self._EventOnPlayerLeaveUnit ) return self end --- Starts the filtering of the Dead events for the collection. -- @param #SET_BASE self -- @return #SET_BASE self function SET_BASE:FilterDeads() --R2.1 allow deads to be filtered to automatically handle deads in the collection. self:HandleEvent( EVENTS.Dead, self._EventOnDeadOrCrash ) return self end --- Starts the filtering of the Crash events for the collection. -- @param #SET_BASE self -- @return #SET_BASE self function SET_BASE:FilterCrashes() --R2.1 allow crashes to be filtered to automatically handle crashes in the collection. self:HandleEvent( EVENTS.Crash, self._EventOnDeadOrCrash ) return self end --- Stops the filtering for the defined collection. -- @param #SET_BASE self -- @return #SET_BASE self function SET_BASE:FilterStop() self:UnHandleEvent( EVENTS.Birth ) self:UnHandleEvent( EVENTS.Dead ) self:UnHandleEvent( EVENTS.Crash ) return self end --- Iterate the SET_BASE while identifying the nearest object from a @{Point#POINT_VEC2}. -- @param #SET_BASE self -- @param Core.Point#POINT_VEC2 PointVec2 A @{Point#POINT_VEC2} object from where to evaluate the closest object in the set. -- @return Core.Base#BASE The closest object. function SET_BASE:FindNearestObjectFromPointVec2( PointVec2 ) self:F2( PointVec2 ) local NearestObject = nil local ClosestDistance = nil for ObjectID, ObjectData in pairs( self.Set ) do if NearestObject == nil then NearestObject = ObjectData ClosestDistance = PointVec2:DistanceFromVec2( ObjectData:GetVec2() ) else local Distance = PointVec2:DistanceFromVec2( ObjectData:GetVec2() ) if Distance < ClosestDistance then NearestObject = ObjectData ClosestDistance = Distance end end end return NearestObject end ----- Private method that registers all alive players in the mission. ---- @param #SET_BASE self ---- @return #SET_BASE self --function SET_BASE:_RegisterPlayers() -- -- local CoalitionsData = { AlivePlayersRed = coalition.getPlayers( coalition.side.RED ), AlivePlayersBlue = coalition.getPlayers( coalition.side.BLUE ) } -- for CoalitionId, CoalitionData in pairs( CoalitionsData ) do -- for UnitId, UnitData in pairs( CoalitionData ) do -- self:T3( { "UnitData:", UnitData } ) -- if UnitData and UnitData:isExist() then -- local UnitName = UnitData:getName() -- if not self.PlayersAlive[UnitName] then -- self:E( { "Add player for unit:", UnitName, UnitData:getPlayerName() } ) -- self.PlayersAlive[UnitName] = UnitData:getPlayerName() -- end -- end -- end -- end -- -- return self --end --- Events --- Handles the OnBirth event for the Set. -- @param #SET_BASE self -- @param Core.Event#EVENTDATA Event function SET_BASE:_EventOnBirth( Event ) self:F3( { Event } ) if Event.IniDCSUnit then local ObjectName, Object = self:AddInDatabase( Event ) self:T3( ObjectName, Object ) if Object and self:IsIncludeObject( Object ) then self:Add( ObjectName, Object ) --self:_EventOnPlayerEnterUnit( Event ) end end end --- Handles the OnDead or OnCrash event for alive units set. -- @param #SET_BASE self -- @param Core.Event#EVENTDATA Event function SET_BASE:_EventOnDeadOrCrash( Event ) self:F3( { Event } ) if Event.IniDCSUnit then local ObjectName, Object = self:FindInDatabase( Event ) if ObjectName then self:Remove( ObjectName ) end end end --- Handles the OnPlayerEnterUnit event to fill the active players table (with the unit filter applied). -- @param #SET_BASE self -- @param Core.Event#EVENTDATA Event function SET_BASE:_EventOnPlayerEnterUnit( Event ) self:F3( { Event } ) if Event.IniDCSUnit then local ObjectName, Object = self:AddInDatabase( Event ) self:T3( ObjectName, Object ) if self:IsIncludeObject( Object ) then self:Add( ObjectName, Object ) --self:_EventOnPlayerEnterUnit( Event ) end end end --- Handles the OnPlayerLeaveUnit event to clean the active players table. -- @param #SET_BASE self -- @param Core.Event#EVENTDATA Event function SET_BASE:_EventOnPlayerLeaveUnit( Event ) self:F3( { Event } ) local ObjectName = Event.IniDCSUnit if Event.IniDCSUnit then if Event.IniDCSGroup then local GroupUnits = Event.IniDCSGroup:getUnits() local PlayerCount = 0 for _, DCSUnit in pairs( GroupUnits ) do if DCSUnit ~= Event.IniDCSUnit then if DCSUnit:getPlayerName() ~= nil then PlayerCount = PlayerCount + 1 end end end self:E(PlayerCount) if PlayerCount == 0 then self:Remove( Event.IniDCSGroupName ) end end end end -- Iterators --- Iterate the SET_BASE and derived classes and call an iterator function for the given SET_BASE, providing the Object for each element within the set and optional parameters. -- @param #SET_BASE self -- @param #function IteratorFunction The function that will be called. -- @return #SET_BASE self function SET_BASE:ForEach( IteratorFunction, arg, Set, Function, FunctionArguments ) self:F3( arg ) Set = Set or self:GetSet() arg = arg or {} local function CoRoutine() local Count = 0 for ObjectID, ObjectData in pairs( Set ) do local Object = ObjectData self:T3( Object ) if Function then if Function( unpack( FunctionArguments ), Object ) == true then IteratorFunction( Object, unpack( arg ) ) end else IteratorFunction( Object, unpack( arg ) ) end Count = Count + 1 -- if Count % self.YieldInterval == 0 then -- coroutine.yield( false ) -- end end return true end -- local co = coroutine.create( CoRoutine ) local co = CoRoutine local function Schedule() -- local status, res = coroutine.resume( co ) local status, res = co() self:T3( { status, res } ) if status == false then error( res ) end if res == false then return true -- resume next time the loop end return false end --self.CallScheduler:Schedule( self, Schedule, {}, self.TimeInterval, self.TimeInterval, 0 ) Schedule() return self end ----- Iterate the SET_BASE and call an interator function for each **alive** unit, providing the Unit and optional parameters. ---- @param #SET_BASE self ---- @param #function IteratorFunction The function that will be called when there is an alive unit in the SET_BASE. The function needs to accept a UNIT parameter. ---- @return #SET_BASE self --function SET_BASE:ForEachDCSUnitAlive( IteratorFunction, ... ) -- self:F3( arg ) -- -- self:ForEach( IteratorFunction, arg, self.DCSUnitsAlive ) -- -- return self --end -- ----- Iterate the SET_BASE and call an interator function for each **alive** player, providing the Unit of the player and optional parameters. ---- @param #SET_BASE self ---- @param #function IteratorFunction The function that will be called when there is an alive player in the SET_BASE. The function needs to accept a UNIT parameter. ---- @return #SET_BASE self --function SET_BASE:ForEachPlayer( IteratorFunction, ... ) -- self:F3( arg ) -- -- self:ForEach( IteratorFunction, arg, self.PlayersAlive ) -- -- return self --end -- -- ----- Iterate the SET_BASE and call an interator function for each client, providing the Client to the function and optional parameters. ---- @param #SET_BASE self ---- @param #function IteratorFunction The function that will be called when there is an alive player in the SET_BASE. The function needs to accept a CLIENT parameter. ---- @return #SET_BASE self --function SET_BASE:ForEachClient( IteratorFunction, ... ) -- self:F3( arg ) -- -- self:ForEach( IteratorFunction, arg, self.Clients ) -- -- return self --end --- Decides whether to include the Object -- @param #SET_BASE self -- @param #table Object -- @return #SET_BASE self function SET_BASE:IsIncludeObject( Object ) self:F3( Object ) return true end --- Gets a string with all the object names. -- @param #SET_BASE self -- @return #string A string with the names of the objects. function SET_BASE:GetObjectNames() self:F3() local ObjectNames = "" for ObjectName, Object in pairs( self.Set ) do ObjectNames = ObjectNames .. ObjectName .. ", " end return ObjectNames end --- Flushes the current SET_BASE contents in the log ... (for debugging reasons). -- @param #SET_BASE self -- @return #string A string with the names of the objects. function SET_BASE:Flush() self:F3() local ObjectNames = "" for ObjectName, Object in pairs( self.Set ) do ObjectNames = ObjectNames .. ObjectName .. ", " end self:E( { "Objects in Set:", ObjectNames } ) return ObjectNames end --- @type SET_GROUP -- @extends Core.Set#SET_BASE --- # SET_GROUP class, extends @{Set#SET_BASE} -- -- Mission designers can use the @{Set#SET_GROUP} class to build sets of groups belonging to certain: -- -- * Coalitions -- * Categories -- * Countries -- * Starting with certain prefix strings. -- -- ## 1. SET_GROUP constructor -- -- Create a new SET_GROUP object with the @{#SET_GROUP.New} method: -- -- * @{#SET_GROUP.New}: Creates a new SET_GROUP object. -- -- ## 2. Add or Remove GROUP(s) from SET_GROUP -- -- GROUPS can be added and removed using the @{Set#SET_GROUP.AddGroupsByName} and @{Set#SET_GROUP.RemoveGroupsByName} respectively. -- These methods take a single GROUP name or an array of GROUP names to be added or removed from SET_GROUP. -- -- ## 3. SET_GROUP filter criteria -- -- You can set filter criteria to define the set of groups within the SET_GROUP. -- Filter criteria are defined by: -- -- * @{#SET_GROUP.FilterCoalitions}: Builds the SET_GROUP with the groups belonging to the coalition(s). -- * @{#SET_GROUP.FilterCategories}: Builds the SET_GROUP with the groups belonging to the category(ies). -- * @{#SET_GROUP.FilterCountries}: Builds the SET_GROUP with the gruops belonging to the country(ies). -- * @{#SET_GROUP.FilterPrefixes}: Builds the SET_GROUP with the groups starting with the same prefix string(s). -- -- For the Category Filter, extra methods have been added: -- -- * @{#SET_GROUP.FilterCategoryAirplane}: Builds the SET_GROUP from airplanes. -- * @{#SET_GROUP.FilterCategoryHelicopter}: Builds the SET_GROUP from helicopters. -- * @{#SET_GROUP.FilterCategoryGround}: Builds the SET_GROUP from ground vehicles or infantry. -- * @{#SET_GROUP.FilterCategoryShip}: Builds the SET_GROUP from ships. -- * @{#SET_GROUP.FilterCategoryStructure}: Builds the SET_GROUP from structures. -- -- -- Once the filter criteria have been set for the SET_GROUP, you can start filtering using: -- -- * @{#SET_GROUP.FilterStart}: Starts the filtering of the groups within the SET_GROUP and add or remove GROUP objects **dynamically**. -- -- Planned filter criteria within development are (so these are not yet available): -- -- * @{#SET_GROUP.FilterZones}: Builds the SET_GROUP with the groups within a @{Zone#ZONE}. -- -- ## 4. SET_GROUP iterators -- -- Once the filters have been defined and the SET_GROUP has been built, you can iterate the SET_GROUP with the available iterator methods. -- The iterator methods will walk the SET_GROUP set, and call for each element within the set a function that you provide. -- The following iterator methods are currently available within the SET_GROUP: -- -- * @{#SET_GROUP.ForEachGroup}: Calls a function for each alive group it finds within the SET_GROUP. -- * @{#SET_GROUP.ForEachGroupCompletelyInZone}: Iterate the SET_GROUP and call an iterator function for each **alive** GROUP presence completely in a @{Zone}, providing the GROUP and optional parameters to the called function. -- * @{#SET_GROUP.ForEachGroupPartlyInZone}: Iterate the SET_GROUP and call an iterator function for each **alive** GROUP presence partly in a @{Zone}, providing the GROUP and optional parameters to the called function. -- * @{#SET_GROUP.ForEachGroupNotInZone}: Iterate the SET_GROUP and call an iterator function for each **alive** GROUP presence not in a @{Zone}, providing the GROUP and optional parameters to the called function. -- -- === -- @field #SET_GROUP SET_GROUP SET_GROUP = { ClassName = "SET_GROUP", Filter = { Coalitions = nil, Categories = nil, Countries = nil, GroupPrefixes = nil, }, FilterMeta = { Coalitions = { red = coalition.side.RED, blue = coalition.side.BLUE, neutral = coalition.side.NEUTRAL, }, Categories = { plane = Group.Category.AIRPLANE, helicopter = Group.Category.HELICOPTER, ground = Group.Category.GROUND, -- R2.2 ship = Group.Category.SHIP, structure = Group.Category.STRUCTURE, }, }, } --- Creates a new SET_GROUP object, building a set of groups belonging to a coalitions, categories, countries, types or with defined prefix names. -- @param #SET_GROUP self -- @return #SET_GROUP -- @usage -- -- Define a new SET_GROUP Object. This DBObject will contain a reference to all alive GROUPS. -- DBObject = SET_GROUP:New() function SET_GROUP:New() -- Inherits from BASE local self = BASE:Inherit( self, SET_BASE:New( _DATABASE.GROUPS ) ) return self end --- Add GROUP(s) to SET_GROUP. -- @param Core.Set#SET_GROUP self -- @param #string AddGroupNames A single name or an array of GROUP names. -- @return self function SET_GROUP:AddGroupsByName( AddGroupNames ) local AddGroupNamesArray = ( type( AddGroupNames ) == "table" ) and AddGroupNames or { AddGroupNames } for AddGroupID, AddGroupName in pairs( AddGroupNamesArray ) do self:Add( AddGroupName, GROUP:FindByName( AddGroupName ) ) end return self end --- Remove GROUP(s) from SET_GROUP. -- @param Core.Set#SET_GROUP self -- @param Wrapper.Group#GROUP RemoveGroupNames A single name or an array of GROUP names. -- @return self function SET_GROUP:RemoveGroupsByName( RemoveGroupNames ) local RemoveGroupNamesArray = ( type( RemoveGroupNames ) == "table" ) and RemoveGroupNames or { RemoveGroupNames } for RemoveGroupID, RemoveGroupName in pairs( RemoveGroupNamesArray ) do self:Remove( RemoveGroupName.GroupName ) end return self end --- Finds a Group based on the Group Name. -- @param #SET_GROUP self -- @param #string GroupName -- @return Wrapper.Group#GROUP The found Group. function SET_GROUP:FindGroup( GroupName ) local GroupFound = self.Set[GroupName] return GroupFound end --- Iterate the SET_GROUP while identifying the nearest object from a @{Point#POINT_VEC2}. -- @param #SET_GROUP self -- @param Core.Point#POINT_VEC2 PointVec2 A @{Point#POINT_VEC2} object from where to evaluate the closest object in the set. -- @return Wrapper.Group#GROUP The closest group. function SET_GROUP:FindNearestGroupFromPointVec2( PointVec2 ) self:F2( PointVec2 ) local NearestGroup = nil local ClosestDistance = nil for ObjectID, ObjectData in pairs( self.Set ) do if NearestGroup == nil then NearestGroup = ObjectData ClosestDistance = PointVec2:DistanceFromVec2( ObjectData:GetVec2() ) else local Distance = PointVec2:DistanceFromVec2( ObjectData:GetVec2() ) if Distance < ClosestDistance then NearestGroup = ObjectData ClosestDistance = Distance end end end return NearestGroup end --- Builds a set of groups of coalitions. -- Possible current coalitions are red, blue and neutral. -- @param #SET_GROUP self -- @param #string Coalitions Can take the following values: "red", "blue", "neutral". -- @return #SET_GROUP self function SET_GROUP:FilterCoalitions( Coalitions ) if not self.Filter.Coalitions then self.Filter.Coalitions = {} end if type( Coalitions ) ~= "table" then Coalitions = { Coalitions } end for CoalitionID, Coalition in pairs( Coalitions ) do self.Filter.Coalitions[Coalition] = Coalition end return self end --- Builds a set of groups out of categories. -- Possible current categories are plane, helicopter, ground, ship. -- @param #SET_GROUP self -- @param #string Categories Can take the following values: "plane", "helicopter", "ground", "ship". -- @return #SET_GROUP self function SET_GROUP:FilterCategories( Categories ) if not self.Filter.Categories then self.Filter.Categories = {} end if type( Categories ) ~= "table" then Categories = { Categories } end for CategoryID, Category in pairs( Categories ) do self.Filter.Categories[Category] = Category end return self end --- Builds a set of groups out of ground category. -- @param #SET_GROUP self -- @return #SET_GROUP self function SET_GROUP:FilterCategoryGround() self:FilterCategories( "ground" ) return self end --- Builds a set of groups out of airplane category. -- @param #SET_GROUP self -- @return #SET_GROUP self function SET_GROUP:FilterCategoryAirplane() self:FilterCategories( "plane" ) return self end --- Builds a set of groups out of helicopter category. -- @param #SET_GROUP self -- @return #SET_GROUP self function SET_GROUP:FilterCategoryHelicopter() self:FilterCategories( "helicopter" ) return self end --- Builds a set of groups out of ship category. -- @param #SET_GROUP self -- @return #SET_GROUP self function SET_GROUP:FilterCategoryShip() self:FilterCategories( "ship" ) return self end --- Builds a set of groups out of structure category. -- @param #SET_GROUP self -- @return #SET_GROUP self function SET_GROUP:FilterCategoryStructure() self:FilterCategories( "structure" ) return self end --- Builds a set of groups of defined countries. -- Possible current countries are those known within DCS world. -- @param #SET_GROUP self -- @param #string Countries Can take those country strings known within DCS world. -- @return #SET_GROUP self function SET_GROUP:FilterCountries( Countries ) if not self.Filter.Countries then self.Filter.Countries = {} end if type( Countries ) ~= "table" then Countries = { Countries } end for CountryID, Country in pairs( Countries ) do self.Filter.Countries[Country] = Country end return self end --- Builds a set of groups of defined GROUP prefixes. -- All the groups starting with the given prefixes will be included within the set. -- @param #SET_GROUP self -- @param #string Prefixes The prefix of which the group name starts with. -- @return #SET_GROUP self function SET_GROUP:FilterPrefixes( Prefixes ) if not self.Filter.GroupPrefixes then self.Filter.GroupPrefixes = {} end if type( Prefixes ) ~= "table" then Prefixes = { Prefixes } end for PrefixID, Prefix in pairs( Prefixes ) do self.Filter.GroupPrefixes[Prefix] = Prefix end return self end --- Starts the filtering. -- @param #SET_GROUP self -- @return #SET_GROUP self function SET_GROUP:FilterStart() if _DATABASE then self:_FilterStart() end return self end --- Handles the OnDead or OnCrash event for alive groups set. -- Note: The GROUP object in the SET_GROUP collection will only be removed if the last unit is destroyed of the GROUP. -- @param #SET_GROUP self -- @param Core.Event#EVENTDATA Event function SET_GROUP:_EventOnDeadOrCrash( Event ) self:F3( { Event } ) if Event.IniDCSUnit then local ObjectName, Object = self:FindInDatabase( Event ) if ObjectName then if Event.IniDCSGroup:getSize() == 1 then -- Only remove if the last unit of the group was destroyed. self:Remove( ObjectName ) end end end end --- Handles the Database to check on an event (birth) that the Object was added in the Database. -- This is required, because sometimes the _DATABASE birth event gets called later than the SET_BASE birth event! -- @param #SET_GROUP self -- @param Core.Event#EVENTDATA Event -- @return #string The name of the GROUP -- @return #table The GROUP function SET_GROUP:AddInDatabase( Event ) self:F3( { Event } ) if Event.IniObjectCategory == 1 then if not self.Database[Event.IniDCSGroupName] then self.Database[Event.IniDCSGroupName] = GROUP:Register( Event.IniDCSGroupName ) self:T3( self.Database[Event.IniDCSGroupName] ) end end return Event.IniDCSGroupName, self.Database[Event.IniDCSGroupName] end --- Handles the Database to check on any event that Object exists in the Database. -- This is required, because sometimes the _DATABASE event gets called later than the SET_BASE event or vise versa! -- @param #SET_GROUP self -- @param Core.Event#EVENTDATA Event -- @return #string The name of the GROUP -- @return #table The GROUP function SET_GROUP:FindInDatabase( Event ) self:F3( { Event } ) return Event.IniDCSGroupName, self.Database[Event.IniDCSGroupName] end --- Iterate the SET_GROUP and call an iterator function for each **alive** GROUP, providing the GROUP and optional parameters. -- @param #SET_GROUP self -- @param #function IteratorFunction The function that will be called when there is an alive GROUP in the SET_GROUP. The function needs to accept a GROUP parameter. -- @return #SET_GROUP self function SET_GROUP:ForEachGroup( IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set ) return self end --- Iterate the SET_GROUP and call an iterator function for each **alive** GROUP presence completely in a @{Zone}, providing the GROUP and optional parameters to the called function. -- @param #SET_GROUP self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @param #function IteratorFunction The function that will be called when there is an alive GROUP in the SET_GROUP. The function needs to accept a GROUP parameter. -- @return #SET_GROUP self function SET_GROUP:ForEachGroupCompletelyInZone( ZoneObject, IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set, --- @param Core.Zone#ZONE_BASE ZoneObject -- @param Wrapper.Group#GROUP GroupObject function( ZoneObject, GroupObject ) if GroupObject:IsCompletelyInZone( ZoneObject ) then return true else return false end end, { ZoneObject } ) return self end --- Iterate the SET_GROUP and call an iterator function for each **alive** GROUP presence partly in a @{Zone}, providing the GROUP and optional parameters to the called function. -- @param #SET_GROUP self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @param #function IteratorFunction The function that will be called when there is an alive GROUP in the SET_GROUP. The function needs to accept a GROUP parameter. -- @return #SET_GROUP self function SET_GROUP:ForEachGroupPartlyInZone( ZoneObject, IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set, --- @param Core.Zone#ZONE_BASE ZoneObject -- @param Wrapper.Group#GROUP GroupObject function( ZoneObject, GroupObject ) if GroupObject:IsPartlyInZone( ZoneObject ) then return true else return false end end, { ZoneObject } ) return self end --- Iterate the SET_GROUP and call an iterator function for each **alive** GROUP presence not in a @{Zone}, providing the GROUP and optional parameters to the called function. -- @param #SET_GROUP self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @param #function IteratorFunction The function that will be called when there is an alive GROUP in the SET_GROUP. The function needs to accept a GROUP parameter. -- @return #SET_GROUP self function SET_GROUP:ForEachGroupNotInZone( ZoneObject, IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set, --- @param Core.Zone#ZONE_BASE ZoneObject -- @param Wrapper.Group#GROUP GroupObject function( ZoneObject, GroupObject ) if GroupObject:IsNotInZone( ZoneObject ) then return true else return false end end, { ZoneObject } ) return self end --- Iterate the SET_GROUP and return true if all the @{Wrapper.Group#GROUP} are completely in the @{Core.Zone#ZONE} -- @param #SET_GROUP self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @return #boolean true if all the @{Wrapper.Group#GROUP} are completly in the @{Core.Zone#ZONE}, false otherwise -- @usage -- local MyZone = ZONE:New("Zone1") -- local MySetGroup = SET_GROUP:New() -- MySetGroup:AddGroupsByName({"Group1", "Group2"}) -- -- if MySetGroup:AllCompletelyInZone(MyZone) then -- MESSAGE:New("All the SET's GROUP are in zone !", 10):ToAll() -- else -- MESSAGE:New("Some or all SET's GROUP are outside zone !", 10):ToAll() -- end function SET_GROUP:AllCompletelyInZone(Zone) self:F2(Zone) local Set = self:GetSet() for GroupID, GroupData in pairs(Set) do -- For each GROUP in SET_GROUP if not GroupData:IsCompletelyInZone(Zone) then return false end end return true end --- Iterate the SET_GROUP and return true if at least one of the @{Wrapper.Group#GROUP} is completely inside the @{Core.Zone#ZONE} -- @param #SET_GROUP self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @return #boolean true if at least one of the @{Wrapper.Group#GROUP} is completly inside the @{Core.Zone#ZONE}, false otherwise. -- @usage -- local MyZone = ZONE:New("Zone1") -- local MySetGroup = SET_GROUP:New() -- MySetGroup:AddGroupsByName({"Group1", "Group2"}) -- -- if MySetGroup:AnyCompletelyInZone(MyZone) then -- MESSAGE:New("At least one GROUP is completely in zone !", 10):ToAll() -- else -- MESSAGE:New("No GROUP is completely in zone !", 10):ToAll() -- end function SET_GROUP:AnyCompletelyInZone(Zone) self:F2(Zone) local Set = self:GetSet() for GroupID, GroupData in pairs(Set) do -- For each GROUP in SET_GROUP if GroupData:IsCompletelyInZone(Zone) then return true end end return false end --- Iterate the SET_GROUP and return true if at least one @{#UNIT} of one @{GROUP} of the @{SET_GROUP} is in @{ZONE} -- @param #SET_GROUP self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @return #boolean true if at least one of the @{Wrapper.Group#GROUP} is partly or completly inside the @{Core.Zone#ZONE}, false otherwise. -- @usage -- local MyZone = ZONE:New("Zone1") -- local MySetGroup = SET_GROUP:New() -- MySetGroup:AddGroupsByName({"Group1", "Group2"}) -- -- if MySetGroup:AnyPartlyInZone(MyZone) then -- MESSAGE:New("At least one GROUP has at least one UNIT in zone !", 10):ToAll() -- else -- MESSAGE:New("No UNIT of any GROUP is in zone !", 10):ToAll() -- end function SET_GROUP:AnyInZone(Zone) self:F2(Zone) local Set = self:GetSet() for GroupID, GroupData in pairs(Set) do -- For each GROUP in SET_GROUP if GroupData:IsPartlyInZone(Zone) or GroupData:IsCompletelyInZone(Zone) then return true end end return false end --- Iterate the SET_GROUP and return true if at least one @{GROUP} of the @{SET_GROUP} is partly in @{ZONE}. -- Will return false if a @{GROUP} is fully in the @{ZONE} -- @param #SET_GROUP self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @return #boolean true if at least one of the @{Wrapper.Group#GROUP} is partly or completly inside the @{Core.Zone#ZONE}, false otherwise. -- @usage -- local MyZone = ZONE:New("Zone1") -- local MySetGroup = SET_GROUP:New() -- MySetGroup:AddGroupsByName({"Group1", "Group2"}) -- -- if MySetGroup:AnyPartlyInZone(MyZone) then -- MESSAGE:New("At least one GROUP is partially in the zone, but none are fully in it !", 10):ToAll() -- else -- MESSAGE:New("No GROUP are in zone, or one (or more) GROUP is completely in it !", 10):ToAll() -- end function SET_GROUP:AnyPartlyInZone(Zone) self:F2(Zone) local IsPartlyInZone = false local Set = self:GetSet() for GroupID, GroupData in pairs(Set) do -- For each GROUP in SET_GROUP if GroupData:IsCompletelyInZone(Zone) then return false elseif GroupData:IsPartlyInZone(Zone) then IsPartlyInZone = true -- at least one GROUP is partly in zone end end if IsPartlyInZone then return true else return false end end --- Iterate the SET_GROUP and return true if no @{GROUP} of the @{SET_GROUP} is in @{ZONE} -- This could also be achieved with `not SET_GROUP:AnyPartlyInZone(Zone)`, but it's easier for the -- mission designer to add a dedicated method -- @param #SET_GROUP self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @return #boolean true if no @{Wrapper.Group#GROUP} is inside the @{Core.Zone#ZONE} in any way, false otherwise. -- @usage -- local MyZone = ZONE:New("Zone1") -- local MySetGroup = SET_GROUP:New() -- MySetGroup:AddGroupsByName({"Group1", "Group2"}) -- -- if MySetGroup:NoneInZone(MyZone) then -- MESSAGE:New("No GROUP is completely in zone !", 10):ToAll() -- else -- MESSAGE:New("No UNIT of any GROUP is in zone !", 10):ToAll() -- end function SET_GROUP:NoneInZone(Zone) self:F2(Zone) local Set = self:GetSet() for GroupID, GroupData in pairs(Set) do -- For each GROUP in SET_GROUP if not GroupData:IsNotInZone(Zone) then -- If the GROUP is in Zone in any way return false end end return true end --- Iterate the SET_GROUP and count how many GROUPs are completely in the Zone -- That could easily be done with SET_GROUP:ForEachGroupCompletelyInZone(), but this function -- provides an easy to use shortcut... -- @param #SET_GROUP self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @return #number the number of GROUPs completely in the Zone -- @usage -- local MyZone = ZONE:New("Zone1") -- local MySetGroup = SET_GROUP:New() -- MySetGroup:AddGroupsByName({"Group1", "Group2"}) -- -- MESSAGE:New("There are " .. MySetGroup:CountInZone(MyZone) .. " GROUPs in the Zone !", 10):ToAll() function SET_GROUP:CountInZone(Zone) self:F2(Zone) local Count = 0 local Set = self:GetSet() for GroupID, GroupData in pairs(Set) do -- For each GROUP in SET_GROUP if GroupData:IsCompletelyInZone(Zone) then Count = Count + 1 end end return Count end --- Iterate the SET_GROUP and count how many UNITs are completely in the Zone -- @param #SET_GROUP self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @return #number the number of GROUPs completely in the Zone -- @usage -- local MyZone = ZONE:New("Zone1") -- local MySetGroup = SET_GROUP:New() -- MySetGroup:AddGroupsByName({"Group1", "Group2"}) -- -- MESSAGE:New("There are " .. MySetGroup:CountUnitInZone(MyZone) .. " UNITs in the Zone !", 10):ToAll() function SET_GROUP:CountUnitInZone(Zone) self:F2(Zone) local Count = 0 local Set = self:GetSet() for GroupID, GroupData in pairs(Set) do -- For each GROUP in SET_GROUP Count = Count + GroupData:CountInZone(Zone) end return Count end ----- Iterate the SET_GROUP and call an interator function for each **alive** player, providing the Group of the player and optional parameters. ---- @param #SET_GROUP self ---- @param #function IteratorFunction The function that will be called when there is an alive player in the SET_GROUP. The function needs to accept a GROUP parameter. ---- @return #SET_GROUP self --function SET_GROUP:ForEachPlayer( IteratorFunction, ... ) -- self:F2( arg ) -- -- self:ForEach( IteratorFunction, arg, self.PlayersAlive ) -- -- return self --end -- -- ----- Iterate the SET_GROUP and call an interator function for each client, providing the Client to the function and optional parameters. ---- @param #SET_GROUP self ---- @param #function IteratorFunction The function that will be called when there is an alive player in the SET_GROUP. The function needs to accept a CLIENT parameter. ---- @return #SET_GROUP self --function SET_GROUP:ForEachClient( IteratorFunction, ... ) -- self:F2( arg ) -- -- self:ForEach( IteratorFunction, arg, self.Clients ) -- -- return self --end --- -- @param #SET_GROUP self -- @param Wrapper.Group#GROUP MooseGroup -- @return #SET_GROUP self function SET_GROUP:IsIncludeObject( MooseGroup ) self:F2( MooseGroup ) local MooseGroupInclude = true if self.Filter.Coalitions then local MooseGroupCoalition = false for CoalitionID, CoalitionName in pairs( self.Filter.Coalitions ) do self:T3( { "Coalition:", MooseGroup:GetCoalition(), self.FilterMeta.Coalitions[CoalitionName], CoalitionName } ) if self.FilterMeta.Coalitions[CoalitionName] and self.FilterMeta.Coalitions[CoalitionName] == MooseGroup:GetCoalition() then MooseGroupCoalition = true end end MooseGroupInclude = MooseGroupInclude and MooseGroupCoalition end if self.Filter.Categories then local MooseGroupCategory = false for CategoryID, CategoryName in pairs( self.Filter.Categories ) do self:T3( { "Category:", MooseGroup:GetCategory(), self.FilterMeta.Categories[CategoryName], CategoryName } ) if self.FilterMeta.Categories[CategoryName] and self.FilterMeta.Categories[CategoryName] == MooseGroup:GetCategory() then MooseGroupCategory = true end end MooseGroupInclude = MooseGroupInclude and MooseGroupCategory end if self.Filter.Countries then local MooseGroupCountry = false for CountryID, CountryName in pairs( self.Filter.Countries ) do self:T3( { "Country:", MooseGroup:GetCountry(), CountryName } ) if country.id[CountryName] == MooseGroup:GetCountry() then MooseGroupCountry = true end end MooseGroupInclude = MooseGroupInclude and MooseGroupCountry end if self.Filter.GroupPrefixes then local MooseGroupPrefix = false for GroupPrefixId, GroupPrefix in pairs( self.Filter.GroupPrefixes ) do self:T3( { "Prefix:", string.find( MooseGroup:GetName(), GroupPrefix, 1 ), GroupPrefix } ) if string.find( MooseGroup:GetName(), GroupPrefix:gsub ("-", "%%-"), 1 ) then MooseGroupPrefix = true end end MooseGroupInclude = MooseGroupInclude and MooseGroupPrefix end self:T2( MooseGroupInclude ) return MooseGroupInclude end --- @type SET_UNIT -- @extends Core.Set#SET_BASE --- # 3) SET_UNIT class, extends @{Set#SET_BASE} -- -- Mission designers can use the SET_UNIT class to build sets of units belonging to certain: -- -- * Coalitions -- * Categories -- * Countries -- * Unit types -- * Starting with certain prefix strings. -- -- ## 3.1) SET_UNIT constructor -- -- Create a new SET_UNIT object with the @{#SET_UNIT.New} method: -- -- * @{#SET_UNIT.New}: Creates a new SET_UNIT object. -- -- ## 3.2) Add or Remove UNIT(s) from SET_UNIT -- -- UNITs can be added and removed using the @{Set#SET_UNIT.AddUnitsByName} and @{Set#SET_UNIT.RemoveUnitsByName} respectively. -- These methods take a single UNIT name or an array of UNIT names to be added or removed from SET_UNIT. -- -- ## 3.3) SET_UNIT filter criteria -- -- You can set filter criteria to define the set of units within the SET_UNIT. -- Filter criteria are defined by: -- -- * @{#SET_UNIT.FilterCoalitions}: Builds the SET_UNIT with the units belonging to the coalition(s). -- * @{#SET_UNIT.FilterCategories}: Builds the SET_UNIT with the units belonging to the category(ies). -- * @{#SET_UNIT.FilterTypes}: Builds the SET_UNIT with the units belonging to the unit type(s). -- * @{#SET_UNIT.FilterCountries}: Builds the SET_UNIT with the units belonging to the country(ies). -- * @{#SET_UNIT.FilterPrefixes}: Builds the SET_UNIT with the units starting with the same prefix string(s). -- -- Once the filter criteria have been set for the SET_UNIT, you can start filtering using: -- -- * @{#SET_UNIT.FilterStart}: Starts the filtering of the units within the SET_UNIT. -- -- Planned filter criteria within development are (so these are not yet available): -- -- * @{#SET_UNIT.FilterZones}: Builds the SET_UNIT with the units within a @{Zone#ZONE}. -- -- ## 3.4) SET_UNIT iterators -- -- Once the filters have been defined and the SET_UNIT has been built, you can iterate the SET_UNIT with the available iterator methods. -- The iterator methods will walk the SET_UNIT set, and call for each element within the set a function that you provide. -- The following iterator methods are currently available within the SET_UNIT: -- -- * @{#SET_UNIT.ForEachUnit}: Calls a function for each alive unit it finds within the SET_UNIT. -- * @{#SET_GROUP.ForEachGroupCompletelyInZone}: Iterate the SET_GROUP and call an iterator function for each **alive** GROUP presence completely in a @{Zone}, providing the GROUP and optional parameters to the called function. -- * @{#SET_GROUP.ForEachGroupNotInZone}: Iterate the SET_GROUP and call an iterator function for each **alive** GROUP presence not in a @{Zone}, providing the GROUP and optional parameters to the called function. -- -- Planned iterators methods in development are (so these are not yet available): -- -- * @{#SET_UNIT.ForEachUnitInUnit}: Calls a function for each unit contained within the SET_UNIT. -- * @{#SET_UNIT.ForEachUnitCompletelyInZone}: Iterate and call an iterator function for each **alive** UNIT presence completely in a @{Zone}, providing the UNIT and optional parameters to the called function. -- * @{#SET_UNIT.ForEachUnitNotInZone}: Iterate and call an iterator function for each **alive** UNIT presence not in a @{Zone}, providing the UNIT and optional parameters to the called function. -- -- ## 3.5 ) SET_UNIT atomic methods -- -- Various methods exist for a SET_UNIT to perform actions or calculations and retrieve results from the SET_UNIT: -- -- * @{#SET_UNIT.GetTypeNames}(): Retrieve the type names of the @{Unit}s in the SET, delimited by a comma. -- -- === -- @field #SET_UNIT SET_UNIT SET_UNIT = { ClassName = "SET_UNIT", Units = {}, Filter = { Coalitions = nil, Categories = nil, Types = nil, Countries = nil, UnitPrefixes = nil, }, FilterMeta = { Coalitions = { red = coalition.side.RED, blue = coalition.side.BLUE, neutral = coalition.side.NEUTRAL, }, Categories = { plane = Unit.Category.AIRPLANE, helicopter = Unit.Category.HELICOPTER, ground = Unit.Category.GROUND_UNIT, ship = Unit.Category.SHIP, structure = Unit.Category.STRUCTURE, }, }, } --- Get the first unit from the set. -- @function [parent=#SET_UNIT] GetFirst -- @param #SET_UNIT self -- @return Wrapper.Unit#UNIT The UNIT object. --- Creates a new SET_UNIT object, building a set of units belonging to a coalitions, categories, countries, types or with defined prefix names. -- @param #SET_UNIT self -- @return #SET_UNIT -- @usage -- -- Define a new SET_UNIT Object. This DBObject will contain a reference to all alive Units. -- DBObject = SET_UNIT:New() function SET_UNIT:New() -- Inherits from BASE local self = BASE:Inherit( self, SET_BASE:New( _DATABASE.UNITS ) ) -- Core.Set#SET_UNIT return self end --- Add UNIT(s) to SET_UNIT. -- @param #SET_UNIT self -- @param #string AddUnit A single UNIT. -- @return #SET_UNIT self function SET_UNIT:AddUnit( AddUnit ) self:F2( AddUnit:GetName() ) self:Add( AddUnit:GetName(), AddUnit ) return self end --- Add UNIT(s) to SET_UNIT. -- @param #SET_UNIT self -- @param #string AddUnitNames A single name or an array of UNIT names. -- @return #SET_UNIT self function SET_UNIT:AddUnitsByName( AddUnitNames ) local AddUnitNamesArray = ( type( AddUnitNames ) == "table" ) and AddUnitNames or { AddUnitNames } self:T( AddUnitNamesArray ) for AddUnitID, AddUnitName in pairs( AddUnitNamesArray ) do self:Add( AddUnitName, UNIT:FindByName( AddUnitName ) ) end return self end --- Remove UNIT(s) from SET_UNIT. -- @param Core.Set#SET_UNIT self -- @param Wrapper.Unit#UNIT RemoveUnitNames A single name or an array of UNIT names. -- @return self function SET_UNIT:RemoveUnitsByName( RemoveUnitNames ) local RemoveUnitNamesArray = ( type( RemoveUnitNames ) == "table" ) and RemoveUnitNames or { RemoveUnitNames } for RemoveUnitID, RemoveUnitName in pairs( RemoveUnitNamesArray ) do self:Remove( RemoveUnitName ) end return self end --- Finds a Unit based on the Unit Name. -- @param #SET_UNIT self -- @param #string UnitName -- @return Wrapper.Unit#UNIT The found Unit. function SET_UNIT:FindUnit( UnitName ) local UnitFound = self.Set[UnitName] return UnitFound end --- Builds a set of units of coalitions. -- Possible current coalitions are red, blue and neutral. -- @param #SET_UNIT self -- @param #string Coalitions Can take the following values: "red", "blue", "neutral". -- @return #SET_UNIT self function SET_UNIT:FilterCoalitions( Coalitions ) if not self.Filter.Coalitions then self.Filter.Coalitions = {} end if type( Coalitions ) ~= "table" then Coalitions = { Coalitions } end for CoalitionID, Coalition in pairs( Coalitions ) do self.Filter.Coalitions[Coalition] = Coalition end return self end --- Builds a set of units out of categories. -- Possible current categories are plane, helicopter, ground, ship. -- @param #SET_UNIT self -- @param #string Categories Can take the following values: "plane", "helicopter", "ground", "ship". -- @return #SET_UNIT self function SET_UNIT:FilterCategories( Categories ) if not self.Filter.Categories then self.Filter.Categories = {} end if type( Categories ) ~= "table" then Categories = { Categories } end for CategoryID, Category in pairs( Categories ) do self.Filter.Categories[Category] = Category end return self end --- Builds a set of units of defined unit types. -- Possible current types are those types known within DCS world. -- @param #SET_UNIT self -- @param #string Types Can take those type strings known within DCS world. -- @return #SET_UNIT self function SET_UNIT:FilterTypes( Types ) if not self.Filter.Types then self.Filter.Types = {} end if type( Types ) ~= "table" then Types = { Types } end for TypeID, Type in pairs( Types ) do self.Filter.Types[Type] = Type end return self end --- Builds a set of units of defined countries. -- Possible current countries are those known within DCS world. -- @param #SET_UNIT self -- @param #string Countries Can take those country strings known within DCS world. -- @return #SET_UNIT self function SET_UNIT:FilterCountries( Countries ) if not self.Filter.Countries then self.Filter.Countries = {} end if type( Countries ) ~= "table" then Countries = { Countries } end for CountryID, Country in pairs( Countries ) do self.Filter.Countries[Country] = Country end return self end --- Builds a set of units of defined unit prefixes. -- All the units starting with the given prefixes will be included within the set. -- @param #SET_UNIT self -- @param #string Prefixes The prefix of which the unit name starts with. -- @return #SET_UNIT self function SET_UNIT:FilterPrefixes( Prefixes ) if not self.Filter.UnitPrefixes then self.Filter.UnitPrefixes = {} end if type( Prefixes ) ~= "table" then Prefixes = { Prefixes } end for PrefixID, Prefix in pairs( Prefixes ) do self.Filter.UnitPrefixes[Prefix] = Prefix end return self end --- Builds a set of units having a radar of give types. -- All the units having a radar of a given type will be included within the set. -- @param #SET_UNIT self -- @param #table RadarTypes The radar types. -- @return #SET_UNIT self function SET_UNIT:FilterHasRadar( RadarTypes ) self.Filter.RadarTypes = self.Filter.RadarTypes or {} if type( RadarTypes ) ~= "table" then RadarTypes = { RadarTypes } end for RadarTypeID, RadarType in pairs( RadarTypes ) do self.Filter.RadarTypes[RadarType] = RadarType end return self end --- Builds a set of SEADable units. -- @param #SET_UNIT self -- @return #SET_UNIT self function SET_UNIT:FilterHasSEAD() self.Filter.SEAD = true return self end --- Starts the filtering. -- @param #SET_UNIT self -- @return #SET_UNIT self function SET_UNIT:FilterStart() if _DATABASE then self:_FilterStart() end return self end --- Handles the Database to check on an event (birth) that the Object was added in the Database. -- This is required, because sometimes the _DATABASE birth event gets called later than the SET_BASE birth event! -- @param #SET_UNIT self -- @param Core.Event#EVENTDATA Event -- @return #string The name of the UNIT -- @return #table The UNIT function SET_UNIT:AddInDatabase( Event ) self:F3( { Event } ) if Event.IniObjectCategory == 1 then if not self.Database[Event.IniDCSUnitName] then self.Database[Event.IniDCSUnitName] = UNIT:Register( Event.IniDCSUnitName ) self:T3( self.Database[Event.IniDCSUnitName] ) end end return Event.IniDCSUnitName, self.Database[Event.IniDCSUnitName] end --- Handles the Database to check on any event that Object exists in the Database. -- This is required, because sometimes the _DATABASE event gets called later than the SET_BASE event or vise versa! -- @param #SET_UNIT self -- @param Core.Event#EVENTDATA Event -- @return #string The name of the UNIT -- @return #table The UNIT function SET_UNIT:FindInDatabase( Event ) self:F2( { Event.IniDCSUnitName, self.Set[Event.IniDCSUnitName], Event } ) return Event.IniDCSUnitName, self.Set[Event.IniDCSUnitName] end --- Iterate the SET_UNIT and call an interator function for each **alive** UNIT, providing the UNIT and optional parameters. -- @param #SET_UNIT self -- @param #function IteratorFunction The function that will be called when there is an alive UNIT in the SET_UNIT. The function needs to accept a UNIT parameter. -- @return #SET_UNIT self function SET_UNIT:ForEachUnit( IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set ) return self end --- Iterate the SET_UNIT **sorted *per Threat Level** and call an interator function for each **alive** UNIT, providing the UNIT and optional parameters. -- -- @param #SET_UNIT self -- @param #number FromThreatLevel The TreatLevel to start the evaluation **From** (this must be a value between 0 and 10). -- @param #number ToThreatLevel The TreatLevel to stop the evaluation **To** (this must be a value between 0 and 10). -- @param #function IteratorFunction The function that will be called when there is an alive UNIT in the SET_UNIT. The function needs to accept a UNIT parameter. -- @return #SET_UNIT self -- @usage -- -- UnitSet:ForEachUnitPerThreatLevel( 10, 0, -- -- @param Wrapper.Unit#UNIT UnitObject The UNIT object in the UnitSet, that will be passed to the local function for evaluation. -- function( UnitObject ) -- .. logic .. -- end -- ) -- function SET_UNIT:ForEachUnitPerThreatLevel( FromThreatLevel, ToThreatLevel, IteratorFunction, ... ) --R2.1 Threat Level implementation self:F2( arg ) local ThreatLevelSet = {} if self:Count() ~= 0 then for UnitName, UnitObject in pairs( self.Set ) do local Unit = UnitObject -- Wrapper.Unit#UNIT local ThreatLevel = Unit:GetThreatLevel() ThreatLevelSet[ThreatLevel] = ThreatLevelSet[ThreatLevel] or {} ThreatLevelSet[ThreatLevel].Set = ThreatLevelSet[ThreatLevel].Set or {} ThreatLevelSet[ThreatLevel].Set[UnitName] = UnitObject self:E( { ThreatLevel = ThreatLevel, ThreatLevelSet = ThreatLevelSet[ThreatLevel].Set } ) end local ThreatLevelIncrement = FromThreatLevel <= ToThreatLevel and 1 or -1 for ThreatLevel = FromThreatLevel, ToThreatLevel, ThreatLevelIncrement do self:E( { ThreatLevel = ThreatLevel } ) local ThreatLevelItem = ThreatLevelSet[ThreatLevel] if ThreatLevelItem then self:ForEach( IteratorFunction, arg, ThreatLevelItem.Set ) end end end return self end --- Iterate the SET_UNIT and call an iterator function for each **alive** UNIT presence completely in a @{Zone}, providing the UNIT and optional parameters to the called function. -- @param #SET_UNIT self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @param #function IteratorFunction The function that will be called when there is an alive UNIT in the SET_UNIT. The function needs to accept a UNIT parameter. -- @return #SET_UNIT self function SET_UNIT:ForEachUnitCompletelyInZone( ZoneObject, IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set, --- @param Core.Zone#ZONE_BASE ZoneObject -- @param Wrapper.Unit#UNIT UnitObject function( ZoneObject, UnitObject ) if UnitObject:IsInZone( ZoneObject ) then return true else return false end end, { ZoneObject } ) return self end --- Iterate the SET_UNIT and call an iterator function for each **alive** UNIT presence not in a @{Zone}, providing the UNIT and optional parameters to the called function. -- @param #SET_UNIT self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @param #function IteratorFunction The function that will be called when there is an alive UNIT in the SET_UNIT. The function needs to accept a UNIT parameter. -- @return #SET_UNIT self function SET_UNIT:ForEachUnitNotInZone( ZoneObject, IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set, --- @param Core.Zone#ZONE_BASE ZoneObject -- @param Wrapper.Unit#UNIT UnitObject function( ZoneObject, UnitObject ) if UnitObject:IsNotInZone( ZoneObject ) then return true else return false end end, { ZoneObject } ) return self end --- Returns map of unit types. -- @param #SET_UNIT self -- @return #map<#string,#number> A map of the unit types found. The key is the UnitTypeName and the value is the amount of unit types found. function SET_UNIT:GetUnitTypes() self:F2() local MT = {} -- Message Text local UnitTypes = {} for UnitID, UnitData in pairs( self:GetSet() ) do local TextUnit = UnitData -- Wrapper.Unit#UNIT if TextUnit:IsAlive() then local UnitType = TextUnit:GetTypeName() if not UnitTypes[UnitType] then UnitTypes[UnitType] = 1 else UnitTypes[UnitType] = UnitTypes[UnitType] + 1 end end end for UnitTypeID, UnitType in pairs( UnitTypes ) do MT[#MT+1] = UnitType .. " of " .. UnitTypeID end return UnitTypes end --- Returns a comma separated string of the unit types with a count in the @{Set}. -- @param #SET_UNIT self -- @return #string The unit types string function SET_UNIT:GetUnitTypesText() self:F2() local MT = {} -- Message Text local UnitTypes = self:GetUnitTypes() for UnitTypeID, UnitType in pairs( UnitTypes ) do MT[#MT+1] = UnitType .. " of " .. UnitTypeID end return table.concat( MT, ", " ) end --- Returns map of unit threat levels. -- @param #SET_UNIT self -- @return #table. function SET_UNIT:GetUnitThreatLevels() self:F2() local UnitThreatLevels = {} for UnitID, UnitData in pairs( self:GetSet() ) do local ThreatUnit = UnitData -- Wrapper.Unit#UNIT if ThreatUnit:IsAlive() then local UnitThreatLevel, UnitThreatLevelText = ThreatUnit:GetThreatLevel() local ThreatUnitName = ThreatUnit:GetName() UnitThreatLevels[UnitThreatLevel] = UnitThreatLevels[UnitThreatLevel] or {} UnitThreatLevels[UnitThreatLevel].UnitThreatLevelText = UnitThreatLevelText UnitThreatLevels[UnitThreatLevel].Units = UnitThreatLevels[UnitThreatLevel].Units or {} UnitThreatLevels[UnitThreatLevel].Units[ThreatUnitName] = ThreatUnit end end return UnitThreatLevels end --- Calculate the maxium A2G threat level of the SET_UNIT. -- @param #SET_UNIT self -- @return #number The maximum threatlevel function SET_UNIT:CalculateThreatLevelA2G() local MaxThreatLevelA2G = 0 local MaxThreatText = "" for UnitName, UnitData in pairs( self:GetSet() ) do local ThreatUnit = UnitData -- Wrapper.Unit#UNIT local ThreatLevelA2G, ThreatText = ThreatUnit:GetThreatLevel() if ThreatLevelA2G > MaxThreatLevelA2G then MaxThreatLevelA2G = ThreatLevelA2G MaxThreatText = ThreatText end end self:F( { MaxThreatLevelA2G = MaxThreatLevelA2G, MaxThreatText = MaxThreatText } ) return MaxThreatLevelA2G, MaxThreatText end --- Get the center coordinate of the SET_UNIT. -- @param #SET_UNIT self -- @return Core.Point#COORDINATE The center coordinate of all the units in the set, including heading in degrees and speed in mps in case of moving units. function SET_UNIT:GetCoordinate() local Coordinate = self:GetFirst():GetCoordinate() local x1 = Coordinate.x local x2 = Coordinate.x local y1 = Coordinate.y local y2 = Coordinate.y local z1 = Coordinate.z local z2 = Coordinate.z local MaxVelocity = 0 local AvgHeading = nil local MovingCount = 0 for UnitName, UnitData in pairs( self:GetSet() ) do local Unit = UnitData -- Wrapper.Unit#UNIT local Coordinate = Unit:GetCoordinate() x1 = ( Coordinate.x < x1 ) and Coordinate.x or x1 x2 = ( Coordinate.x > x2 ) and Coordinate.x or x2 y1 = ( Coordinate.y < y1 ) and Coordinate.y or y1 y2 = ( Coordinate.y > y2 ) and Coordinate.y or y2 z1 = ( Coordinate.y < z1 ) and Coordinate.z or z1 z2 = ( Coordinate.y > z2 ) and Coordinate.z or z2 local Velocity = Coordinate:GetVelocity() if Velocity ~= 0 then MaxVelocity = ( MaxVelocity < Velocity ) and Velocity or MaxVelocity local Heading = Coordinate:GetHeading() AvgHeading = AvgHeading and ( AvgHeading + Heading ) or Heading MovingCount = MovingCount + 1 end end AvgHeading = AvgHeading and ( AvgHeading / MovingCount ) Coordinate.x = ( x2 - x1 ) / 2 + x1 Coordinate.y = ( y2 - y1 ) / 2 + y1 Coordinate.z = ( z2 - z1 ) / 2 + z1 Coordinate:SetHeading( AvgHeading ) Coordinate:SetVelocity( MaxVelocity ) self:F( { Coordinate = Coordinate } ) return Coordinate end --- Get the maximum velocity of the SET_UNIT. -- @param #SET_UNIT self -- @return #number The speed in mps in case of moving units. function SET_UNIT:GetVelocity() local Coordinate = self:GetFirst():GetCoordinate() local MaxVelocity = 0 for UnitName, UnitData in pairs( self:GetSet() ) do local Unit = UnitData -- Wrapper.Unit#UNIT local Coordinate = Unit:GetCoordinate() local Velocity = Coordinate:GetVelocity() if Velocity ~= 0 then MaxVelocity = ( MaxVelocity < Velocity ) and Velocity or MaxVelocity end end self:F( { MaxVelocity = MaxVelocity } ) return MaxVelocity end --- Get the average heading of the SET_UNIT. -- @param #SET_UNIT self -- @return #number Heading Heading in degrees and speed in mps in case of moving units. function SET_UNIT:GetHeading() local HeadingSet = nil local MovingCount = 0 for UnitName, UnitData in pairs( self:GetSet() ) do local Unit = UnitData -- Wrapper.Unit#UNIT local Coordinate = Unit:GetCoordinate() local Velocity = Coordinate:GetVelocity() if Velocity ~= 0 then local Heading = Coordinate:GetHeading() if HeadingSet == nil then HeadingSet = Heading else local HeadingDiff = ( HeadingSet - Heading + 180 + 360 ) % 360 - 180 HeadingDiff = math.abs( HeadingDiff ) if HeadingDiff > 5 then HeadingSet = nil break end end end end return HeadingSet end --- Returns if the @{Set} has targets having a radar (of a given type). -- @param #SET_UNIT self -- @param Dcs.DCSWrapper.Unit#Unit.RadarType RadarType -- @return #number The amount of radars in the Set with the given type function SET_UNIT:HasRadar( RadarType ) self:F2( RadarType ) local RadarCount = 0 for UnitID, UnitData in pairs( self:GetSet()) do local UnitSensorTest = UnitData -- Wrapper.Unit#UNIT local HasSensors if RadarType then HasSensors = UnitSensorTest:HasSensors( Unit.SensorType.RADAR, RadarType ) else HasSensors = UnitSensorTest:HasSensors( Unit.SensorType.RADAR ) end self:T3(HasSensors) if HasSensors then RadarCount = RadarCount + 1 end end return RadarCount end --- Returns if the @{Set} has targets that can be SEADed. -- @param #SET_UNIT self -- @return #number The amount of SEADable units in the Set function SET_UNIT:HasSEAD() self:F2() local SEADCount = 0 for UnitID, UnitData in pairs( self:GetSet()) do local UnitSEAD = UnitData -- Wrapper.Unit#UNIT if UnitSEAD:IsAlive() then local UnitSEADAttributes = UnitSEAD:GetDesc().attributes local HasSEAD = UnitSEAD:HasSEAD() self:T3(HasSEAD) if HasSEAD then SEADCount = SEADCount + 1 end end end return SEADCount end --- Returns if the @{Set} has ground targets. -- @param #SET_UNIT self -- @return #number The amount of ground targets in the Set. function SET_UNIT:HasGroundUnits() self:F2() local GroundUnitCount = 0 for UnitID, UnitData in pairs( self:GetSet()) do local UnitTest = UnitData -- Wrapper.Unit#UNIT if UnitTest:IsGround() then GroundUnitCount = GroundUnitCount + 1 end end return GroundUnitCount end --- Returns if the @{Set} has friendly ground units. -- @param #SET_UNIT self -- @return #number The amount of ground targets in the Set. function SET_UNIT:HasFriendlyUnits( FriendlyCoalition ) self:F2() local FriendlyUnitCount = 0 for UnitID, UnitData in pairs( self:GetSet()) do local UnitTest = UnitData -- Wrapper.Unit#UNIT if UnitTest:IsFriendly( FriendlyCoalition ) then FriendlyUnitCount = FriendlyUnitCount + 1 end end return FriendlyUnitCount end ----- Iterate the SET_UNIT and call an interator function for each **alive** player, providing the Unit of the player and optional parameters. ---- @param #SET_UNIT self ---- @param #function IteratorFunction The function that will be called when there is an alive player in the SET_UNIT. The function needs to accept a UNIT parameter. ---- @return #SET_UNIT self --function SET_UNIT:ForEachPlayer( IteratorFunction, ... ) -- self:F2( arg ) -- -- self:ForEach( IteratorFunction, arg, self.PlayersAlive ) -- -- return self --end -- -- ----- Iterate the SET_UNIT and call an interator function for each client, providing the Client to the function and optional parameters. ---- @param #SET_UNIT self ---- @param #function IteratorFunction The function that will be called when there is an alive player in the SET_UNIT. The function needs to accept a CLIENT parameter. ---- @return #SET_UNIT self --function SET_UNIT:ForEachClient( IteratorFunction, ... ) -- self:F2( arg ) -- -- self:ForEach( IteratorFunction, arg, self.Clients ) -- -- return self --end --- -- @param #SET_UNIT self -- @param Wrapper.Unit#UNIT MUnit -- @return #SET_UNIT self function SET_UNIT:IsIncludeObject( MUnit ) self:F2( MUnit ) local MUnitInclude = true if self.Filter.Coalitions then local MUnitCoalition = false for CoalitionID, CoalitionName in pairs( self.Filter.Coalitions ) do self:T3( { "Coalition:", MUnit:GetCoalition(), self.FilterMeta.Coalitions[CoalitionName], CoalitionName } ) if self.FilterMeta.Coalitions[CoalitionName] and self.FilterMeta.Coalitions[CoalitionName] == MUnit:GetCoalition() then MUnitCoalition = true end end MUnitInclude = MUnitInclude and MUnitCoalition end if self.Filter.Categories then local MUnitCategory = false for CategoryID, CategoryName in pairs( self.Filter.Categories ) do self:T3( { "Category:", MUnit:GetDesc().category, self.FilterMeta.Categories[CategoryName], CategoryName } ) if self.FilterMeta.Categories[CategoryName] and self.FilterMeta.Categories[CategoryName] == MUnit:GetDesc().category then MUnitCategory = true end end MUnitInclude = MUnitInclude and MUnitCategory end if self.Filter.Types then local MUnitType = false for TypeID, TypeName in pairs( self.Filter.Types ) do self:T3( { "Type:", MUnit:GetTypeName(), TypeName } ) if TypeName == MUnit:GetTypeName() then MUnitType = true end end MUnitInclude = MUnitInclude and MUnitType end if self.Filter.Countries then local MUnitCountry = false for CountryID, CountryName in pairs( self.Filter.Countries ) do self:T3( { "Country:", MUnit:GetCountry(), CountryName } ) if country.id[CountryName] == MUnit:GetCountry() then MUnitCountry = true end end MUnitInclude = MUnitInclude and MUnitCountry end if self.Filter.UnitPrefixes then local MUnitPrefix = false for UnitPrefixId, UnitPrefix in pairs( self.Filter.UnitPrefixes ) do self:T3( { "Prefix:", string.find( MUnit:GetName(), UnitPrefix, 1 ), UnitPrefix } ) if string.find( MUnit:GetName(), UnitPrefix, 1 ) then MUnitPrefix = true end end MUnitInclude = MUnitInclude and MUnitPrefix end if self.Filter.RadarTypes then local MUnitRadar = false for RadarTypeID, RadarType in pairs( self.Filter.RadarTypes ) do self:T3( { "Radar:", RadarType } ) if MUnit:HasSensors( Unit.SensorType.RADAR, RadarType ) == true then if MUnit:GetRadar() == true then -- This call is necessary to evaluate the SEAD capability. self:T3( "RADAR Found" ) end MUnitRadar = true end end MUnitInclude = MUnitInclude and MUnitRadar end if self.Filter.SEAD then local MUnitSEAD = false if MUnit:HasSEAD() == true then self:T3( "SEAD Found" ) MUnitSEAD = true end MUnitInclude = MUnitInclude and MUnitSEAD end self:T2( MUnitInclude ) return MUnitInclude end --- Retrieve the type names of the @{Unit}s in the SET, delimited by an optional delimiter. -- @param #SET_UNIT self -- @param #string Delimiter (optional) The delimiter, which is default a comma. -- @return #string The types of the @{Unit}s delimited. function SET_UNIT:GetTypeNames( Delimiter ) Delimiter = Delimiter or ", " local TypeReport = REPORT:New() local Types = {} for UnitName, UnitData in pairs( self:GetSet() ) do local Unit = UnitData -- Wrapper.Unit#UNIT local UnitTypeName = Unit:GetTypeName() if not Types[UnitTypeName] then Types[UnitTypeName] = UnitTypeName TypeReport:Add( UnitTypeName ) end end return TypeReport:Text( Delimiter ) end --- SET_CLIENT --- @type SET_CLIENT -- @extends Core.Set#SET_BASE --- # 4) SET_CLIENT class, extends @{Set#SET_BASE} -- -- Mission designers can use the @{Set#SET_CLIENT} class to build sets of units belonging to certain: -- -- * Coalitions -- * Categories -- * Countries -- * Client types -- * Starting with certain prefix strings. -- -- ## 4.1) SET_CLIENT constructor -- -- Create a new SET_CLIENT object with the @{#SET_CLIENT.New} method: -- -- * @{#SET_CLIENT.New}: Creates a new SET_CLIENT object. -- -- ## 4.2) Add or Remove CLIENT(s) from SET_CLIENT -- -- CLIENTs can be added and removed using the @{Set#SET_CLIENT.AddClientsByName} and @{Set#SET_CLIENT.RemoveClientsByName} respectively. -- These methods take a single CLIENT name or an array of CLIENT names to be added or removed from SET_CLIENT. -- -- ## 4.3) SET_CLIENT filter criteria -- -- You can set filter criteria to define the set of clients within the SET_CLIENT. -- Filter criteria are defined by: -- -- * @{#SET_CLIENT.FilterCoalitions}: Builds the SET_CLIENT with the clients belonging to the coalition(s). -- * @{#SET_CLIENT.FilterCategories}: Builds the SET_CLIENT with the clients belonging to the category(ies). -- * @{#SET_CLIENT.FilterTypes}: Builds the SET_CLIENT with the clients belonging to the client type(s). -- * @{#SET_CLIENT.FilterCountries}: Builds the SET_CLIENT with the clients belonging to the country(ies). -- * @{#SET_CLIENT.FilterPrefixes}: Builds the SET_CLIENT with the clients starting with the same prefix string(s). -- -- Once the filter criteria have been set for the SET_CLIENT, you can start filtering using: -- -- * @{#SET_CLIENT.FilterStart}: Starts the filtering of the clients within the SET_CLIENT. -- -- Planned filter criteria within development are (so these are not yet available): -- -- * @{#SET_CLIENT.FilterZones}: Builds the SET_CLIENT with the clients within a @{Zone#ZONE}. -- -- ## 4.4) SET_CLIENT iterators -- -- Once the filters have been defined and the SET_CLIENT has been built, you can iterate the SET_CLIENT with the available iterator methods. -- The iterator methods will walk the SET_CLIENT set, and call for each element within the set a function that you provide. -- The following iterator methods are currently available within the SET_CLIENT: -- -- * @{#SET_CLIENT.ForEachClient}: Calls a function for each alive client it finds within the SET_CLIENT. -- -- === -- @field #SET_CLIENT SET_CLIENT SET_CLIENT = { ClassName = "SET_CLIENT", Clients = {}, Filter = { Coalitions = nil, Categories = nil, Types = nil, Countries = nil, ClientPrefixes = nil, }, FilterMeta = { Coalitions = { red = coalition.side.RED, blue = coalition.side.BLUE, neutral = coalition.side.NEUTRAL, }, Categories = { plane = Unit.Category.AIRPLANE, helicopter = Unit.Category.HELICOPTER, ground = Unit.Category.GROUND_UNIT, ship = Unit.Category.SHIP, structure = Unit.Category.STRUCTURE, }, }, } --- Creates a new SET_CLIENT object, building a set of clients belonging to a coalitions, categories, countries, types or with defined prefix names. -- @param #SET_CLIENT self -- @return #SET_CLIENT -- @usage -- -- Define a new SET_CLIENT Object. This DBObject will contain a reference to all Clients. -- DBObject = SET_CLIENT:New() function SET_CLIENT:New() -- Inherits from BASE local self = BASE:Inherit( self, SET_BASE:New( _DATABASE.CLIENTS ) ) return self end --- Add CLIENT(s) to SET_CLIENT. -- @param Core.Set#SET_CLIENT self -- @param #string AddClientNames A single name or an array of CLIENT names. -- @return self function SET_CLIENT:AddClientsByName( AddClientNames ) local AddClientNamesArray = ( type( AddClientNames ) == "table" ) and AddClientNames or { AddClientNames } for AddClientID, AddClientName in pairs( AddClientNamesArray ) do self:Add( AddClientName, CLIENT:FindByName( AddClientName ) ) end return self end --- Remove CLIENT(s) from SET_CLIENT. -- @param Core.Set#SET_CLIENT self -- @param Wrapper.Client#CLIENT RemoveClientNames A single name or an array of CLIENT names. -- @return self function SET_CLIENT:RemoveClientsByName( RemoveClientNames ) local RemoveClientNamesArray = ( type( RemoveClientNames ) == "table" ) and RemoveClientNames or { RemoveClientNames } for RemoveClientID, RemoveClientName in pairs( RemoveClientNamesArray ) do self:Remove( RemoveClientName.ClientName ) end return self end --- Finds a Client based on the Client Name. -- @param #SET_CLIENT self -- @param #string ClientName -- @return Wrapper.Client#CLIENT The found Client. function SET_CLIENT:FindClient( ClientName ) local ClientFound = self.Set[ClientName] return ClientFound end --- Builds a set of clients of coalitions. -- Possible current coalitions are red, blue and neutral. -- @param #SET_CLIENT self -- @param #string Coalitions Can take the following values: "red", "blue", "neutral". -- @return #SET_CLIENT self function SET_CLIENT:FilterCoalitions( Coalitions ) if not self.Filter.Coalitions then self.Filter.Coalitions = {} end if type( Coalitions ) ~= "table" then Coalitions = { Coalitions } end for CoalitionID, Coalition in pairs( Coalitions ) do self.Filter.Coalitions[Coalition] = Coalition end return self end --- Builds a set of clients out of categories. -- Possible current categories are plane, helicopter, ground, ship. -- @param #SET_CLIENT self -- @param #string Categories Can take the following values: "plane", "helicopter", "ground", "ship". -- @return #SET_CLIENT self function SET_CLIENT:FilterCategories( Categories ) if not self.Filter.Categories then self.Filter.Categories = {} end if type( Categories ) ~= "table" then Categories = { Categories } end for CategoryID, Category in pairs( Categories ) do self.Filter.Categories[Category] = Category end return self end --- Builds a set of clients of defined client types. -- Possible current types are those types known within DCS world. -- @param #SET_CLIENT self -- @param #string Types Can take those type strings known within DCS world. -- @return #SET_CLIENT self function SET_CLIENT:FilterTypes( Types ) if not self.Filter.Types then self.Filter.Types = {} end if type( Types ) ~= "table" then Types = { Types } end for TypeID, Type in pairs( Types ) do self.Filter.Types[Type] = Type end return self end --- Builds a set of clients of defined countries. -- Possible current countries are those known within DCS world. -- @param #SET_CLIENT self -- @param #string Countries Can take those country strings known within DCS world. -- @return #SET_CLIENT self function SET_CLIENT:FilterCountries( Countries ) if not self.Filter.Countries then self.Filter.Countries = {} end if type( Countries ) ~= "table" then Countries = { Countries } end for CountryID, Country in pairs( Countries ) do self.Filter.Countries[Country] = Country end return self end --- Builds a set of clients of defined client prefixes. -- All the clients starting with the given prefixes will be included within the set. -- @param #SET_CLIENT self -- @param #string Prefixes The prefix of which the client name starts with. -- @return #SET_CLIENT self function SET_CLIENT:FilterPrefixes( Prefixes ) if not self.Filter.ClientPrefixes then self.Filter.ClientPrefixes = {} end if type( Prefixes ) ~= "table" then Prefixes = { Prefixes } end for PrefixID, Prefix in pairs( Prefixes ) do self.Filter.ClientPrefixes[Prefix] = Prefix end return self end --- Starts the filtering. -- @param #SET_CLIENT self -- @return #SET_CLIENT self function SET_CLIENT:FilterStart() if _DATABASE then self:_FilterStart() end return self end --- Handles the Database to check on an event (birth) that the Object was added in the Database. -- This is required, because sometimes the _DATABASE birth event gets called later than the SET_BASE birth event! -- @param #SET_CLIENT self -- @param Core.Event#EVENTDATA Event -- @return #string The name of the CLIENT -- @return #table The CLIENT function SET_CLIENT:AddInDatabase( Event ) self:F3( { Event } ) return Event.IniDCSUnitName, self.Database[Event.IniDCSUnitName] end --- Handles the Database to check on any event that Object exists in the Database. -- This is required, because sometimes the _DATABASE event gets called later than the SET_BASE event or vise versa! -- @param #SET_CLIENT self -- @param Core.Event#EVENTDATA Event -- @return #string The name of the CLIENT -- @return #table The CLIENT function SET_CLIENT:FindInDatabase( Event ) self:F3( { Event } ) return Event.IniDCSUnitName, self.Database[Event.IniDCSUnitName] end --- Iterate the SET_CLIENT and call an interator function for each **alive** CLIENT, providing the CLIENT and optional parameters. -- @param #SET_CLIENT self -- @param #function IteratorFunction The function that will be called when there is an alive CLIENT in the SET_CLIENT. The function needs to accept a CLIENT parameter. -- @return #SET_CLIENT self function SET_CLIENT:ForEachClient( IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set ) return self end --- Iterate the SET_CLIENT and call an iterator function for each **alive** CLIENT presence completely in a @{Zone}, providing the CLIENT and optional parameters to the called function. -- @param #SET_CLIENT self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @param #function IteratorFunction The function that will be called when there is an alive CLIENT in the SET_CLIENT. The function needs to accept a CLIENT parameter. -- @return #SET_CLIENT self function SET_CLIENT:ForEachClientInZone( ZoneObject, IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set, --- @param Core.Zone#ZONE_BASE ZoneObject -- @param Wrapper.Client#CLIENT ClientObject function( ZoneObject, ClientObject ) if ClientObject:IsInZone( ZoneObject ) then return true else return false end end, { ZoneObject } ) return self end --- Iterate the SET_CLIENT and call an iterator function for each **alive** CLIENT presence not in a @{Zone}, providing the CLIENT and optional parameters to the called function. -- @param #SET_CLIENT self -- @param Core.Zone#ZONE ZoneObject The Zone to be tested for. -- @param #function IteratorFunction The function that will be called when there is an alive CLIENT in the SET_CLIENT. The function needs to accept a CLIENT parameter. -- @return #SET_CLIENT self function SET_CLIENT:ForEachClientNotInZone( ZoneObject, IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set, --- @param Core.Zone#ZONE_BASE ZoneObject -- @param Wrapper.Client#CLIENT ClientObject function( ZoneObject, ClientObject ) if ClientObject:IsNotInZone( ZoneObject ) then return true else return false end end, { ZoneObject } ) return self end --- -- @param #SET_CLIENT self -- @param Wrapper.Client#CLIENT MClient -- @return #SET_CLIENT self function SET_CLIENT:IsIncludeObject( MClient ) self:F2( MClient ) local MClientInclude = true if MClient then local MClientName = MClient.UnitName if self.Filter.Coalitions then local MClientCoalition = false for CoalitionID, CoalitionName in pairs( self.Filter.Coalitions ) do local ClientCoalitionID = _DATABASE:GetCoalitionFromClientTemplate( MClientName ) self:T3( { "Coalition:", ClientCoalitionID, self.FilterMeta.Coalitions[CoalitionName], CoalitionName } ) if self.FilterMeta.Coalitions[CoalitionName] and self.FilterMeta.Coalitions[CoalitionName] == ClientCoalitionID then MClientCoalition = true end end self:T( { "Evaluated Coalition", MClientCoalition } ) MClientInclude = MClientInclude and MClientCoalition end if self.Filter.Categories then local MClientCategory = false for CategoryID, CategoryName in pairs( self.Filter.Categories ) do local ClientCategoryID = _DATABASE:GetCategoryFromClientTemplate( MClientName ) self:T3( { "Category:", ClientCategoryID, self.FilterMeta.Categories[CategoryName], CategoryName } ) if self.FilterMeta.Categories[CategoryName] and self.FilterMeta.Categories[CategoryName] == ClientCategoryID then MClientCategory = true end end self:T( { "Evaluated Category", MClientCategory } ) MClientInclude = MClientInclude and MClientCategory end if self.Filter.Types then local MClientType = false for TypeID, TypeName in pairs( self.Filter.Types ) do self:T3( { "Type:", MClient:GetTypeName(), TypeName } ) if TypeName == MClient:GetTypeName() then MClientType = true end end self:T( { "Evaluated Type", MClientType } ) MClientInclude = MClientInclude and MClientType end if self.Filter.Countries then local MClientCountry = false for CountryID, CountryName in pairs( self.Filter.Countries ) do local ClientCountryID = _DATABASE:GetCountryFromClientTemplate(MClientName) self:T3( { "Country:", ClientCountryID, country.id[CountryName], CountryName } ) if country.id[CountryName] and country.id[CountryName] == ClientCountryID then MClientCountry = true end end self:T( { "Evaluated Country", MClientCountry } ) MClientInclude = MClientInclude and MClientCountry end if self.Filter.ClientPrefixes then local MClientPrefix = false for ClientPrefixId, ClientPrefix in pairs( self.Filter.ClientPrefixes ) do self:T3( { "Prefix:", string.find( MClient.UnitName, ClientPrefix, 1 ), ClientPrefix } ) if string.find( MClient.UnitName, ClientPrefix, 1 ) then MClientPrefix = true end end self:T( { "Evaluated Prefix", MClientPrefix } ) MClientInclude = MClientInclude and MClientPrefix end end self:T2( MClientInclude ) return MClientInclude end --- @type SET_AIRBASE -- @extends Core.Set#SET_BASE --- # 5) SET_AIRBASE class, extends @{Set#SET_BASE} -- -- Mission designers can use the @{Set#SET_AIRBASE} class to build sets of airbases optionally belonging to certain: -- -- * Coalitions -- -- ## 5.1) SET_AIRBASE constructor -- -- Create a new SET_AIRBASE object with the @{#SET_AIRBASE.New} method: -- -- * @{#SET_AIRBASE.New}: Creates a new SET_AIRBASE object. -- -- ## 5.2) Add or Remove AIRBASEs from SET_AIRBASE -- -- AIRBASEs can be added and removed using the @{Set#SET_AIRBASE.AddAirbasesByName} and @{Set#SET_AIRBASE.RemoveAirbasesByName} respectively. -- These methods take a single AIRBASE name or an array of AIRBASE names to be added or removed from SET_AIRBASE. -- -- ## 5.3) SET_AIRBASE filter criteria -- -- You can set filter criteria to define the set of clients within the SET_AIRBASE. -- Filter criteria are defined by: -- -- * @{#SET_AIRBASE.FilterCoalitions}: Builds the SET_AIRBASE with the airbases belonging to the coalition(s). -- -- Once the filter criteria have been set for the SET_AIRBASE, you can start filtering using: -- -- * @{#SET_AIRBASE.FilterStart}: Starts the filtering of the airbases within the SET_AIRBASE. -- -- ## 5.4) SET_AIRBASE iterators -- -- Once the filters have been defined and the SET_AIRBASE has been built, you can iterate the SET_AIRBASE with the available iterator methods. -- The iterator methods will walk the SET_AIRBASE set, and call for each airbase within the set a function that you provide. -- The following iterator methods are currently available within the SET_AIRBASE: -- -- * @{#SET_AIRBASE.ForEachAirbase}: Calls a function for each airbase it finds within the SET_AIRBASE. -- -- === -- @field #SET_AIRBASE SET_AIRBASE SET_AIRBASE = { ClassName = "SET_AIRBASE", Airbases = {}, Filter = { Coalitions = nil, }, FilterMeta = { Coalitions = { red = coalition.side.RED, blue = coalition.side.BLUE, neutral = coalition.side.NEUTRAL, }, Categories = { airdrome = Airbase.Category.AIRDROME, helipad = Airbase.Category.HELIPAD, ship = Airbase.Category.SHIP, }, }, } --- Creates a new SET_AIRBASE object, building a set of airbases belonging to a coalitions and categories. -- @param #SET_AIRBASE self -- @return #SET_AIRBASE self -- @usage -- -- Define a new SET_AIRBASE Object. The DatabaseSet will contain a reference to all Airbases. -- DatabaseSet = SET_AIRBASE:New() function SET_AIRBASE:New() -- Inherits from BASE local self = BASE:Inherit( self, SET_BASE:New( _DATABASE.AIRBASES ) ) return self end --- Add AIRBASEs to SET_AIRBASE. -- @param Core.Set#SET_AIRBASE self -- @param #string AddAirbaseNames A single name or an array of AIRBASE names. -- @return self function SET_AIRBASE:AddAirbasesByName( AddAirbaseNames ) local AddAirbaseNamesArray = ( type( AddAirbaseNames ) == "table" ) and AddAirbaseNames or { AddAirbaseNames } for AddAirbaseID, AddAirbaseName in pairs( AddAirbaseNamesArray ) do self:Add( AddAirbaseName, AIRBASE:FindByName( AddAirbaseName ) ) end return self end --- Remove AIRBASEs from SET_AIRBASE. -- @param Core.Set#SET_AIRBASE self -- @param Wrapper.Airbase#AIRBASE RemoveAirbaseNames A single name or an array of AIRBASE names. -- @return self function SET_AIRBASE:RemoveAirbasesByName( RemoveAirbaseNames ) local RemoveAirbaseNamesArray = ( type( RemoveAirbaseNames ) == "table" ) and RemoveAirbaseNames or { RemoveAirbaseNames } for RemoveAirbaseID, RemoveAirbaseName in pairs( RemoveAirbaseNamesArray ) do self:Remove( RemoveAirbaseName.AirbaseName ) end return self end --- Finds a Airbase based on the Airbase Name. -- @param #SET_AIRBASE self -- @param #string AirbaseName -- @return Wrapper.Airbase#AIRBASE The found Airbase. function SET_AIRBASE:FindAirbase( AirbaseName ) local AirbaseFound = self.Set[AirbaseName] return AirbaseFound end --- Builds a set of airbases of coalitions. -- Possible current coalitions are red, blue and neutral. -- @param #SET_AIRBASE self -- @param #string Coalitions Can take the following values: "red", "blue", "neutral". -- @return #SET_AIRBASE self function SET_AIRBASE:FilterCoalitions( Coalitions ) if not self.Filter.Coalitions then self.Filter.Coalitions = {} end if type( Coalitions ) ~= "table" then Coalitions = { Coalitions } end for CoalitionID, Coalition in pairs( Coalitions ) do self.Filter.Coalitions[Coalition] = Coalition end return self end --- Builds a set of airbases out of categories. -- Possible current categories are plane, helicopter, ground, ship. -- @param #SET_AIRBASE self -- @param #string Categories Can take the following values: "airdrome", "helipad", "ship". -- @return #SET_AIRBASE self function SET_AIRBASE:FilterCategories( Categories ) if not self.Filter.Categories then self.Filter.Categories = {} end if type( Categories ) ~= "table" then Categories = { Categories } end for CategoryID, Category in pairs( Categories ) do self.Filter.Categories[Category] = Category end return self end --- Starts the filtering. -- @param #SET_AIRBASE self -- @return #SET_AIRBASE self function SET_AIRBASE:FilterStart() if _DATABASE then self:_FilterStart() end return self end --- Handles the Database to check on an event (birth) that the Object was added in the Database. -- This is required, because sometimes the _DATABASE birth event gets called later than the SET_BASE birth event! -- @param #SET_AIRBASE self -- @param Core.Event#EVENTDATA Event -- @return #string The name of the AIRBASE -- @return #table The AIRBASE function SET_AIRBASE:AddInDatabase( Event ) self:F3( { Event } ) return Event.IniDCSUnitName, self.Database[Event.IniDCSUnitName] end --- Handles the Database to check on any event that Object exists in the Database. -- This is required, because sometimes the _DATABASE event gets called later than the SET_BASE event or vise versa! -- @param #SET_AIRBASE self -- @param Core.Event#EVENTDATA Event -- @return #string The name of the AIRBASE -- @return #table The AIRBASE function SET_AIRBASE:FindInDatabase( Event ) self:F3( { Event } ) return Event.IniDCSUnitName, self.Database[Event.IniDCSUnitName] end --- Iterate the SET_AIRBASE and call an interator function for each AIRBASE, providing the AIRBASE and optional parameters. -- @param #SET_AIRBASE self -- @param #function IteratorFunction The function that will be called when there is an alive AIRBASE in the SET_AIRBASE. The function needs to accept a AIRBASE parameter. -- @return #SET_AIRBASE self function SET_AIRBASE:ForEachAirbase( IteratorFunction, ... ) self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set ) return self end --- Iterate the SET_AIRBASE while identifying the nearest @{Airbase#AIRBASE} from a @{Point#POINT_VEC2}. -- @param #SET_AIRBASE self -- @param Core.Point#POINT_VEC2 PointVec2 A @{Point#POINT_VEC2} object from where to evaluate the closest @{Airbase#AIRBASE}. -- @return Wrapper.Airbase#AIRBASE The closest @{Airbase#AIRBASE}. function SET_AIRBASE:FindNearestAirbaseFromPointVec2( PointVec2 ) self:F2( PointVec2 ) local NearestAirbase = self:FindNearestObjectFromPointVec2( PointVec2 ) return NearestAirbase end --- -- @param #SET_AIRBASE self -- @param Wrapper.Airbase#AIRBASE MAirbase -- @return #SET_AIRBASE self function SET_AIRBASE:IsIncludeObject( MAirbase ) self:F2( MAirbase ) local MAirbaseInclude = true if MAirbase then local MAirbaseName = MAirbase:GetName() if self.Filter.Coalitions then local MAirbaseCoalition = false for CoalitionID, CoalitionName in pairs( self.Filter.Coalitions ) do local AirbaseCoalitionID = _DATABASE:GetCoalitionFromAirbase( MAirbaseName ) self:T3( { "Coalition:", AirbaseCoalitionID, self.FilterMeta.Coalitions[CoalitionName], CoalitionName } ) if self.FilterMeta.Coalitions[CoalitionName] and self.FilterMeta.Coalitions[CoalitionName] == AirbaseCoalitionID then MAirbaseCoalition = true end end self:T( { "Evaluated Coalition", MAirbaseCoalition } ) MAirbaseInclude = MAirbaseInclude and MAirbaseCoalition end if self.Filter.Categories then local MAirbaseCategory = false for CategoryID, CategoryName in pairs( self.Filter.Categories ) do local AirbaseCategoryID = _DATABASE:GetCategoryFromAirbase( MAirbaseName ) self:T3( { "Category:", AirbaseCategoryID, self.FilterMeta.Categories[CategoryName], CategoryName } ) if self.FilterMeta.Categories[CategoryName] and self.FilterMeta.Categories[CategoryName] == AirbaseCategoryID then MAirbaseCategory = true end end self:T( { "Evaluated Category", MAirbaseCategory } ) MAirbaseInclude = MAirbaseInclude and MAirbaseCategory end end self:T2( MAirbaseInclude ) return MAirbaseInclude end --- @type SET_CARGO -- @extends Core.Set#SET_BASE --- # (R2.1) SET_CARGO class, extends @{Set#SET_BASE} -- -- Mission designers can use the @{Set#SET_CARGO} class to build sets of cargos optionally belonging to certain: -- -- * Coalitions -- * Types -- * Name or Prefix -- -- ## SET_CARGO constructor -- -- Create a new SET_CARGO object with the @{#SET_CARGO.New} method: -- -- * @{#SET_CARGO.New}: Creates a new SET_CARGO object. -- -- ## Add or Remove CARGOs from SET_CARGO -- -- CARGOs can be added and removed using the @{Set#SET_CARGO.AddCargosByName} and @{Set#SET_CARGO.RemoveCargosByName} respectively. -- These methods take a single CARGO name or an array of CARGO names to be added or removed from SET_CARGO. -- -- ## SET_CARGO filter criteria -- -- You can set filter criteria to automatically maintain the SET_CARGO contents. -- Filter criteria are defined by: -- -- * @{#SET_CARGO.FilterCoalitions}: Builds the SET_CARGO with the cargos belonging to the coalition(s). -- * @{#SET_CARGO.FilterPrefixes}: Builds the SET_CARGO with the cargos containing the prefix string(s). -- * @{#SET_CARGO.FilterTypes}: Builds the SET_CARGO with the cargos belonging to the cargo type(s). -- * @{#SET_CARGO.FilterCountries}: Builds the SET_CARGO with the cargos belonging to the country(ies). -- -- Once the filter criteria have been set for the SET_CARGO, you can start filtering using: -- -- * @{#SET_CARGO.FilterStart}: Starts the filtering of the cargos within the SET_CARGO. -- -- ## SET_CARGO iterators -- -- Once the filters have been defined and the SET_CARGO has been built, you can iterate the SET_CARGO with the available iterator methods. -- The iterator methods will walk the SET_CARGO set, and call for each cargo within the set a function that you provide. -- The following iterator methods are currently available within the SET_CARGO: -- -- * @{#SET_CARGO.ForEachCargo}: Calls a function for each cargo it finds within the SET_CARGO. -- -- @field #SET_CARGO SET_CARGO -- SET_CARGO = { ClassName = "SET_CARGO", Cargos = {}, Filter = { Coalitions = nil, Types = nil, Countries = nil, ClientPrefixes = nil, }, FilterMeta = { Coalitions = { red = coalition.side.RED, blue = coalition.side.BLUE, neutral = coalition.side.NEUTRAL, }, }, } --- (R2.1) Creates a new SET_CARGO object, building a set of cargos belonging to a coalitions and categories. -- @param #SET_CARGO self -- @return #SET_CARGO -- @usage -- -- Define a new SET_CARGO Object. The DatabaseSet will contain a reference to all Cargos. -- DatabaseSet = SET_CARGO:New() function SET_CARGO:New() --R2.1 -- Inherits from BASE local self = BASE:Inherit( self, SET_BASE:New( _DATABASE.CARGOS ) ) -- #SET_CARGO return self end --- (R2.1) Add CARGOs to SET_CARGO. -- @param Core.Set#SET_CARGO self -- @param #string AddCargoNames A single name or an array of CARGO names. -- @return self function SET_CARGO:AddCargosByName( AddCargoNames ) --R2.1 local AddCargoNamesArray = ( type( AddCargoNames ) == "table" ) and AddCargoNames or { AddCargoNames } for AddCargoID, AddCargoName in pairs( AddCargoNamesArray ) do self:Add( AddCargoName, CARGO:FindByName( AddCargoName ) ) end return self end --- (R2.1) Remove CARGOs from SET_CARGO. -- @param Core.Set#SET_CARGO self -- @param Wrapper.Cargo#CARGO RemoveCargoNames A single name or an array of CARGO names. -- @return self function SET_CARGO:RemoveCargosByName( RemoveCargoNames ) --R2.1 local RemoveCargoNamesArray = ( type( RemoveCargoNames ) == "table" ) and RemoveCargoNames or { RemoveCargoNames } for RemoveCargoID, RemoveCargoName in pairs( RemoveCargoNamesArray ) do self:Remove( RemoveCargoName.CargoName ) end return self end --- (R2.1) Finds a Cargo based on the Cargo Name. -- @param #SET_CARGO self -- @param #string CargoName -- @return Wrapper.Cargo#CARGO The found Cargo. function SET_CARGO:FindCargo( CargoName ) --R2.1 local CargoFound = self.Set[CargoName] return CargoFound end --- (R2.1) Builds a set of cargos of coalitions. -- Possible current coalitions are red, blue and neutral. -- @param #SET_CARGO self -- @param #string Coalitions Can take the following values: "red", "blue", "neutral". -- @return #SET_CARGO self function SET_CARGO:FilterCoalitions( Coalitions ) --R2.1 if not self.Filter.Coalitions then self.Filter.Coalitions = {} end if type( Coalitions ) ~= "table" then Coalitions = { Coalitions } end for CoalitionID, Coalition in pairs( Coalitions ) do self.Filter.Coalitions[Coalition] = Coalition end return self end --- (R2.1) Builds a set of cargos of defined cargo types. -- Possible current types are those types known within DCS world. -- @param #SET_CARGO self -- @param #string Types Can take those type strings known within DCS world. -- @return #SET_CARGO self function SET_CARGO:FilterTypes( Types ) --R2.1 if not self.Filter.Types then self.Filter.Types = {} end if type( Types ) ~= "table" then Types = { Types } end for TypeID, Type in pairs( Types ) do self.Filter.Types[Type] = Type end return self end --- (R2.1) Builds a set of cargos of defined countries. -- Possible current countries are those known within DCS world. -- @param #SET_CARGO self -- @param #string Countries Can take those country strings known within DCS world. -- @return #SET_CARGO self function SET_CARGO:FilterCountries( Countries ) --R2.1 if not self.Filter.Countries then self.Filter.Countries = {} end if type( Countries ) ~= "table" then Countries = { Countries } end for CountryID, Country in pairs( Countries ) do self.Filter.Countries[Country] = Country end return self end --- (R2.1) Builds a set of cargos of defined cargo prefixes. -- All the cargos starting with the given prefixes will be included within the set. -- @param #SET_CARGO self -- @param #string Prefixes The prefix of which the cargo name starts with. -- @return #SET_CARGO self function SET_CARGO:FilterPrefixes( Prefixes ) --R2.1 if not self.Filter.CargoPrefixes then self.Filter.CargoPrefixes = {} end if type( Prefixes ) ~= "table" then Prefixes = { Prefixes } end for PrefixID, Prefix in pairs( Prefixes ) do self.Filter.CargoPrefixes[Prefix] = Prefix end return self end --- (R2.1) Starts the filtering. -- @param #SET_CARGO self -- @return #SET_CARGO self function SET_CARGO:FilterStart() --R2.1 if _DATABASE then self:_FilterStart() end self:HandleEvent( EVENTS.NewCargo ) self:HandleEvent( EVENTS.DeleteCargo ) return self end --- (R2.1) Handles the Database to check on an event (birth) that the Object was added in the Database. -- This is required, because sometimes the _DATABASE birth event gets called later than the SET_BASE birth event! -- @param #SET_CARGO self -- @param Core.Event#EVENTDATA Event -- @return #string The name of the CARGO -- @return #table The CARGO function SET_CARGO:AddInDatabase( Event ) --R2.1 self:F3( { Event } ) return Event.IniDCSUnitName, self.Database[Event.IniDCSUnitName] end --- (R2.1) Handles the Database to check on any event that Object exists in the Database. -- This is required, because sometimes the _DATABASE event gets called later than the SET_BASE event or vise versa! -- @param #SET_CARGO self -- @param Core.Event#EVENTDATA Event -- @return #string The name of the CARGO -- @return #table The CARGO function SET_CARGO:FindInDatabase( Event ) --R2.1 self:F3( { Event } ) return Event.IniDCSUnitName, self.Database[Event.IniDCSUnitName] end --- (R2.1) Iterate the SET_CARGO and call an interator function for each CARGO, providing the CARGO and optional parameters. -- @param #SET_CARGO self -- @param #function IteratorFunction The function that will be called when there is an alive CARGO in the SET_CARGO. The function needs to accept a CARGO parameter. -- @return #SET_CARGO self function SET_CARGO:ForEachCargo( IteratorFunction, ... ) --R2.1 self:F2( arg ) self:ForEach( IteratorFunction, arg, self.Set ) return self end --- (R2.1) Iterate the SET_CARGO while identifying the nearest @{Cargo#CARGO} from a @{Point#POINT_VEC2}. -- @param #SET_CARGO self -- @param Core.Point#POINT_VEC2 PointVec2 A @{Point#POINT_VEC2} object from where to evaluate the closest @{Cargo#CARGO}. -- @return Wrapper.Cargo#CARGO The closest @{Cargo#CARGO}. function SET_CARGO:FindNearestCargoFromPointVec2( PointVec2 ) --R2.1 self:F2( PointVec2 ) local NearestCargo = self:FindNearestObjectFromPointVec2( PointVec2 ) return NearestCargo end --- (R2.1) -- @param #SET_CARGO self -- @param AI.AI_Cargo#AI_CARGO MCargo -- @return #SET_CARGO self function SET_CARGO:IsIncludeObject( MCargo ) --R2.1 self:F2( MCargo ) local MCargoInclude = true if MCargo then local MCargoName = MCargo:GetName() if self.Filter.Coalitions then local MCargoCoalition = false for CoalitionID, CoalitionName in pairs( self.Filter.Coalitions ) do local CargoCoalitionID = MCargo:GetCoalition() self:T3( { "Coalition:", CargoCoalitionID, self.FilterMeta.Coalitions[CoalitionName], CoalitionName } ) if self.FilterMeta.Coalitions[CoalitionName] and self.FilterMeta.Coalitions[CoalitionName] == CargoCoalitionID then MCargoCoalition = true end end self:T( { "Evaluated Coalition", MCargoCoalition } ) MCargoInclude = MCargoInclude and MCargoCoalition end if self.Filter.Types then local MCargoType = false for TypeID, TypeName in pairs( self.Filter.Types ) do self:T3( { "Type:", MCargo:GetType(), TypeName } ) if TypeName == MCargo:GetType() then MCargoType = true end end self:T( { "Evaluated Type", MCargoType } ) MCargoInclude = MCargoInclude and MCargoType end if self.Filter.CargoPrefixes then local MCargoPrefix = false for CargoPrefixId, CargoPrefix in pairs( self.Filter.CargoPrefixes ) do self:T3( { "Prefix:", string.find( MCargo.Name, CargoPrefix, 1 ), CargoPrefix } ) if string.find( MCargo.Name, CargoPrefix, 1 ) then MCargoPrefix = true end end self:T( { "Evaluated Prefix", MCargoPrefix } ) MCargoInclude = MCargoInclude and MCargoPrefix end end self:T2( MCargoInclude ) return MCargoInclude end --- (R2.1) Handles the OnEventNewCargo event for the Set. -- @param #SET_CARGO self -- @param Core.Event#EVENTDATA EventData function SET_CARGO:OnEventNewCargo( EventData ) --R2.1 if EventData.Cargo then if EventData.Cargo and self:IsIncludeObject( EventData.Cargo ) then self:Add( EventData.Cargo.Name , EventData.Cargo ) end end end --- (R2.1) Handles the OnDead or OnCrash event for alive units set. -- @param #SET_CARGO self -- @param Core.Event#EVENTDATA EventData function SET_CARGO:OnEventDeleteCargo( EventData ) --R2.1 self:F3( { EventData } ) if EventData.Cargo then local Cargo = _DATABASE:FindCargo( EventData.Cargo.Name ) if Cargo and Cargo.Name then self:Remove( Cargo.Name ) end end end --- **Core** -- **POINT\_VEC** classes define an **extensive API** to **manage 3D points** in the simulation space. -- -- ![Banner Image](..\Presentations\POINT\Dia1.JPG) -- -- ==== -- -- # Demo Missions -- -- ### [POINT_VEC Demo Missions source code]() -- -- ### [POINT_VEC Demo Missions, only for beta testers]() -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [POINT_VEC YouTube Channel]() -- -- === -- -- ### Authors: -- -- * FlightControl : Design & Programming -- -- ### Contributions: -- -- @module Point do -- COORDINATE --- @type COORDINATE -- @extends Core.Base#BASE --- # COORDINATE class, extends @{Base#BASE} -- -- COORDINATE defines a 3D point in the simulator and with its methods, you can use or manipulate the point in 3D space. -- -- ## COORDINATE constructor -- -- A new COORDINATE object can be created with: -- -- * @{#COORDINATE.New}(): a 3D point. -- * @{#COORDINATE.NewFromVec2}(): a 2D point created from a @{DCSTypes#Vec2}. -- * @{#COORDINATE.NewFromVec3}(): a 3D point created from a @{DCSTypes#Vec3}. -- -- ## Create waypoints for routes -- -- A COORDINATE can prepare waypoints for Ground and Air groups to be embedded into a Route. -- -- * @{#COORDINATE.WaypointAir}(): Build an air route point. -- * @{#COORDINATE.WaypointGround}(): Build a ground route point. -- -- Route points can be used in the Route methods of the @{Group#GROUP} class. -- -- -- ## Smoke, flare, explode, illuminate -- -- At the point a smoke, flare, explosion and illumination bomb can be triggered. Use the following methods: -- -- ### Smoke -- -- * @{#COORDINATE.Smoke}(): To smoke the point in a certain color. -- * @{#COORDINATE.SmokeBlue}(): To smoke the point in blue. -- * @{#COORDINATE.SmokeRed}(): To smoke the point in red. -- * @{#COORDINATE.SmokeOrange}(): To smoke the point in orange. -- * @{#COORDINATE.SmokeWhite}(): To smoke the point in white. -- * @{#COORDINATE.SmokeGreen}(): To smoke the point in green. -- -- ### Flare -- -- * @{#COORDINATE.Flare}(): To flare the point in a certain color. -- * @{#COORDINATE.FlareRed}(): To flare the point in red. -- * @{#COORDINATE.FlareYellow}(): To flare the point in yellow. -- * @{#COORDINATE.FlareWhite}(): To flare the point in white. -- * @{#COORDINATE.FlareGreen}(): To flare the point in green. -- -- ### Explode -- -- * @{#COORDINATE.Explosion}(): To explode the point with a certain intensity. -- -- ### Illuminate -- -- * @{#COORDINATE.IlluminationBomb}(): To illuminate the point. -- -- -- ## Markings -- -- Place markers (text boxes with clarifications for briefings, target locations or any other reference point) on the map for all players, coalitions or specific groups: -- -- * @{#COORDINATE.MarkToAll}(): Place a mark to all players. -- * @{#COORDINATE.MarkToCoalition}(): Place a mark to a coalition. -- * @{#COORDINATE.MarkToCoalitionRed}(): Place a mark to the red coalition. -- * @{#COORDINATE.MarkToCoalitionBlue}(): Place a mark to the blue coalition. -- * @{#COORDINATE.MarkToGroup}(): Place a mark to a group (needs to have a client in it or a CA group (CA group is bugged)). -- * @{#COORDINATE.RemoveMark}(): Removes a mark from the map. -- -- -- ## 3D calculation methods -- -- Various calculation methods exist to use or manipulate 3D space. Find below a short description of each method: -- -- ### Distance -- -- * @{#COORDINATE.Get3DDistance}(): Obtain the distance from the current 3D point to the provided 3D point in 3D space. -- * @{#COORDINATE.Get2DDistance}(): Obtain the distance from the current 3D point to the provided 3D point in 2D space. -- -- ### Angle -- -- * @{#COORDINATE.GetAngleDegrees}(): Obtain the angle in degrees from the current 3D point with the provided 3D direction vector. -- * @{#COORDINATE.GetAngleRadians}(): Obtain the angle in radians from the current 3D point with the provided 3D direction vector. -- * @{#COORDINATE.GetDirectionVec3}(): Obtain the 3D direction vector from the current 3D point to the provided 3D point. -- -- ### Translation -- -- * @{#COORDINATE.Translate}(): Translate the current 3D point towards an other 3D point using the given Distance and Angle. -- -- ### Get the North correction of the current location -- -- * @{#COORDINATE.GetNorthCorrection}(): Obtains the north correction at the current 3D point. -- -- -- ## Point Randomization -- -- Various methods exist to calculate random locations around a given 3D point. -- -- * @{#COORDINATE.GetRandomVec2InRadius}(): Provides a random 2D vector around the current 3D point, in the given inner to outer band. -- * @{#COORDINATE.GetRandomVec3InRadius}(): Provides a random 3D vector around the current 3D point, in the given inner to outer band. -- -- -- ## Metric system -- -- * @{#COORDINATE.IsMetric}(): Returns if the 3D point is Metric or Nautical Miles. -- * @{#COORDINATE.SetMetric}(): Sets the 3D point to Metric or Nautical Miles. -- -- -- ## Coorinate text generation -- -- * @{#COORDINATE.ToStringBR}(): Generates a Bearing & Range text in the format of DDD for DI where DDD is degrees and DI is distance. -- * @{#COORDINATE.ToStringLL}(): Generates a Latutude & Longutude text. -- -- @field #COORDINATE COORDINATE = { ClassName = "COORDINATE", } --- COORDINATE constructor. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Distance x The x coordinate of the Vec3 point, pointing to the North. -- @param Dcs.DCSTypes#Distance y The y coordinate of the Vec3 point, pointing to the Right. -- @param Dcs.DCSTypes#Distance z The z coordinate of the Vec3 point, pointing to the Right. -- @return #COORDINATE function COORDINATE:New( x, y, z ) local self = BASE:Inherit( self, BASE:New() ) -- #COORDINATE self.x = x self.y = y self.z = z return self end --- Create a new COORDINATE object from Vec2 coordinates. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Vec2 Vec2 The Vec2 point. -- @param Dcs.DCSTypes#Distance LandHeightAdd (optional) The default height if required to be evaluated will be the land height of the x, y coordinate. You can specify an extra height to be added to the land height. -- @return #COORDINATE function COORDINATE:NewFromVec2( Vec2, LandHeightAdd ) local LandHeight = land.getHeight( Vec2 ) LandHeightAdd = LandHeightAdd or 0 LandHeight = LandHeight + LandHeightAdd local self = self:New( Vec2.x, LandHeight, Vec2.y ) -- #COORDINATE self:F2( self ) return self end --- Create a new COORDINATE object from Vec3 coordinates. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Vec3 Vec3 The Vec3 point. -- @return #COORDINATE function COORDINATE:NewFromVec3( Vec3 ) local self = self:New( Vec3.x, Vec3.y, Vec3.z ) -- #COORDINATE self:F2( self ) return self end --- Return the coordinates of the COORDINATE in Vec3 format. -- @param #COORDINATE self -- @return Dcs.DCSTypes#Vec3 The Vec3 format coordinate. function COORDINATE:GetVec3() return { x = self.x, y = self.y, z = self.z } end --- Return the coordinates of the COORDINATE in Vec2 format. -- @param #COORDINATE self -- @return Dcs.DCSTypes#Vec2 The Vec2 format coordinate. function COORDINATE:GetVec2() return { x = self.x, y = self.z } end --TODO: check this to replace --- Calculate the distance from a reference @{DCSTypes#Vec2}. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Vec2 Vec2Reference The reference @{DCSTypes#Vec2}. -- @return Dcs.DCSTypes#Distance The distance from the reference @{DCSTypes#Vec2} in meters. function COORDINATE:DistanceFromVec2( Vec2Reference ) self:F2( Vec2Reference ) local Distance = ( ( Vec2Reference.x - self.x ) ^ 2 + ( Vec2Reference.y - self.z ) ^2 ) ^0.5 self:T2( Distance ) return Distance end --- Add a Distance in meters from the COORDINATE orthonormal plane, with the given angle, and calculate the new COORDINATE. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Distance Distance The Distance to be added in meters. -- @param Dcs.DCSTypes#Angle Angle The Angle in degrees. -- @return #COORDINATE The new calculated COORDINATE. function COORDINATE:Translate( Distance, Angle ) local SX = self.x local SY = self.z local Radians = Angle / 180 * math.pi local TX = Distance * math.cos( Radians ) + SX local TY = Distance * math.sin( Radians ) + SY return COORDINATE:NewFromVec2( { x = TX, y = TY } ) end --- Return a random Vec2 within an Outer Radius and optionally NOT within an Inner Radius of the COORDINATE. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Distance OuterRadius -- @param Dcs.DCSTypes#Distance InnerRadius -- @return Dcs.DCSTypes#Vec2 Vec2 function COORDINATE:GetRandomVec2InRadius( OuterRadius, InnerRadius ) self:F2( { OuterRadius, InnerRadius } ) local Theta = 2 * math.pi * math.random() local Radials = math.random() + math.random() if Radials > 1 then Radials = 2 - Radials end local RadialMultiplier if InnerRadius and InnerRadius <= OuterRadius then RadialMultiplier = ( OuterRadius - InnerRadius ) * Radials + InnerRadius else RadialMultiplier = OuterRadius * Radials end local RandomVec2 if OuterRadius > 0 then RandomVec2 = { x = math.cos( Theta ) * RadialMultiplier + self.x, y = math.sin( Theta ) * RadialMultiplier + self.z } else RandomVec2 = { x = self.x, y = self.z } end return RandomVec2 end --- Return a random Vec3 within an Outer Radius and optionally NOT within an Inner Radius of the COORDINATE. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Distance OuterRadius -- @param Dcs.DCSTypes#Distance InnerRadius -- @return Dcs.DCSTypes#Vec3 Vec3 function COORDINATE:GetRandomVec3InRadius( OuterRadius, InnerRadius ) local RandomVec2 = self:GetRandomVec2InRadius( OuterRadius, InnerRadius ) local y = self.y + math.random( InnerRadius, OuterRadius ) local RandomVec3 = { x = RandomVec2.x, y = y, z = RandomVec2.y } return RandomVec3 end --- Return the height of the land at the coordinate. -- @param #COORDINATE self -- @return #number function COORDINATE:GetLandHeight() local Vec2 = { x = self.x, y = self.z } return land.getHeight( Vec2 ) end --- Set the heading of the coordinate, if applicable. -- @param #COORDINATE self function COORDINATE:SetHeading( Heading ) self.Heading = Heading end --- Get the heading of the coordinate, if applicable. -- @param #COORDINATE self -- @return #number or nil function COORDINATE:GetHeading() return self.Heading end --- Set the velocity of the COORDINATE. -- @param #COORDINATE self -- @param #string Velocity Velocity in meters per second. function COORDINATE:SetVelocity( Velocity ) self.Velocity = Velocity end --- Return the velocity of the COORDINATE. -- @param #COORDINATE self -- @return #number Velocity in meters per second. function COORDINATE:GetVelocity() local Velocity = self.Velocity return Velocity or 0 end --- Return velocity text of the COORDINATE. -- @param #COORDINATE self -- @return #string function COORDINATE:GetMovingText( Settings ) return self:GetVelocityText( Settings ) .. ", " .. self:GetHeadingText( Settings ) end --- Return a direction vector Vec3 from COORDINATE to the COORDINATE. -- @param #COORDINATE self -- @param #COORDINATE TargetCoordinate The target COORDINATE. -- @return Dcs.DCSTypes#Vec3 DirectionVec3 The direction vector in Vec3 format. function COORDINATE:GetDirectionVec3( TargetCoordinate ) return { x = TargetCoordinate.x - self.x, y = TargetCoordinate.y - self.y, z = TargetCoordinate.z - self.z } end --- Get a correction in radians of the real magnetic north of the COORDINATE. -- @param #COORDINATE self -- @return #number CorrectionRadians The correction in radians. function COORDINATE:GetNorthCorrectionRadians() local TargetVec3 = self:GetVec3() local lat, lon = coord.LOtoLL(TargetVec3) local north_posit = coord.LLtoLO(lat + 1, lon) return math.atan2( north_posit.z - TargetVec3.z, north_posit.x - TargetVec3.x ) end --- Return an angle in radians from the COORDINATE using a direction vector in Vec3 format. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Vec3 DirectionVec3 The direction vector in Vec3 format. -- @return #number DirectionRadians The angle in radians. function COORDINATE:GetAngleRadians( DirectionVec3 ) local DirectionRadians = math.atan2( DirectionVec3.z, DirectionVec3.x ) --DirectionRadians = DirectionRadians + self:GetNorthCorrectionRadians() if DirectionRadians < 0 then DirectionRadians = DirectionRadians + 2 * math.pi -- put dir in range of 0 to 2*pi ( the full circle ) end return DirectionRadians end --- Return an angle in degrees from the COORDINATE using a direction vector in Vec3 format. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Vec3 DirectionVec3 The direction vector in Vec3 format. -- @return #number DirectionRadians The angle in degrees. function COORDINATE:GetAngleDegrees( DirectionVec3 ) local AngleRadians = self:GetAngleRadians( DirectionVec3 ) local Angle = UTILS.ToDegree( AngleRadians ) return Angle end --- Return the 2D distance in meters between the target COORDINATE and the COORDINATE. -- @param #COORDINATE self -- @param #COORDINATE TargetCoordinate The target COORDINATE. -- @return Dcs.DCSTypes#Distance Distance The distance in meters. function COORDINATE:Get2DDistance( TargetCoordinate ) local TargetVec3 = TargetCoordinate:GetVec3() local SourceVec3 = self:GetVec3() return ( ( TargetVec3.x - SourceVec3.x ) ^ 2 + ( TargetVec3.z - SourceVec3.z ) ^ 2 ) ^ 0.5 end --- Return the 3D distance in meters between the target COORDINATE and the COORDINATE. -- @param #COORDINATE self -- @param #COORDINATE TargetCoordinate The target COORDINATE. -- @return Dcs.DCSTypes#Distance Distance The distance in meters. function COORDINATE:Get3DDistance( TargetCoordinate ) local TargetVec3 = TargetCoordinate:GetVec3() local SourceVec3 = self:GetVec3() return ( ( TargetVec3.x - SourceVec3.x ) ^ 2 + ( TargetVec3.y - SourceVec3.y ) ^ 2 + ( TargetVec3.z - SourceVec3.z ) ^ 2 ) ^ 0.5 end --- Provides a bearing text in degrees. -- @param #COORDINATE self -- @param #number AngleRadians The angle in randians. -- @param #number Precision The precision. -- @param Core.Settings#SETTINGS Settings -- @return #string The bearing text in degrees. function COORDINATE:GetBearingText( AngleRadians, Precision, Settings ) local Settings = Settings or _SETTINGS -- Core.Settings#SETTINGS local AngleDegrees = UTILS.Round( UTILS.ToDegree( AngleRadians ), Precision ) local s = string.format( '%03d°', AngleDegrees ) return s end --- Provides a distance text expressed in the units of measurement. -- @param #COORDINATE self -- @param #number Distance The distance in meters. -- @param Core.Settings#SETTINGS Settings -- @return #string The distance text expressed in the units of measurement. function COORDINATE:GetDistanceText( Distance, Settings ) local Settings = Settings or _SETTINGS -- Core.Settings#SETTINGS local DistanceText if Settings:IsMetric() then DistanceText = " for " .. UTILS.Round( Distance / 1000, 2 ) .. " km" else DistanceText = " for " .. UTILS.Round( UTILS.MetersToNM( Distance ), 2 ) .. " miles" end return DistanceText end --- Return the altitude text of the COORDINATE. -- @param #COORDINATE self -- @return #string Altitude text. function COORDINATE:GetAltitudeText( Settings ) local Altitude = self.y local Settings = Settings or _SETTINGS if Altitude ~= 0 then if Settings:IsMetric() then return " at " .. UTILS.Round( self.y, -3 ) .. " meters" else return " at " .. UTILS.Round( UTILS.MetersToFeet( self.y ), -3 ) .. " feet" end else return "" end end --- Return the velocity text of the COORDINATE. -- @param #COORDINATE self -- @return #string Velocity text. function COORDINATE:GetVelocityText( Settings ) local Velocity = self:GetVelocity() local Settings = Settings or _SETTINGS if Velocity then if Settings:IsMetric() then return string.format( " moving at %d km/h", UTILS.MpsToKmph( Velocity ) ) else return string.format( " moving at %d mi/h", UTILS.MpsToKmph( Velocity ) / 1.852 ) end else return " stationary" end end --- Return the heading text of the COORDINATE. -- @param #COORDINATE self -- @return #string Heading text. function COORDINATE:GetHeadingText( Settings ) local Heading = self:GetHeading() if Heading then return string.format( " bearing %3d°", Heading ) else return " bearing unknown" end end --- Provides a Bearing / Range string -- @param #COORDINATE self -- @param #number AngleRadians The angle in randians -- @param #number Distance The distance -- @param Core.Settings#SETTINGS Settings -- @return #string The BR Text function COORDINATE:GetBRText( AngleRadians, Distance, Settings ) local Settings = Settings or _SETTINGS -- Core.Settings#SETTINGS local BearingText = self:GetBearingText( AngleRadians, 0, Settings ) local DistanceText = self:GetDistanceText( Distance, Settings ) local BRText = BearingText .. DistanceText return BRText end --- Provides a Bearing / Range / Altitude string -- @param #COORDINATE self -- @param #number AngleRadians The angle in randians -- @param #number Distance The distance -- @param Core.Settings#SETTINGS Settings -- @return #string The BRA Text function COORDINATE:GetBRAText( AngleRadians, Distance, Settings ) local Settings = Settings or _SETTINGS -- Core.Settings#SETTINGS local BearingText = self:GetBearingText( AngleRadians, 0, Settings ) local DistanceText = self:GetDistanceText( Distance, Settings ) local AltitudeText = self:GetAltitudeText( Settings ) local BRAText = BearingText .. DistanceText .. AltitudeText -- When the POINT is a VEC2, there will be no altitude shown. return BRAText end --- Add a Distance in meters from the COORDINATE horizontal plane, with the given angle, and calculate the new COORDINATE. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Distance Distance The Distance to be added in meters. -- @param Dcs.DCSTypes#Angle Angle The Angle in degrees. -- @return #COORDINATE The new calculated COORDINATE. function COORDINATE:Translate( Distance, Angle ) local SX = self.x local SZ = self.z local Radians = Angle / 180 * math.pi local TX = Distance * math.cos( Radians ) + SX local TZ = Distance * math.sin( Radians ) + SZ return COORDINATE:New( TX, self.y, TZ ) end --- Build an air type route point. -- @param #COORDINATE self -- @param #COORDINATE.RoutePointAltType AltType The altitude type. -- @param #COORDINATE.RoutePointType Type The route point type. -- @param #COORDINATE.RoutePointAction Action The route point action. -- @param Dcs.DCSTypes#Speed Speed Airspeed in km/h. -- @param #boolean SpeedLocked true means the speed is locked. -- @return #table The route point. function COORDINATE:WaypointAir( AltType, Type, Action, Speed, SpeedLocked ) self:F2( { AltType, Type, Action, Speed, SpeedLocked } ) local RoutePoint = {} RoutePoint.x = self.x RoutePoint.y = self.z RoutePoint.alt = self.y RoutePoint.alt_type = AltType or "RADIO" RoutePoint.type = Type or nil RoutePoint.action = Action or nil RoutePoint.speed = ( Speed and Speed / 3.6 ) or ( 500 / 3.6 ) RoutePoint.speed_locked = true -- ["task"] = -- { -- ["id"] = "ComboTask", -- ["params"] = -- { -- ["tasks"] = -- { -- }, -- end of ["tasks"] -- }, -- end of ["params"] -- }, -- end of ["task"] RoutePoint.task = {} RoutePoint.task.id = "ComboTask" RoutePoint.task.params = {} RoutePoint.task.params.tasks = {} return RoutePoint end --- Build an ground type route point. -- @param #COORDINATE self -- @param #number Speed (optional) Speed in km/h. The default speed is 999 km/h. -- @param #string Formation (optional) The route point Formation, which is a text string that specifies exactly the Text in the Type of the route point, like "Vee", "Echelon Right". -- @return #table The route point. function COORDINATE:WaypointGround( Speed, Formation ) self:F2( { Formation, Speed } ) local RoutePoint = {} RoutePoint.x = self.x RoutePoint.y = self.z RoutePoint.action = Formation or "" RoutePoint.speed = ( Speed or 999 ) / 3.6 RoutePoint.speed_locked = true -- ["task"] = -- { -- ["id"] = "ComboTask", -- ["params"] = -- { -- ["tasks"] = -- { -- }, -- end of ["tasks"] -- }, -- end of ["params"] -- }, -- end of ["task"] RoutePoint.task = {} RoutePoint.task.id = "ComboTask" RoutePoint.task.params = {} RoutePoint.task.params.tasks = {} return RoutePoint end --- Creates an explosion at the point of a certain intensity. -- @param #COORDINATE self -- @param #number ExplosionIntensity function COORDINATE:Explosion( ExplosionIntensity ) self:F2( { ExplosionIntensity } ) trigger.action.explosion( self:GetVec3(), ExplosionIntensity ) end --- Creates an illumination bomb at the point. -- @param #COORDINATE self function COORDINATE:IlluminationBomb() self:F2() trigger.action.illuminationBomb( self:GetVec3() ) end --- Smokes the point in a color. -- @param #COORDINATE self -- @param Utilities.Utils#SMOKECOLOR SmokeColor function COORDINATE:Smoke( SmokeColor ) self:F2( { SmokeColor } ) trigger.action.smoke( self:GetVec3(), SmokeColor ) end --- Smoke the COORDINATE Green. -- @param #COORDINATE self function COORDINATE:SmokeGreen() self:F2() self:Smoke( SMOKECOLOR.Green ) end --- Smoke the COORDINATE Red. -- @param #COORDINATE self function COORDINATE:SmokeRed() self:F2() self:Smoke( SMOKECOLOR.Red ) end --- Smoke the COORDINATE White. -- @param #COORDINATE self function COORDINATE:SmokeWhite() self:F2() self:Smoke( SMOKECOLOR.White ) end --- Smoke the COORDINATE Orange. -- @param #COORDINATE self function COORDINATE:SmokeOrange() self:F2() self:Smoke( SMOKECOLOR.Orange ) end --- Smoke the COORDINATE Blue. -- @param #COORDINATE self function COORDINATE:SmokeBlue() self:F2() self:Smoke( SMOKECOLOR.Blue ) end --- Flares the point in a color. -- @param #COORDINATE self -- @param Utilities.Utils#FLARECOLOR FlareColor -- @param Dcs.DCSTypes#Azimuth (optional) Azimuth The azimuth of the flare direction. The default azimuth is 0. function COORDINATE:Flare( FlareColor, Azimuth ) self:F2( { FlareColor } ) trigger.action.signalFlare( self:GetVec3(), FlareColor, Azimuth and Azimuth or 0 ) end --- Flare the COORDINATE White. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Azimuth (optional) Azimuth The azimuth of the flare direction. The default azimuth is 0. function COORDINATE:FlareWhite( Azimuth ) self:F2( Azimuth ) self:Flare( FLARECOLOR.White, Azimuth ) end --- Flare the COORDINATE Yellow. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Azimuth (optional) Azimuth The azimuth of the flare direction. The default azimuth is 0. function COORDINATE:FlareYellow( Azimuth ) self:F2( Azimuth ) self:Flare( FLARECOLOR.Yellow, Azimuth ) end --- Flare the COORDINATE Green. -- @param #COORDINATE self -- @param Dcs.DCSTypes#Azimuth (optional) Azimuth The azimuth of the flare direction. The default azimuth is 0. function COORDINATE:FlareGreen( Azimuth ) self:F2( Azimuth ) self:Flare( FLARECOLOR.Green, Azimuth ) end --- Flare the COORDINATE Red. -- @param #COORDINATE self function COORDINATE:FlareRed( Azimuth ) self:F2( Azimuth ) self:Flare( FLARECOLOR.Red, Azimuth ) end do -- Markings --- Mark to All -- @param #COORDINATE self -- @param #string MarkText Free format text that shows the marking clarification. -- @return #number The resulting Mark ID which is a number. -- @usage -- local TargetCoord = TargetGroup:GetCoordinate() -- local MarkID = TargetCoord:MarkToAll( "This is a target for all players" ) function COORDINATE:MarkToAll( MarkText ) local MarkID = UTILS.GetMarkID() trigger.action.markToAll( MarkID, MarkText, self:GetVec3() ) return MarkID end --- Mark to Coalition -- @param #COORDINATE self -- @param #string MarkText Free format text that shows the marking clarification. -- @param Coalition -- @return #number The resulting Mark ID which is a number. -- @usage -- local TargetCoord = TargetGroup:GetCoordinate() -- local MarkID = TargetCoord:MarkToCoalition( "This is a target for the red coalition", coalition.side.RED ) function COORDINATE:MarkToCoalition( MarkText, Coalition ) local MarkID = UTILS.GetMarkID() trigger.action.markToCoalition( MarkID, MarkText, self:GetVec3(), Coalition ) return MarkID end --- Mark to Red Coalition -- @param #COORDINATE self -- @param #string MarkText Free format text that shows the marking clarification. -- @return #number The resulting Mark ID which is a number. -- @usage -- local TargetCoord = TargetGroup:GetCoordinate() -- local MarkID = TargetCoord:MarkToCoalitionRed( "This is a target for the red coalition" ) function COORDINATE:MarkToCoalitionRed( MarkText ) return self:MarkToCoalition( MarkText, coalition.side.RED ) end --- Mark to Blue Coalition -- @param #COORDINATE self -- @param #string MarkText Free format text that shows the marking clarification. -- @return #number The resulting Mark ID which is a number. -- @usage -- local TargetCoord = TargetGroup:GetCoordinate() -- local MarkID = TargetCoord:MarkToCoalitionBlue( "This is a target for the blue coalition" ) function COORDINATE:MarkToCoalitionBlue( MarkText ) return self:MarkToCoalition( MarkText, coalition.side.BLUE ) end --- Mark to Group -- @param #COORDINATE self -- @param #string MarkText Free format text that shows the marking clarification. -- @param Wrapper.Group#GROUP MarkGroup The @{Group} that receives the mark. -- @return #number The resulting Mark ID which is a number. -- @usage -- local TargetCoord = TargetGroup:GetCoordinate() -- local MarkGroup = GROUP:FindByName( "AttackGroup" ) -- local MarkID = TargetCoord:MarkToGroup( "This is a target for the attack group", AttackGroup ) function COORDINATE:MarkToGroup( MarkText, MarkGroup ) local MarkID = UTILS.GetMarkID() trigger.action.markToGroup( MarkID, MarkText, self:GetVec3(), MarkGroup:GetID() ) return MarkID end --- Remove a mark -- @param #COORDINATE self -- @param #number MarkID The ID of the mark to be removed. -- @usage -- local TargetCoord = TargetGroup:GetCoordinate() -- local MarkGroup = GROUP:FindByName( "AttackGroup" ) -- local MarkID = TargetCoord:MarkToGroup( "This is a target for the attack group", AttackGroup ) -- <<< logic >>> -- RemoveMark( MarkID ) -- The mark is now removed function COORDINATE:RemoveMark( MarkID ) trigger.action.removeMark( MarkID ) end end -- Markings --- Returns if a Coordinate has Line of Sight (LOS) with the ToCoordinate. -- @param #COORDINATE self -- @param #COORDINATE ToCoordinate -- @return #boolean true If the ToCoordinate has LOS with the Coordinate, otherwise false. function COORDINATE:IsLOS( ToCoordinate ) -- Measurement of visibility should not be from the ground, so Adding a hypotethical 2 meters to each Coordinate. local FromVec3 = self:GetVec3() FromVec3.y = FromVec3.y + 2 local ToVec3 = ToCoordinate:GetVec3() ToVec3.y = ToVec3.y + 2 local IsLOS = land.isVisible( FromVec3, ToVec3 ) return IsLOS end --- Returns if a Coordinate is in a certain Radius of this Coordinate in 2D plane using the X and Z axis. -- @param #COORDINATE self -- @param #COORDINATE ToCoordinate The coordinate that will be tested if it is in the radius of this coordinate. -- @param #number Radius The radius of the circle on the 2D plane around this coordinate. -- @return #boolean true if in the Radius. function COORDINATE:IsInRadius( Coordinate, Radius ) local InVec2 = self:GetVec2() local Vec2 = Coordinate:GetVec2() local InRadius = UTILS.IsInRadius( InVec2, Vec2, Radius) return InRadius end --- Returns if a Coordinate is in a certain radius of this Coordinate in 3D space using the X, Y and Z axis. -- So Radius defines the radius of the a Sphere in 3D space around this coordinate. -- @param #COORDINATE self -- @param #COORDINATE ToCoordinate The coordinate that will be tested if it is in the radius of this coordinate. -- @param #number Radius The radius of the sphere in the 3D space around this coordinate. -- @return #boolean true if in the Sphere. function COORDINATE:IsInSphere( Coordinate, Radius ) local InVec3 = self:GetVec3() local Vec3 = Coordinate:GetVec3() local InSphere = UTILS.IsInSphere( InVec3, Vec3, Radius) return InSphere end --- Return a BR string from a COORDINATE to the COORDINATE. -- @param #COORDINATE self -- @param #COORDINATE TargetCoordinate The target COORDINATE. -- @return #string The BR text. function COORDINATE:ToStringBR( FromCoordinate, Settings ) local DirectionVec3 = FromCoordinate:GetDirectionVec3( self ) local AngleRadians = self:GetAngleRadians( DirectionVec3 ) local Distance = self:Get2DDistance( FromCoordinate ) return "BR, " .. self:GetBRText( AngleRadians, Distance, Settings ) end --- Return a BRAA string from a COORDINATE to the COORDINATE. -- @param #COORDINATE self -- @param #COORDINATE TargetCoordinate The target COORDINATE. -- @return #string The BR text. function COORDINATE:ToStringBRA( FromCoordinate, Settings ) local DirectionVec3 = FromCoordinate:GetDirectionVec3( self ) local AngleRadians = self:GetAngleRadians( DirectionVec3 ) local Distance = FromCoordinate:Get2DDistance( self ) local Altitude = self:GetAltitudeText() return "BRA, " .. self:GetBRAText( AngleRadians, Distance, Settings ) end --- Return a BULLS string from a COORDINATE to the BULLS of the coalition. -- @param #COORDINATE self -- @param Dcs.DCSCoalition#coalition.side Coalition The coalition. -- @return #string The BR text. function COORDINATE:ToStringBULLS( Coalition, Settings ) local TargetCoordinate = COORDINATE:NewFromVec3( coalition.getMainRefPoint( Coalition ) ) local DirectionVec3 = self:GetDirectionVec3( TargetCoordinate ) local AngleRadians = self:GetAngleRadians( DirectionVec3 ) local Distance = self:Get2DDistance( TargetCoordinate ) local Altitude = self:GetAltitudeText() return "BULLS, " .. self:GetBRText( AngleRadians, Distance, Settings ) end --- Return an aspect string from a COORDINATE to the Angle of the object. -- @param #COORDINATE self -- @param #COORDINATE TargetCoordinate The target COORDINATE. -- @return #string The Aspect string, which is Hot, Cold or Flanking. function COORDINATE:ToStringAspect( TargetCoordinate ) local Heading = self.Heading local DirectionVec3 = self:GetDirectionVec3( TargetCoordinate ) local Angle = self:GetAngleDegrees( DirectionVec3 ) if Heading then local Aspect = Angle - Heading if Aspect > -135 and Aspect <= -45 then return "Flanking" end if Aspect > -45 and Aspect <= 45 then return "Hot" end if Aspect > 45 and Aspect <= 135 then return "Flanking" end if Aspect > 135 or Aspect <= -135 then return "Cold" end end return "" end --- Provides a Lat Lon string in Degree Minute Second format. -- @param #COORDINATE self -- @param Core.Settings#SETTINGS Settings (optional) Settings -- @return #string The LL DMS Text function COORDINATE:ToStringLLDMS( Settings ) local LL_Accuracy = Settings and Settings.LL_Accuracy or _SETTINGS.LL_Accuracy local lat, lon = coord.LOtoLL( self:GetVec3() ) return "LL DMS, " .. UTILS.tostringLL( lat, lon, LL_Accuracy, true ) end --- Provides a Lat Lon string in Degree Decimal Minute format. -- @param #COORDINATE self -- @param Core.Settings#SETTINGS Settings (optional) Settings -- @return #string The LL DDM Text function COORDINATE:ToStringLLDDM( Settings ) local LL_Accuracy = Settings and Settings.LL_Accuracy or _SETTINGS.LL_Accuracy local lat, lon = coord.LOtoLL( self:GetVec3() ) return "LL DDM, " .. UTILS.tostringLL( lat, lon, LL_Accuracy, false ) end --- Provides a MGRS string -- @param #COORDINATE self -- @param Core.Settings#SETTINGS Settings (optional) Settings -- @return #string The MGRS Text function COORDINATE:ToStringMGRS( Settings ) --R2.1 Fixes issue #424. local MGRS_Accuracy = Settings and Settings.MGRS_Accuracy or _SETTINGS.MGRS_Accuracy local lat, lon = coord.LOtoLL( self:GetVec3() ) local MGRS = coord.LLtoMGRS( lat, lon ) return "MGRS, " .. UTILS.tostringMGRS( MGRS, MGRS_Accuracy ) end --- Provides a coordinate string of the point, based on a coordinate format system: -- * Uses default settings in COORDINATE. -- * Can be overridden if for a GROUP containing x clients, a menu was selected to override the default. -- @param #COORDINATE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @param Core.Settings#SETTINGS Settings -- @return #string The coordinate Text in the configured coordinate system. function COORDINATE:ToStringFromRP( ReferenceCoord, ReferenceName, Controllable, Settings ) -- R2.2 self:E( { ReferenceCoord = ReferenceCoord, ReferenceName = ReferenceName } ) local Settings = Settings or ( Controllable and _DATABASE:GetPlayerSettings( Controllable:GetPlayerName() ) ) or _SETTINGS local IsAir = Controllable and Controllable:IsAirPlane() or false if IsAir then local DirectionVec3 = ReferenceCoord:GetDirectionVec3( self ) local AngleRadians = self:GetAngleRadians( DirectionVec3 ) local Distance = self:Get2DDistance( ReferenceCoord ) return "Targets are the last seen " .. self:GetBRText( AngleRadians, Distance, Settings ) .. " from " .. ReferenceName else local DirectionVec3 = ReferenceCoord:GetDirectionVec3( self ) local AngleRadians = self:GetAngleRadians( DirectionVec3 ) local Distance = self:Get2DDistance( ReferenceCoord ) return "Target are located " .. self:GetBRText( AngleRadians, Distance, Settings ) .. " from " .. ReferenceName end return nil end --- Provides a coordinate string of the point, based on the A2G coordinate format system. -- @param #COORDINATE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @param Core.Settings#SETTINGS Settings -- @return #string The coordinate Text in the configured coordinate system. function COORDINATE:ToStringA2G( Controllable, Settings ) -- R2.2 self:F( { Controllable = Controllable and Controllable:GetName() } ) local Settings = Settings or ( Controllable and _DATABASE:GetPlayerSettings( Controllable:GetPlayerName() ) ) or _SETTINGS if Settings:IsA2G_BR() then -- If no Controllable is given to calculate the BR from, then MGRS will be used!!! if Controllable then local Coordinate = Controllable:GetCoordinate() return Controllable and self:ToStringBR( Coordinate, Settings ) or self:ToStringMGRS( Settings ) else return self:ToStringMGRS( Settings ) end end if Settings:IsA2G_LL_DMS() then return self:ToStringLLDMS( Settings ) end if Settings:IsA2G_LL_DDM() then return self:ToStringLLDDM( Settings ) end if Settings:IsA2G_MGRS() then return self:ToStringMGRS( Settings ) end return nil end --- Provides a coordinate string of the point, based on the A2A coordinate format system. -- @param #COORDINATE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @param Core.Settings#SETTINGS Settings -- @return #string The coordinate Text in the configured coordinate system. function COORDINATE:ToStringA2A( Controllable, Settings ) -- R2.2 self:F( { Controllable = Controllable and Controllable:GetName() } ) local Settings = Settings or ( Controllable and _DATABASE:GetPlayerSettings( Controllable:GetPlayerName() ) ) or _SETTINGS if Settings:IsA2A_BRAA() then if Controllable then local Coordinate = Controllable:GetCoordinate() return self:ToStringBRA( Coordinate, Settings ) else return self:ToStringMGRS( Settings ) end end if Settings:IsA2A_BULLS() then local Coalition = Controllable:GetCoalition() return self:ToStringBULLS( Coalition, Settings ) end if Settings:IsA2A_LL_DMS() then return self:ToStringLLDMS( Settings ) end if Settings:IsA2A_LL_DDM() then return self:ToStringLLDDM( Settings ) end if Settings:IsA2A_MGRS() then return self:ToStringMGRS( Settings ) end return nil end --- Provides a coordinate string of the point, based on a coordinate format system: -- * Uses default settings in COORDINATE. -- * Can be overridden if for a GROUP containing x clients, a menu was selected to override the default. -- @param #COORDINATE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @param Core.Settings#SETTINGS Settings -- @param Tasking.Task#TASK Task The task for which coordinates need to be calculated. -- @return #string The coordinate Text in the configured coordinate system. function COORDINATE:ToString( Controllable, Settings, Task ) -- R2.2 self:F( { Controllable = Controllable and Controllable:GetName() } ) local Settings = Settings or ( Controllable and _DATABASE:GetPlayerSettings( Controllable:GetPlayerName() ) ) or _SETTINGS local ModeA2A = true if Task then if Task:IsInstanceOf( TASK_A2A ) then ModeA2A = true else if Task:IsInstanceOf( TASK_A2G ) then ModeA2A = false else if Task:IsInstanceOf( TASK_CARGO ) then ModeA2A = false end end end else local IsAir = Controllable and Controllable:IsAirPlane() or false if IsAir then ModeA2A = true else ModeA2A = false end end if ModeA2A == true then return self:ToStringA2A( Controllable, Settings ) else return self:ToStringA2G( Controllable, Settings ) end return nil end end do -- POINT_VEC3 --- The POINT_VEC3 class -- @type POINT_VEC3 -- @field #number x The x coordinate in 3D space. -- @field #number y The y coordinate in 3D space. -- @field #number z The z coordiante in 3D space. -- @field Utilities.Utils#SMOKECOLOR SmokeColor -- @field Utilities.Utils#FLARECOLOR FlareColor -- @field #POINT_VEC3.RoutePointAltType RoutePointAltType -- @field #POINT_VEC3.RoutePointType RoutePointType -- @field #POINT_VEC3.RoutePointAction RoutePointAction -- @extends Core.Point#COORDINATE --- # POINT_VEC3 class, extends @{Point#COORDINATE} -- -- POINT_VEC3 defines a 3D point in the simulator and with its methods, you can use or manipulate the point in 3D space. -- -- **Important Note:** Most of the functions in this section were taken from MIST, and reworked to OO concepts. -- In order to keep the credibility of the the author, -- I want to emphasize that the formulas embedded in the MIST framework were created by Grimes or previous authors, -- who you can find on the Eagle Dynamics Forums. -- -- -- ## POINT_VEC3 constructor -- -- A new POINT_VEC3 object can be created with: -- -- * @{#POINT_VEC3.New}(): a 3D point. -- * @{#POINT_VEC3.NewFromVec3}(): a 3D point created from a @{DCSTypes#Vec3}. -- -- -- ## Manupulate the X, Y, Z coordinates of the POINT_VEC3 -- -- A POINT_VEC3 class works in 3D space. It contains internally an X, Y, Z coordinate. -- Methods exist to manupulate these coordinates. -- -- The current X, Y, Z axis can be retrieved with the methods @{#POINT_VEC3.GetX}(), @{#POINT_VEC3.GetY}(), @{#POINT_VEC3.GetZ}() respectively. -- The methods @{#POINT_VEC3.SetX}(), @{#POINT_VEC3.SetY}(), @{#POINT_VEC3.SetZ}() change the respective axis with a new value. -- The current axis values can be changed by using the methods @{#POINT_VEC3.AddX}(), @{#POINT_VEC3.AddY}(), @{#POINT_VEC3.AddZ}() -- to add or substract a value from the current respective axis value. -- Note that the Set and Add methods return the current POINT_VEC3 object, so these manipulation methods can be chained... For example: -- -- local Vec3 = PointVec3:AddX( 100 ):AddZ( 150 ):GetVec3() -- -- -- ## 3D calculation methods -- -- Various calculation methods exist to use or manipulate 3D space. Find below a short description of each method: -- -- -- ## Point Randomization -- -- Various methods exist to calculate random locations around a given 3D point. -- -- * @{#POINT_VEC3.GetRandomPointVec3InRadius}(): Provides a random 3D point around the current 3D point, in the given inner to outer band. -- -- -- @field #POINT_VEC3 POINT_VEC3 = { ClassName = "POINT_VEC3", Metric = true, RoutePointAltType = { BARO = "BARO", }, RoutePointType = { TakeOffParking = "TakeOffParking", TurningPoint = "Turning Point", }, RoutePointAction = { FromParkingArea = "From Parking Area", TurningPoint = "Turning Point", }, } --- RoutePoint AltTypes -- @type POINT_VEC3.RoutePointAltType -- @field BARO "BARO" --- RoutePoint Types -- @type POINT_VEC3.RoutePointType -- @field TakeOffParking "TakeOffParking" -- @field TurningPoint "Turning Point" --- RoutePoint Actions -- @type POINT_VEC3.RoutePointAction -- @field FromParkingArea "From Parking Area" -- @field TurningPoint "Turning Point" -- Constructor. --- Create a new POINT_VEC3 object. -- @param #POINT_VEC3 self -- @param Dcs.DCSTypes#Distance x The x coordinate of the Vec3 point, pointing to the North. -- @param Dcs.DCSTypes#Distance y The y coordinate of the Vec3 point, pointing Upwards. -- @param Dcs.DCSTypes#Distance z The z coordinate of the Vec3 point, pointing to the Right. -- @return Core.Point#POINT_VEC3 function POINT_VEC3:New( x, y, z ) local self = BASE:Inherit( self, COORDINATE:New( x, y, z ) ) -- Core.Point#POINT_VEC3 self:F2( self ) return self end --- Create a new POINT_VEC3 object from Vec2 coordinates. -- @param #POINT_VEC3 self -- @param Dcs.DCSTypes#Vec2 Vec2 The Vec2 point. -- @param Dcs.DCSTypes#Distance LandHeightAdd (optional) Add a landheight. -- @return Core.Point#POINT_VEC3 self function POINT_VEC3:NewFromVec2( Vec2, LandHeightAdd ) local self = BASE:Inherit( self, COORDINATE:NewFromVec2( Vec2, LandHeightAdd ) ) -- Core.Point#POINT_VEC3 self:F2( self ) return self end --- Create a new POINT_VEC3 object from Vec3 coordinates. -- @param #POINT_VEC3 self -- @param Dcs.DCSTypes#Vec3 Vec3 The Vec3 point. -- @return Core.Point#POINT_VEC3 self function POINT_VEC3:NewFromVec3( Vec3 ) local self = BASE:Inherit( self, COORDINATE:NewFromVec3( Vec3 ) ) -- Core.Point#POINT_VEC3 self:F2( self ) return self end --- Return the x coordinate of the POINT_VEC3. -- @param #POINT_VEC3 self -- @return #number The x coodinate. function POINT_VEC3:GetX() return self.x end --- Return the y coordinate of the POINT_VEC3. -- @param #POINT_VEC3 self -- @return #number The y coodinate. function POINT_VEC3:GetY() return self.y end --- Return the z coordinate of the POINT_VEC3. -- @param #POINT_VEC3 self -- @return #number The z coodinate. function POINT_VEC3:GetZ() return self.z end --- Set the x coordinate of the POINT_VEC3. -- @param #POINT_VEC3 self -- @param #number x The x coordinate. -- @return #POINT_VEC3 function POINT_VEC3:SetX( x ) self.x = x return self end --- Set the y coordinate of the POINT_VEC3. -- @param #POINT_VEC3 self -- @param #number y The y coordinate. -- @return #POINT_VEC3 function POINT_VEC3:SetY( y ) self.y = y return self end --- Set the z coordinate of the POINT_VEC3. -- @param #POINT_VEC3 self -- @param #number z The z coordinate. -- @return #POINT_VEC3 function POINT_VEC3:SetZ( z ) self.z = z return self end --- Add to the x coordinate of the POINT_VEC3. -- @param #POINT_VEC3 self -- @param #number x The x coordinate value to add to the current x coodinate. -- @return #POINT_VEC3 function POINT_VEC3:AddX( x ) self.x = self.x + x return self end --- Add to the y coordinate of the POINT_VEC3. -- @param #POINT_VEC3 self -- @param #number y The y coordinate value to add to the current y coodinate. -- @return #POINT_VEC3 function POINT_VEC3:AddY( y ) self.y = self.y + y return self end --- Add to the z coordinate of the POINT_VEC3. -- @param #POINT_VEC3 self -- @param #number z The z coordinate value to add to the current z coodinate. -- @return #POINT_VEC3 function POINT_VEC3:AddZ( z ) self.z = self.z +z return self end --- Return a random POINT_VEC3 within an Outer Radius and optionally NOT within an Inner Radius of the POINT_VEC3. -- @param #POINT_VEC3 self -- @param Dcs.DCSTypes#Distance OuterRadius -- @param Dcs.DCSTypes#Distance InnerRadius -- @return #POINT_VEC3 function POINT_VEC3:GetRandomPointVec3InRadius( OuterRadius, InnerRadius ) return POINT_VEC3:NewFromVec3( self:GetRandomVec3InRadius( OuterRadius, InnerRadius ) ) end end do -- POINT_VEC2 --- @type POINT_VEC2 -- @field Dcs.DCSTypes#Distance x The x coordinate in meters. -- @field Dcs.DCSTypes#Distance y the y coordinate in meters. -- @extends Core.Point#COORDINATE --- # POINT_VEC2 class, extends @{Point#COORDINATE} -- -- The @{Point#POINT_VEC2} class defines a 2D point in the simulator. The height coordinate (if needed) will be the land height + an optional added height specified. -- -- ## POINT_VEC2 constructor -- -- A new POINT_VEC2 instance can be created with: -- -- * @{Point#POINT_VEC2.New}(): a 2D point, taking an additional height parameter. -- * @{Point#POINT_VEC2.NewFromVec2}(): a 2D point created from a @{DCSTypes#Vec2}. -- -- ## Manupulate the X, Altitude, Y coordinates of the 2D point -- -- A POINT_VEC2 class works in 2D space, with an altitude setting. It contains internally an X, Altitude, Y coordinate. -- Methods exist to manupulate these coordinates. -- -- The current X, Altitude, Y axis can be retrieved with the methods @{#POINT_VEC2.GetX}(), @{#POINT_VEC2.GetAlt}(), @{#POINT_VEC2.GetY}() respectively. -- The methods @{#POINT_VEC2.SetX}(), @{#POINT_VEC2.SetAlt}(), @{#POINT_VEC2.SetY}() change the respective axis with a new value. -- The current Lat(itude), Alt(itude), Lon(gitude) values can also be retrieved with the methods @{#POINT_VEC2.GetLat}(), @{#POINT_VEC2.GetAlt}(), @{#POINT_VEC2.GetLon}() respectively. -- The current axis values can be changed by using the methods @{#POINT_VEC2.AddX}(), @{#POINT_VEC2.AddAlt}(), @{#POINT_VEC2.AddY}() -- to add or substract a value from the current respective axis value. -- Note that the Set and Add methods return the current POINT_VEC2 object, so these manipulation methods can be chained... For example: -- -- local Vec2 = PointVec2:AddX( 100 ):AddY( 2000 ):GetVec2() -- -- @field #POINT_VEC2 POINT_VEC2 = { ClassName = "POINT_VEC2", } --- POINT_VEC2 constructor. -- @param #POINT_VEC2 self -- @param Dcs.DCSTypes#Distance x The x coordinate of the Vec3 point, pointing to the North. -- @param Dcs.DCSTypes#Distance y The y coordinate of the Vec3 point, pointing to the Right. -- @param Dcs.DCSTypes#Distance LandHeightAdd (optional) The default height if required to be evaluated will be the land height of the x, y coordinate. You can specify an extra height to be added to the land height. -- @return Core.Point#POINT_VEC2 function POINT_VEC2:New( x, y, LandHeightAdd ) local LandHeight = land.getHeight( { ["x"] = x, ["y"] = y } ) LandHeightAdd = LandHeightAdd or 0 LandHeight = LandHeight + LandHeightAdd local self = BASE:Inherit( self, COORDINATE:New( x, LandHeight, y ) ) -- Core.Point#POINT_VEC2 self:F2( self ) return self end --- Create a new POINT_VEC2 object from Vec2 coordinates. -- @param #POINT_VEC2 self -- @param Dcs.DCSTypes#Vec2 Vec2 The Vec2 point. -- @return Core.Point#POINT_VEC2 self function POINT_VEC2:NewFromVec2( Vec2, LandHeightAdd ) local LandHeight = land.getHeight( Vec2 ) LandHeightAdd = LandHeightAdd or 0 LandHeight = LandHeight + LandHeightAdd local self = BASE:Inherit( self, COORDINATE:NewFromVec2( Vec2, LandHeightAdd ) ) -- #POINT_VEC2 self:F2( self ) return self end --- Create a new POINT_VEC2 object from Vec3 coordinates. -- @param #POINT_VEC2 self -- @param Dcs.DCSTypes#Vec3 Vec3 The Vec3 point. -- @return Core.Point#POINT_VEC2 self function POINT_VEC2:NewFromVec3( Vec3 ) local self = BASE:Inherit( self, COORDINATE:NewFromVec3( Vec3 ) ) -- #POINT_VEC2 self:F2( self ) return self end --- Return the x coordinate of the POINT_VEC2. -- @param #POINT_VEC2 self -- @return #number The x coodinate. function POINT_VEC2:GetX() return self.x end --- Return the y coordinate of the POINT_VEC2. -- @param #POINT_VEC2 self -- @return #number The y coodinate. function POINT_VEC2:GetY() return self.z end --- Set the x coordinate of the POINT_VEC2. -- @param #POINT_VEC2 self -- @param #number x The x coordinate. -- @return #POINT_VEC2 function POINT_VEC2:SetX( x ) self.x = x return self end --- Set the y coordinate of the POINT_VEC2. -- @param #POINT_VEC2 self -- @param #number y The y coordinate. -- @return #POINT_VEC2 function POINT_VEC2:SetY( y ) self.z = y return self end --- Return Return the Lat(itude) coordinate of the POINT_VEC2 (ie: (parent)POINT_VEC3.x). -- @param #POINT_VEC2 self -- @return #number The x coodinate. function POINT_VEC2:GetLat() return self.x end --- Set the Lat(itude) coordinate of the POINT_VEC2 (ie: POINT_VEC3.x). -- @param #POINT_VEC2 self -- @param #number x The x coordinate. -- @return #POINT_VEC2 function POINT_VEC2:SetLat( x ) self.x = x return self end --- Return the Lon(gitude) coordinate of the POINT_VEC2 (ie: (parent)POINT_VEC3.z). -- @param #POINT_VEC2 self -- @return #number The y coodinate. function POINT_VEC2:GetLon() return self.z end --- Set the Lon(gitude) coordinate of the POINT_VEC2 (ie: POINT_VEC3.z). -- @param #POINT_VEC2 self -- @param #number y The y coordinate. -- @return #POINT_VEC2 function POINT_VEC2:SetLon( z ) self.z = z return self end --- Return the altitude (height) of the land at the POINT_VEC2. -- @param #POINT_VEC2 self -- @return #number The land altitude. function POINT_VEC2:GetAlt() return self.y ~= 0 or land.getHeight( { x = self.x, y = self.z } ) end --- Set the altitude of the POINT_VEC2. -- @param #POINT_VEC2 self -- @param #number Altitude The land altitude. If nothing (nil) is given, then the current land altitude is set. -- @return #POINT_VEC2 function POINT_VEC2:SetAlt( Altitude ) self.y = Altitude or land.getHeight( { x = self.x, y = self.z } ) return self end --- Add to the x coordinate of the POINT_VEC2. -- @param #POINT_VEC2 self -- @param #number x The x coordinate. -- @return #POINT_VEC2 function POINT_VEC2:AddX( x ) self.x = self.x + x return self end --- Add to the y coordinate of the POINT_VEC2. -- @param #POINT_VEC2 self -- @param #number y The y coordinate. -- @return #POINT_VEC2 function POINT_VEC2:AddY( y ) self.z = self.z + y return self end --- Add to the current land height an altitude. -- @param #POINT_VEC2 self -- @param #number Altitude The Altitude to add. If nothing (nil) is given, then the current land altitude is set. -- @return #POINT_VEC2 function POINT_VEC2:AddAlt( Altitude ) self.y = land.getHeight( { x = self.x, y = self.z } ) + Altitude or 0 return self end --- Return a random POINT_VEC2 within an Outer Radius and optionally NOT within an Inner Radius of the POINT_VEC2. -- @param #POINT_VEC2 self -- @param Dcs.DCSTypes#Distance OuterRadius -- @param Dcs.DCSTypes#Distance InnerRadius -- @return #POINT_VEC2 function POINT_VEC2:GetRandomPointVec2InRadius( OuterRadius, InnerRadius ) self:F2( { OuterRadius, InnerRadius } ) return POINT_VEC2:NewFromVec2( self:GetRandomVec2InRadius( OuterRadius, InnerRadius ) ) end -- TODO: Check this to replace --- Calculate the distance from a reference @{#POINT_VEC2}. -- @param #POINT_VEC2 self -- @param #POINT_VEC2 PointVec2Reference The reference @{#POINT_VEC2}. -- @return Dcs.DCSTypes#Distance The distance from the reference @{#POINT_VEC2} in meters. function POINT_VEC2:DistanceFromPointVec2( PointVec2Reference ) self:F2( PointVec2Reference ) local Distance = ( ( PointVec2Reference.x - self.x ) ^ 2 + ( PointVec2Reference.z - self.z ) ^2 ) ^ 0.5 self:T2( Distance ) return Distance end end --- **Core** -- MESSAGE class takes are of the **real-time notifications** and **messages to players** during a simulation. -- -- ![Banner Image](..\Presentations\MESSAGE\Dia1.JPG) -- -- === -- -- @module Message --- The MESSAGE class -- @type MESSAGE -- @extends Core.Base#BASE --- # MESSAGE class, extends @{Base#BASE} -- -- Message System to display Messages to Clients, Coalitions or All. -- Messages are shown on the display panel for an amount of seconds, and will then disappear. -- Messages can contain a category which is indicating the category of the message. -- -- ## MESSAGE construction -- -- Messages are created with @{Message#MESSAGE.New}. Note that when the MESSAGE object is created, no message is sent yet. -- To send messages, you need to use the To functions. -- -- ## Send messages to an audience -- -- Messages are sent: -- -- * To a @{Client} using @{Message#MESSAGE.ToClient}(). -- * To a @{Group} using @{Message#MESSAGE.ToGroup}() -- * To a coalition using @{Message#MESSAGE.ToCoalition}(). -- * To the red coalition using @{Message#MESSAGE.ToRed}(). -- * To the blue coalition using @{Message#MESSAGE.ToBlue}(). -- * To all Players using @{Message#MESSAGE.ToAll}(). -- -- ## Send conditionally to an audience -- -- Messages can be sent conditionally to an audience (when a condition is true): -- -- * To all players using @{Message#MESSAGE.ToAllIf}(). -- * To a coalition using @{Message#MESSAGE.ToCoalitionIf}(). -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @field #MESSAGE MESSAGE = { ClassName = "MESSAGE", MessageCategory = 0, MessageID = 0, } --- Message Types -- @type MESSAGE.Type MESSAGE.Type = { Update = "Update", Information = "Information", Briefing = "Briefing Report", Overview = "Overview Report", Detailed = "Detailed Report" } --- Creates a new MESSAGE object. Note that these MESSAGE objects are not yet displayed on the display panel. You must use the functions @{ToClient} or @{ToCoalition} or @{ToAll} to send these Messages to the respective recipients. -- @param self -- @param #string MessageText is the text of the Message. -- @param #number MessageDuration is a number in seconds of how long the MESSAGE should be shown on the display panel. -- @param #string MessageCategory (optional) is a string expressing the "category" of the Message. The category will be shown as the first text in the message followed by a ": ". -- @return #MESSAGE -- @usage -- -- Create a series of new Messages. -- -- MessageAll is meant to be sent to all players, for 25 seconds, and is classified as "Score". -- -- MessageRED is meant to be sent to the RED players only, for 10 seconds, and is classified as "End of Mission", with ID "Win". -- -- MessageClient1 is meant to be sent to a Client, for 25 seconds, and is classified as "Score", with ID "Score". -- -- MessageClient1 is meant to be sent to a Client, for 25 seconds, and is classified as "Score", with ID "Score". -- MessageAll = MESSAGE:New( "To all Players: BLUE has won! Each player of BLUE wins 50 points!", 25, "End of Mission" ) -- MessageRED = MESSAGE:New( "To the RED Players: You receive a penalty because you've killed one of your own units", 25, "Penalty" ) -- MessageClient1 = MESSAGE:New( "Congratulations, you've just hit a target", 25, "Score" ) -- MessageClient2 = MESSAGE:New( "Congratulations, you've just killed a target", 25, "Score") function MESSAGE:New( MessageText, MessageDuration, MessageCategory ) local self = BASE:Inherit( self, BASE:New() ) self:F( { MessageText, MessageDuration, MessageCategory } ) self.MessageType = nil -- When no MessageCategory is given, we don't show it as a title... if MessageCategory and MessageCategory ~= "" then if MessageCategory:sub(-1) ~= "\n" then self.MessageCategory = MessageCategory .. ": " else self.MessageCategory = MessageCategory:sub( 1, -2 ) .. ":\n" end else self.MessageCategory = "" end self.MessageDuration = MessageDuration or 5 self.MessageTime = timer.getTime() self.MessageText = MessageText:gsub("^\n","",1):gsub("\n$","",1) self.MessageSent = false self.MessageGroup = false self.MessageCoalition = false return self end --- Creates a new MESSAGE object of a certain type. -- Note that these MESSAGE objects are not yet displayed on the display panel. -- You must use the functions @{ToClient} or @{ToCoalition} or @{ToAll} to send these Messages to the respective recipients. -- The message display times are automatically defined based on the timing settings in the @{Settings} menu. -- @param self -- @param #string MessageText is the text of the Message. -- @param #MESSAGE.Type MessageType The type of the message. -- @return #MESSAGE -- @usage -- MessageAll = MESSAGE:NewType( "To all Players: BLUE has won! Each player of BLUE wins 50 points!", MESSAGE.Type.Information ) -- MessageRED = MESSAGE:NewType( "To the RED Players: You receive a penalty because you've killed one of your own units", MESSAGE.Type.Information ) -- MessageClient1 = MESSAGE:NewType( "Congratulations, you've just hit a target", MESSAGE.Type.Update ) -- MessageClient2 = MESSAGE:NewType( "Congratulations, you've just killed a target", MESSAGE.Type.Update ) function MESSAGE:NewType( MessageText, MessageType ) local self = BASE:Inherit( self, BASE:New() ) self:F( { MessageText } ) self.MessageType = MessageType self.MessageTime = timer.getTime() self.MessageText = MessageText:gsub("^\n","",1):gsub("\n$","",1) return self end --- Sends a MESSAGE to a Client Group. Note that the Group needs to be defined within the ME with the skillset "Client" or "Player". -- @param #MESSAGE self -- @param Wrapper.Client#CLIENT Client is the Group of the Client. -- @return #MESSAGE -- @usage -- -- Send the 2 messages created with the @{New} method to the Client Group. -- -- Note that the Message of MessageClient2 is overwriting the Message of MessageClient1. -- ClientGroup = Group.getByName( "ClientGroup" ) -- -- MessageClient1 = MESSAGE:New( "Congratulations, you've just hit a target", "Score", 25, "Score" ):ToClient( ClientGroup ) -- MessageClient2 = MESSAGE:New( "Congratulations, you've just killed a target", "Score", 25, "Score" ):ToClient( ClientGroup ) -- or -- MESSAGE:New( "Congratulations, you've just hit a target", "Score", 25, "Score" ):ToClient( ClientGroup ) -- MESSAGE:New( "Congratulations, you've just killed a target", "Score", 25, "Score" ):ToClient( ClientGroup ) -- or -- MessageClient1 = MESSAGE:New( "Congratulations, you've just hit a target", "Score", 25, "Score" ) -- MessageClient2 = MESSAGE:New( "Congratulations, you've just killed a target", "Score", 25, "Score" ) -- MessageClient1:ToClient( ClientGroup ) -- MessageClient2:ToClient( ClientGroup ) function MESSAGE:ToClient( Client, Settings ) self:F( Client ) if Client and Client:GetClientGroupID() then if self.MessageType then local Settings = Settings or ( Client and _DATABASE:GetPlayerSettings( Client:GetPlayerName() ) ) or _SETTINGS -- Core.Settings#SETTINGS self.MessageDuration = Settings:GetMessageTime( self.MessageType ) self.MessageCategory = self.MessageType .. ": " end if self.MessageDuration ~= 0 then local ClientGroupID = Client:GetClientGroupID() self:T( self.MessageCategory .. self.MessageText:gsub("\n$",""):gsub("\n$","") .. " / " .. self.MessageDuration ) trigger.action.outTextForGroup( ClientGroupID, self.MessageCategory .. self.MessageText:gsub("\n$",""):gsub("\n$",""), self.MessageDuration ) end end return self end --- Sends a MESSAGE to a Group. -- @param #MESSAGE self -- @param Wrapper.Group#GROUP Group is the Group. -- @return #MESSAGE function MESSAGE:ToGroup( Group, Settings ) self:F( Group.GroupName ) if Group then if self.MessageType then local Settings = Settings or ( Group and _DATABASE:GetPlayerSettings( Group:GetPlayerName() ) ) or _SETTINGS -- Core.Settings#SETTINGS self.MessageDuration = Settings:GetMessageTime( self.MessageType ) self.MessageCategory = self.MessageType .. ": " end if self.MessageDuration ~= 0 then self:T( self.MessageCategory .. self.MessageText:gsub("\n$",""):gsub("\n$","") .. " / " .. self.MessageDuration ) trigger.action.outTextForGroup( Group:GetID(), self.MessageCategory .. self.MessageText:gsub("\n$",""):gsub("\n$",""), self.MessageDuration ) end end return self end --- Sends a MESSAGE to the Blue coalition. -- @param #MESSAGE self -- @return #MESSAGE -- @usage -- -- Send a message created with the @{New} method to the BLUE coalition. -- MessageBLUE = MESSAGE:New( "To the BLUE Players: You receive a penalty because you've killed one of your own units", "Penalty", 25, "Score" ):ToBlue() -- or -- MESSAGE:New( "To the BLUE Players: You receive a penalty because you've killed one of your own units", "Penalty", 25, "Score" ):ToBlue() -- or -- MessageBLUE = MESSAGE:New( "To the BLUE Players: You receive a penalty because you've killed one of your own units", "Penalty", 25, "Score" ) -- MessageBLUE:ToBlue() function MESSAGE:ToBlue() self:F() self:ToCoalition( coalition.side.BLUE ) return self end --- Sends a MESSAGE to the Red Coalition. -- @param #MESSAGE self -- @return #MESSAGE -- @usage -- -- Send a message created with the @{New} method to the RED coalition. -- MessageRED = MESSAGE:New( "To the RED Players: You receive a penalty because you've killed one of your own units", "Penalty", 25, "Score" ):ToRed() -- or -- MESSAGE:New( "To the RED Players: You receive a penalty because you've killed one of your own units", "Penalty", 25, "Score" ):ToRed() -- or -- MessageRED = MESSAGE:New( "To the RED Players: You receive a penalty because you've killed one of your own units", "Penalty", 25, "Score" ) -- MessageRED:ToRed() function MESSAGE:ToRed( ) self:F() self:ToCoalition( coalition.side.RED ) return self end --- Sends a MESSAGE to a Coalition. -- @param #MESSAGE self -- @param CoalitionSide needs to be filled out by the defined structure of the standard scripting engine @{coalition.side}. -- @return #MESSAGE -- @usage -- -- Send a message created with the @{New} method to the RED coalition. -- MessageRED = MESSAGE:New( "To the RED Players: You receive a penalty because you've killed one of your own units", "Penalty", 25, "Score" ):ToCoalition( coalition.side.RED ) -- or -- MESSAGE:New( "To the RED Players: You receive a penalty because you've killed one of your own units", "Penalty", 25, "Score" ):ToCoalition( coalition.side.RED ) -- or -- MessageRED = MESSAGE:New( "To the RED Players: You receive a penalty because you've killed one of your own units", "Penalty", 25, "Score" ) -- MessageRED:ToCoalition( coalition.side.RED ) function MESSAGE:ToCoalition( CoalitionSide, Settings ) self:F( CoalitionSide ) if self.MessageType then local Settings = Settings or _SETTINGS -- Core.Settings#SETTINGS self.MessageDuration = Settings:GetMessageTime( self.MessageType ) self.MessageCategory = self.MessageType .. ": " end if CoalitionSide then if self.MessageDuration ~= 0 then self:T( self.MessageCategory .. self.MessageText:gsub("\n$",""):gsub("\n$","") .. " / " .. self.MessageDuration ) trigger.action.outTextForCoalition( CoalitionSide, self.MessageCategory .. self.MessageText:gsub("\n$",""):gsub("\n$",""), self.MessageDuration ) end end return self end --- Sends a MESSAGE to a Coalition if the given Condition is true. -- @param #MESSAGE self -- @param CoalitionSide needs to be filled out by the defined structure of the standard scripting engine @{coalition.side}. -- @return #MESSAGE function MESSAGE:ToCoalitionIf( CoalitionSide, Condition ) self:F( CoalitionSide ) if Condition and Condition == true then self:ToCoalition( CoalitionSide ) end return self end --- Sends a MESSAGE to all players. -- @param #MESSAGE self -- @return #MESSAGE -- @usage -- -- Send a message created to all players. -- MessageAll = MESSAGE:New( "To all Players: BLUE has won! Each player of BLUE wins 50 points!", "End of Mission", 25, "Win" ):ToAll() -- or -- MESSAGE:New( "To all Players: BLUE has won! Each player of BLUE wins 50 points!", "End of Mission", 25, "Win" ):ToAll() -- or -- MessageAll = MESSAGE:New( "To all Players: BLUE has won! Each player of BLUE wins 50 points!", "End of Mission", 25, "Win" ) -- MessageAll:ToAll() function MESSAGE:ToAll() self:F() if self.MessageType then local Settings = Settings or _SETTINGS -- Core.Settings#SETTINGS self.MessageDuration = Settings:GetMessageTime( self.MessageType ) self.MessageCategory = self.MessageType .. ": " end if self.MessageDuration ~= 0 then self:T( self.MessageCategory .. self.MessageText:gsub("\n$",""):gsub("\n$","") .. " / " .. self.MessageDuration ) trigger.action.outText( self.MessageCategory .. self.MessageText:gsub("\n$",""):gsub("\n$",""), self.MessageDuration ) end return self end --- Sends a MESSAGE to all players if the given Condition is true. -- @param #MESSAGE self -- @return #MESSAGE function MESSAGE:ToAllIf( Condition ) if Condition and Condition == true then self:ToAll() end return self end --- **Core** -- The **FSM** (**F**inite **S**tate **M**achine) class and derived **FSM\_** classes -- are design patterns allowing efficient (long-lasting) processes and workflows. -- -- ![Banner Image](..\Presentations\FSM\Dia1.JPG) -- -- === -- -- A Finite State Machine (FSM) models a process flow that transitions between various **States** through triggered **Events**. -- -- A FSM can only be in one of a finite number of states. -- The machine is in only one state at a time; the state it is in at any given time is called the **current state**. -- It can change from one state to another when initiated by an **__internal__ or __external__ triggering event**, which is called a **transition**. -- An **FSM implementation** is defined by **a list of its states**, **its initial state**, and **the triggering events** for **each possible transition**. -- An FSM implementation is composed out of **two parts**, a set of **state transition rules**, and an implementation set of **state transition handlers**, implementing those transitions. -- -- The FSM class supports a **hierarchical implementation of a Finite State Machine**, -- that is, it allows to **embed existing FSM implementations in a master FSM**. -- FSM hierarchies allow for efficient FSM re-use, **not having to re-invent the wheel every time again** when designing complex processes. -- -- ![Workflow Example](..\Presentations\FSM\Dia2.JPG) -- -- The above diagram shows a graphical representation of a FSM implementation for a **Task**, which guides a Human towards a Zone, -- orders him to destroy x targets and account the results. -- Other examples of ready made FSM could be: -- -- * route a plane to a zone flown by a human -- * detect targets by an AI and report to humans -- * account for destroyed targets by human players -- * handle AI infantry to deploy from or embark to a helicopter or airplane or vehicle -- * let an AI patrol a zone -- -- The **MOOSE framework** uses extensively the FSM class and derived FSM\_ classes, -- because **the goal of MOOSE is to simplify mission design complexity for mission building**. -- By efficiently utilizing the FSM class and derived classes, MOOSE allows mission designers to quickly build processes. -- **Ready made FSM-based implementations classes** exist within the MOOSE framework that **can easily be re-used, -- and tailored** by mission designers through **the implementation of Transition Handlers**. -- Each of these FSM implementation classes start either with: -- -- * an acronym **AI\_**, which indicates an FSM implementation directing **AI controlled** @{GROUP} and/or @{UNIT}. These AI\_ classes derive the @{#FSM_CONTROLLABLE} class. -- * an acronym **TASK\_**, which indicates an FSM implementation executing a @{TASK} executed by Groups of players. These TASK\_ classes derive the @{#FSM_TASK} class. -- * an acronym **ACT\_**, which indicates an Sub-FSM implementation, directing **Humans actions** that need to be done in a @{TASK}, seated in a @{CLIENT} (slot) or a @{UNIT} (CA join). These ACT\_ classes derive the @{#FSM_PROCESS} class. -- -- Detailed explanations and API specifics are further below clarified and FSM derived class specifics are described in those class documentation sections. -- -- ##__Dislaimer:__ -- The FSM class development is based on a finite state machine implementation made by Conroy Kyle. -- The state machine can be found on [github](https://github.com/kyleconroy/lua-state-machine) -- I've reworked this development (taken the concept), and created a **hierarchical state machine** out of it, embedded within the DCS simulator. -- Additionally, I've added extendability and created an API that allows seamless FSM implementation. -- -- The following derived classes are available in the MOOSE framework, that implement a specialised form of a FSM: -- -- * @{#FSM_TASK}: Models Finite State Machines for @{Task}s. -- * @{#FSM_PROCESS}: Models Finite State Machines for @{Task} actions, which control @{Client}s. -- * @{#FSM_CONTROLLABLE}: Models Finite State Machines for @{Controllable}s, which are @{Group}s, @{Unit}s, @{Client}s. -- * @{#FSM_SET}: Models Finite State Machines for @{Set}s. Note that these FSMs control multiple objects!!! So State concerns here -- for multiple objects or the position of the state machine in the process. -- -- ==== -- -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @module Fsm do -- FSM --- @type FSM -- @extends Core.Base#BASE --- # FSM class, extends @{Base#BASE} -- -- A Finite State Machine (FSM) models a process flow that transitions between various **States** through triggered **Events**. -- -- A FSM can only be in one of a finite number of states. -- The machine is in only one state at a time; the state it is in at any given time is called the **current state**. -- It can change from one state to another when initiated by an **__internal__ or __external__ triggering event**, which is called a **transition**. -- An **FSM implementation** is defined by **a list of its states**, **its initial state**, and **the triggering events** for **each possible transition**. -- An FSM implementation is composed out of **two parts**, a set of **state transition rules**, and an implementation set of **state transition handlers**, implementing those transitions. -- -- The FSM class supports a **hierarchical implementation of a Finite State Machine**, -- that is, it allows to **embed existing FSM implementations in a master FSM**. -- FSM hierarchies allow for efficient FSM re-use, **not having to re-invent the wheel every time again** when designing complex processes. -- -- ![Workflow Example](..\Presentations\FSM\Dia2.JPG) -- -- The above diagram shows a graphical representation of a FSM implementation for a **Task**, which guides a Human towards a Zone, -- orders him to destroy x targets and account the results. -- Other examples of ready made FSM could be: -- -- * route a plane to a zone flown by a human -- * detect targets by an AI and report to humans -- * account for destroyed targets by human players -- * handle AI infantry to deploy from or embark to a helicopter or airplane or vehicle -- * let an AI patrol a zone -- -- The **MOOSE framework** uses extensively the FSM class and derived FSM\_ classes, -- because **the goal of MOOSE is to simplify mission design complexity for mission building**. -- By efficiently utilizing the FSM class and derived classes, MOOSE allows mission designers to quickly build processes. -- **Ready made FSM-based implementations classes** exist within the MOOSE framework that **can easily be re-used, -- and tailored** by mission designers through **the implementation of Transition Handlers**. -- Each of these FSM implementation classes start either with: -- -- * an acronym **AI\_**, which indicates an FSM implementation directing **AI controlled** @{GROUP} and/or @{UNIT}. These AI\_ classes derive the @{#FSM_CONTROLLABLE} class. -- * an acronym **TASK\_**, which indicates an FSM implementation executing a @{TASK} executed by Groups of players. These TASK\_ classes derive the @{#FSM_TASK} class. -- * an acronym **ACT\_**, which indicates an Sub-FSM implementation, directing **Humans actions** that need to be done in a @{TASK}, seated in a @{CLIENT} (slot) or a @{UNIT} (CA join). These ACT\_ classes derive the @{#FSM_PROCESS} class. -- -- ![Transition Rules and Transition Handlers and Event Triggers](..\Presentations\FSM\Dia3.JPG) -- -- The FSM class is the base class of all FSM\_ derived classes. It implements the main functionality to define and execute Finite State Machines. -- The derived FSM\_ classes extend the Finite State Machine functionality to run a workflow process for a specific purpose or component. -- -- Finite State Machines have **Transition Rules**, **Transition Handlers** and **Event Triggers**. -- -- The **Transition Rules** define the "Process Flow Boundaries", that is, -- the path that can be followed hopping from state to state upon triggered events. -- If an event is triggered, and there is no valid path found for that event, -- an error will be raised and the FSM will stop functioning. -- -- The **Transition Handlers** are special methods that can be defined by the mission designer, following a defined syntax. -- If the FSM object finds a method of such a handler, then the method will be called by the FSM, passing specific parameters. -- The method can then define its own custom logic to implement the FSM workflow, and to conduct other actions. -- -- The **Event Triggers** are methods that are defined by the FSM, which the mission designer can use to implement the workflow. -- Most of the time, these Event Triggers are used within the Transition Handler methods, so that a workflow is created running through the state machine. -- -- As explained above, a FSM supports **Linear State Transitions** and **Hierarchical State Transitions**, and both can be mixed to make a comprehensive FSM implementation. -- The below documentation has a seperate chapter explaining both transition modes, taking into account the **Transition Rules**, **Transition Handlers** and **Event Triggers**. -- -- ## FSM Linear Transitions -- -- Linear Transitions are Transition Rules allowing an FSM to transition from one or multiple possible **From** state(s) towards a **To** state upon a Triggered **Event**. -- The Lineair transition rule evaluation will always be done from the **current state** of the FSM. -- If no valid Transition Rule can be found in the FSM, the FSM will log an error and stop. -- -- ### FSM Transition Rules -- -- The FSM has transition rules that it follows and validates, as it walks the process. -- These rules define when an FSM can transition from a specific state towards an other specific state upon a triggered event. -- -- The method @{#FSM.AddTransition}() specifies a new possible Transition Rule for the FSM. -- -- The initial state can be defined using the method @{#FSM.SetStartState}(). The default start state of an FSM is "None". -- -- Find below an example of a Linear Transition Rule definition for an FSM. -- -- local Fsm3Switch = FSM:New() -- #FsmDemo -- FsmSwitch:SetStartState( "Off" ) -- FsmSwitch:AddTransition( "Off", "SwitchOn", "On" ) -- FsmSwitch:AddTransition( "Off", "SwitchMiddle", "Middle" ) -- FsmSwitch:AddTransition( "On", "SwitchOff", "Off" ) -- FsmSwitch:AddTransition( "Middle", "SwitchOff", "Off" ) -- -- The above code snippet models a 3-way switch Linear Transition: -- -- * It can be switched **On** by triggering event **SwitchOn**. -- * It can be switched to the **Middle** position, by triggering event **SwitchMiddle**. -- * It can be switched **Off** by triggering event **SwitchOff**. -- * Note that once the Switch is **On** or **Middle**, it can only be switched **Off**. -- -- #### Some additional comments: -- -- Note that Linear Transition Rules **can be declared in a few variations**: -- -- * The From states can be **a table of strings**, indicating that the transition rule will be valid **if the current state** of the FSM will be **one of the given From states**. -- * The From state can be a **"*"**, indicating that **the transition rule will always be valid**, regardless of the current state of the FSM. -- -- The below code snippet shows how the two last lines can be rewritten and consensed. -- -- FsmSwitch:AddTransition( { "On", "Middle" }, "SwitchOff", "Off" ) -- -- ### Transition Handling -- -- ![Transition Handlers](..\Presentations\FSM\Dia4.JPG) -- -- An FSM transitions in **4 moments** when an Event is being triggered and processed. -- The mission designer can define for each moment specific logic within methods implementations following a defined API syntax. -- These methods define the flow of the FSM process; because in those methods the FSM Internal Events will be triggered. -- -- * To handle **State** transition moments, create methods starting with OnLeave or OnEnter concatenated with the State name. -- * To handle **Event** transition moments, create methods starting with OnBefore or OnAfter concatenated with the Event name. -- -- **The OnLeave and OnBefore transition methods may return false, which will cancel the transition!** -- -- Transition Handler methods need to follow the above specified naming convention, but are also passed parameters from the FSM. -- These parameters are on the correct order: From, Event, To: -- -- * From = A string containing the From state. -- * Event = A string containing the Event name that was triggered. -- * To = A string containing the To state. -- -- On top, each of these methods can have a variable amount of parameters passed. See the example in section [1.1.3](#1.1.3\)-event-triggers). -- -- ### Event Triggers -- -- ![Event Triggers](..\Presentations\FSM\Dia5.JPG) -- -- The FSM creates for each Event two **Event Trigger methods**. -- There are two modes how Events can be triggered, which is **synchronous** and **asynchronous**: -- -- * The method **FSM:Event()** triggers an Event that will be processed **synchronously** or **immediately**. -- * The method **FSM:__Event( __seconds__ )** triggers an Event that will be processed **asynchronously** over time, waiting __x seconds__. -- -- The destinction between these 2 Event Trigger methods are important to understand. An asynchronous call will "log" the Event Trigger to be executed at a later time. -- Processing will just continue. Synchronous Event Trigger methods are useful to change states of the FSM immediately, but may have a larger processing impact. -- -- The following example provides a little demonstration on the difference between synchronous and asynchronous Event Triggering. -- -- function FSM:OnAfterEvent( From, Event, To, Amount ) -- self:T( { Amount = Amount } ) -- end -- -- local Amount = 1 -- FSM:__Event( 5, Amount ) -- -- Amount = Amount + 1 -- FSM:Event( Text, Amount ) -- -- In this example, the **:OnAfterEvent**() Transition Handler implementation will get called when **Event** is being triggered. -- Before we go into more detail, let's look at the last 4 lines of the example. -- The last line triggers synchronously the **Event**, and passes Amount as a parameter. -- The 3rd last line of the example triggers asynchronously **Event**. -- Event will be processed after 5 seconds, and Amount is given as a parameter. -- -- The output of this little code fragment will be: -- -- * Amount = 2 -- * Amount = 2 -- -- Because ... When Event was asynchronously processed after 5 seconds, Amount was set to 2. So be careful when processing and passing values and objects in asynchronous processing! -- -- ### Linear Transition Example -- -- This example is fully implemented in the MOOSE test mission on GITHUB: [FSM-100 - Transition Explanation](https://github.com/FlightControl-Master/MOOSE/blob/master/Moose%20Test%20Missions/FSM%20-%20Finite%20State%20Machine/FSM-100%20-%20Transition%20Explanation/FSM-100%20-%20Transition%20Explanation.lua) -- -- It models a unit standing still near Batumi, and flaring every 5 seconds while switching between a Green flare and a Red flare. -- The purpose of this example is not to show how exciting flaring is, but it demonstrates how a Linear Transition FSM can be build. -- Have a look at the source code. The source code is also further explained below in this section. -- -- The example creates a new FsmDemo object from class FSM. -- It will set the start state of FsmDemo to state **Green**. -- Two Linear Transition Rules are created, where upon the event **Switch**, -- the FsmDemo will transition from state **Green** to **Red** and from **Red** back to **Green**. -- -- ![Transition Example](..\Presentations\FSM\Dia6.JPG) -- -- local FsmDemo = FSM:New() -- #FsmDemo -- FsmDemo:SetStartState( "Green" ) -- FsmDemo:AddTransition( "Green", "Switch", "Red" ) -- FsmDemo:AddTransition( "Red", "Switch", "Green" ) -- -- In the above example, the FsmDemo could flare every 5 seconds a Green or a Red flare into the air. -- The next code implements this through the event handling method **OnAfterSwitch**. -- -- ![Transition Flow](..\Presentations\FSM\Dia7.JPG) -- -- function FsmDemo:OnAfterSwitch( From, Event, To, FsmUnit ) -- self:T( { From, Event, To, FsmUnit } ) -- -- if From == "Green" then -- FsmUnit:Flare(FLARECOLOR.Green) -- else -- if From == "Red" then -- FsmUnit:Flare(FLARECOLOR.Red) -- end -- end -- self:__Switch( 5, FsmUnit ) -- Trigger the next Switch event to happen in 5 seconds. -- end -- -- FsmDemo:__Switch( 5, FsmUnit ) -- Trigger the first Switch event to happen in 5 seconds. -- -- The OnAfterSwitch implements a loop. The last line of the code fragment triggers the Switch Event within 5 seconds. -- Upon the event execution (after 5 seconds), the OnAfterSwitch method is called of FsmDemo (cfr. the double point notation!!! ":"). -- The OnAfterSwitch method receives from the FSM the 3 transition parameter details ( From, Event, To ), -- and one additional parameter that was given when the event was triggered, which is in this case the Unit that is used within OnSwitchAfter. -- -- function FsmDemo:OnAfterSwitch( From, Event, To, FsmUnit ) -- -- For debugging reasons the received parameters are traced within the DCS.log. -- -- self:T( { From, Event, To, FsmUnit } ) -- -- The method will check if the From state received is either "Green" or "Red" and will flare the respective color from the FsmUnit. -- -- if From == "Green" then -- FsmUnit:Flare(FLARECOLOR.Green) -- else -- if From == "Red" then -- FsmUnit:Flare(FLARECOLOR.Red) -- end -- end -- -- It is important that the Switch event is again triggered, otherwise, the FsmDemo would stop working after having the first Event being handled. -- -- FsmDemo:__Switch( 5, FsmUnit ) -- Trigger the next Switch event to happen in 5 seconds. -- -- The below code fragment extends the FsmDemo, demonstrating multiple **From states declared as a table**, adding a **Linear Transition Rule**. -- The new event **Stop** will cancel the Switching process. -- The transition for event Stop can be executed if the current state of the FSM is either "Red" or "Green". -- -- local FsmDemo = FSM:New() -- #FsmDemo -- FsmDemo:SetStartState( "Green" ) -- FsmDemo:AddTransition( "Green", "Switch", "Red" ) -- FsmDemo:AddTransition( "Red", "Switch", "Green" ) -- FsmDemo:AddTransition( { "Red", "Green" }, "Stop", "Stopped" ) -- -- The transition for event Stop can also be simplified, as any current state of the FSM is valid. -- -- FsmDemo:AddTransition( "*", "Stop", "Stopped" ) -- -- So... When FsmDemo:Stop() is being triggered, the state of FsmDemo will transition from Red or Green to Stopped. -- And there is no transition handling method defined for that transition, thus, no new event is being triggered causing the FsmDemo process flow to halt. -- -- ## FSM Hierarchical Transitions -- -- Hierarchical Transitions allow to re-use readily available and implemented FSMs. -- This becomes in very useful for mission building, where mission designers build complex processes and workflows, -- combining smaller FSMs to one single FSM. -- -- The FSM can embed **Sub-FSMs** that will execute and return **multiple possible Return (End) States**. -- Depending upon **which state is returned**, the main FSM can continue the flow **triggering specific events**. -- -- The method @{#FSM.AddProcess}() adds a new Sub-FSM to the FSM. -- -- === -- -- @field #FSM FSM -- FSM = { ClassName = "FSM", } --- Creates a new FSM object. -- @param #FSM self -- @return #FSM function FSM:New( FsmT ) -- Inherits from BASE self = BASE:Inherit( self, BASE:New() ) self.options = options or {} self.options.subs = self.options.subs or {} self.current = self.options.initial or 'none' self.Events = {} self.subs = {} self.endstates = {} self.Scores = {} self._StartState = "none" self._Transitions = {} self._Processes = {} self._EndStates = {} self._Scores = {} self._EventSchedules = {} self.CallScheduler = SCHEDULER:New( self ) return self end --- Sets the start state of the FSM. -- @param #FSM self -- @param #string State A string defining the start state. function FSM:SetStartState( State ) self._StartState = State self.current = State end --- Returns the start state of the FSM. -- @param #FSM self -- @return #string A string containing the start state. function FSM:GetStartState() return self._StartState or {} end --- Add a new transition rule to the FSM. -- A transition rule defines when and if the FSM can transition from a state towards another state upon a triggered event. -- @param #FSM self -- @param #table From Can contain a string indicating the From state or a table of strings containing multiple From states. -- @param #string Event The Event name. -- @param #string To The To state. function FSM:AddTransition( From, Event, To ) local Transition = {} Transition.From = From Transition.Event = Event Transition.To = To self:T2( Transition ) self._Transitions[Transition] = Transition self:_eventmap( self.Events, Transition ) end --- Returns a table of the transition rules defined within the FSM. -- @return #table function FSM:GetTransitions() return self._Transitions or {} end --- Set the default @{Process} template with key ProcessName providing the ProcessClass and the process object when it is assigned to a @{Controllable} by the task. -- @param #FSM self -- @param #table From Can contain a string indicating the From state or a table of strings containing multiple From states. -- @param #string Event The Event name. -- @param Core.Fsm#FSM_PROCESS Process An sub-process FSM. -- @param #table ReturnEvents A table indicating for which returned events of the SubFSM which Event must be triggered in the FSM. -- @return Core.Fsm#FSM_PROCESS The SubFSM. function FSM:AddProcess( From, Event, Process, ReturnEvents ) self:T( { From, Event } ) local Sub = {} Sub.From = From Sub.Event = Event Sub.fsm = Process Sub.StartEvent = "Start" Sub.ReturnEvents = ReturnEvents self._Processes[Sub] = Sub self:_submap( self.subs, Sub, nil ) self:AddTransition( From, Event, From ) return Process end --- Returns a table of the SubFSM rules defined within the FSM. -- @return #table function FSM:GetProcesses() return self._Processes or {} end function FSM:GetProcess( From, Event ) for ProcessID, Process in pairs( self:GetProcesses() ) do if Process.From == From and Process.Event == Event then return Process.fsm end end error( "Sub-Process from state " .. From .. " with event " .. Event .. " not found!" ) end --- Adds an End state. function FSM:AddEndState( State ) self._EndStates[State] = State self.endstates[State] = State end --- Returns the End states. function FSM:GetEndStates() return self._EndStates or {} end --- Adds a score for the FSM to be achieved. -- @param #FSM self -- @param #string State is the state of the process when the score needs to be given. (See the relevant state descriptions of the process). -- @param #string ScoreText is a text describing the score that is given according the status. -- @param #number Score is a number providing the score of the status. -- @return #FSM self function FSM:AddScore( State, ScoreText, Score ) self:F( { State, ScoreText, Score } ) self._Scores[State] = self._Scores[State] or {} self._Scores[State].ScoreText = ScoreText self._Scores[State].Score = Score return self end --- Adds a score for the FSM_PROCESS to be achieved. -- @param #FSM self -- @param #string From is the From State of the main process. -- @param #string Event is the Event of the main process. -- @param #string State is the state of the process when the score needs to be given. (See the relevant state descriptions of the process). -- @param #string ScoreText is a text describing the score that is given according the status. -- @param #number Score is a number providing the score of the status. -- @return #FSM self function FSM:AddScoreProcess( From, Event, State, ScoreText, Score ) self:F( { From, Event, State, ScoreText, Score } ) local Process = self:GetProcess( From, Event ) Process._Scores[State] = Process._Scores[State] or {} Process._Scores[State].ScoreText = ScoreText Process._Scores[State].Score = Score self:T( Process._Scores ) return Process end --- Returns a table with the scores defined. function FSM:GetScores() return self._Scores or {} end --- Returns a table with the Subs defined. function FSM:GetSubs() return self.options.subs end function FSM:LoadCallBacks( CallBackTable ) for name, callback in pairs( CallBackTable or {} ) do self[name] = callback end end function FSM:_eventmap( Events, EventStructure ) local Event = EventStructure.Event local __Event = "__" .. EventStructure.Event self[Event] = self[Event] or self:_create_transition(Event) self[__Event] = self[__Event] or self:_delayed_transition(Event) self:T2( "Added methods: " .. Event .. ", " .. __Event ) Events[Event] = self.Events[Event] or { map = {} } self:_add_to_map( Events[Event].map, EventStructure ) end function FSM:_submap( subs, sub, name ) --self:F( { sub = sub, name = name } ) subs[sub.From] = subs[sub.From] or {} subs[sub.From][sub.Event] = subs[sub.From][sub.Event] or {} -- Make the reference table weak. -- setmetatable( subs[sub.From][sub.Event], { __mode = "k" } ) subs[sub.From][sub.Event][sub] = {} subs[sub.From][sub.Event][sub].fsm = sub.fsm subs[sub.From][sub.Event][sub].StartEvent = sub.StartEvent subs[sub.From][sub.Event][sub].ReturnEvents = sub.ReturnEvents or {} -- these events need to be given to find the correct continue event ... if none given, the processing will stop. subs[sub.From][sub.Event][sub].name = name subs[sub.From][sub.Event][sub].fsmparent = self end function FSM:_call_handler( handler, params, EventName ) local ErrorHandler = function( errmsg ) env.info( "Error in SCHEDULER function:" .. errmsg ) if debug ~= nil then env.info( debug.traceback() ) end return errmsg end if self[handler] then self:T2( "Calling " .. handler ) self._EventSchedules[EventName] = nil local Result, Value = xpcall( function() return self[handler]( self, unpack( params ) ) end, ErrorHandler ) return Value end end function FSM._handler( self, EventName, ... ) local Can, to = self:can( EventName ) if to == "*" then to = self.current end if Can then local from = self.current local params = { from, EventName, to, ... } if self.Controllable then self:T( "FSM Transition for " .. self.Controllable.ControllableName .. " :" .. self.current .. " --> " .. EventName .. " --> " .. to ) else self:T( "FSM Transition:" .. self.current .. " --> " .. EventName .. " --> " .. to ) end if ( self:_call_handler("onbefore" .. EventName, params, EventName ) == false ) or ( self:_call_handler("OnBefore" .. EventName, params, EventName ) == false ) or ( self:_call_handler("onleave" .. from, params, EventName ) == false ) or ( self:_call_handler("OnLeave" .. from, params, EventName ) == false ) then self:T( "Cancel Transition" ) return false end self.current = to local execute = true local subtable = self:_gosub( from, EventName ) for _, sub in pairs( subtable ) do --if sub.nextevent then -- self:F2( "nextevent = " .. sub.nextevent ) -- self[sub.nextevent]( self ) --end self:T( "calling sub start event: " .. sub.StartEvent ) sub.fsm.fsmparent = self sub.fsm.ReturnEvents = sub.ReturnEvents sub.fsm[sub.StartEvent]( sub.fsm ) execute = false end local fsmparent, Event = self:_isendstate( to ) if fsmparent and Event then self:F2( { "end state: ", fsmparent, Event } ) self:_call_handler("onenter" .. to, params, EventName ) self:_call_handler("OnEnter" .. to, params, EventName ) self:_call_handler("onafter" .. EventName, params, EventName ) self:_call_handler("OnAfter" .. EventName, params, EventName ) self:_call_handler("onstatechange", params, EventName ) fsmparent[Event]( fsmparent ) execute = false end if execute then -- only execute the call if the From state is not equal to the To state! Otherwise this function should never execute! --if from ~= to then self:_call_handler("onenter" .. to, params, EventName ) self:_call_handler("OnEnter" .. to, params, EventName ) --end self:_call_handler("onafter" .. EventName, params, EventName ) self:_call_handler("OnAfter" .. EventName, params, EventName ) self:_call_handler("onstatechange", params, EventName ) end else self:T( "Cannot execute transition." ) self:T( { From = self.current, Event = EventName, To = to, Can = Can } ) end return nil end function FSM:_delayed_transition( EventName ) return function( self, DelaySeconds, ... ) self:T2( "Delayed Event: " .. EventName ) local CallID = 0 if DelaySeconds ~= nil then if DelaySeconds < 0 then -- Only call the event ONCE! DelaySeconds = math.abs( DelaySeconds ) if not self._EventSchedules[EventName] then CallID = self.CallScheduler:Schedule( self, self._handler, { EventName, ... }, DelaySeconds or 1 ) self._EventSchedules[EventName] = CallID else -- reschedule end else CallID = self.CallScheduler:Schedule( self, self._handler, { EventName, ... }, DelaySeconds or 1 ) end else error( "FSM: An asynchronous event trigger requires a DelaySeconds parameter!!! This can be positive or negative! Sorry, but will not process this." ) end self:T2( { CallID = CallID } ) end end function FSM:_create_transition( EventName ) return function( self, ... ) return self._handler( self, EventName , ... ) end end function FSM:_gosub( ParentFrom, ParentEvent ) local fsmtable = {} if self.subs[ParentFrom] and self.subs[ParentFrom][ParentEvent] then self:T( { ParentFrom, ParentEvent, self.subs[ParentFrom], self.subs[ParentFrom][ParentEvent] } ) return self.subs[ParentFrom][ParentEvent] else return {} end end function FSM:_isendstate( Current ) local FSMParent = self.fsmparent if FSMParent and self.endstates[Current] then self:T( { state = Current, endstates = self.endstates, endstate = self.endstates[Current] } ) FSMParent.current = Current local ParentFrom = FSMParent.current self:T( ParentFrom ) self:T( self.ReturnEvents ) local Event = self.ReturnEvents[Current] self:T( { ParentFrom, Event, self.ReturnEvents } ) if Event then return FSMParent, Event else self:T( { "Could not find parent event name for state ", ParentFrom } ) end end return nil end function FSM:_add_to_map( Map, Event ) self:F3( { Map, Event } ) if type(Event.From) == 'string' then Map[Event.From] = Event.To else for _, From in ipairs(Event.From) do Map[From] = Event.To end end self:T3( { Map, Event } ) end function FSM:GetState() return self.current end function FSM:Is( State ) return self.current == State end function FSM:is(state) return self.current == state end function FSM:can(e) local Event = self.Events[e] self:F3( { self.current, Event } ) local To = Event and Event.map[self.current] or Event.map['*'] return To ~= nil, To end function FSM:cannot(e) return not self:can(e) end end do -- FSM_CONTROLLABLE --- @type FSM_CONTROLLABLE -- @field Wrapper.Controllable#CONTROLLABLE Controllable -- @extends Core.Fsm#FSM --- # FSM_CONTROLLABLE, extends @{#FSM} -- -- FSM_CONTROLLABLE class models Finite State Machines for @{Controllable}s, which are @{Group}s, @{Unit}s, @{Client}s. -- -- === -- -- @field #FSM_CONTROLLABLE FSM_CONTROLLABLE -- FSM_CONTROLLABLE = { ClassName = "FSM_CONTROLLABLE", } --- Creates a new FSM_CONTROLLABLE object. -- @param #FSM_CONTROLLABLE self -- @param #table FSMT Finite State Machine Table -- @param Wrapper.Controllable#CONTROLLABLE Controllable (optional) The CONTROLLABLE object that the FSM_CONTROLLABLE governs. -- @return #FSM_CONTROLLABLE function FSM_CONTROLLABLE:New( FSMT, Controllable ) -- Inherits from BASE local self = BASE:Inherit( self, FSM:New( FSMT ) ) -- Core.Fsm#FSM_CONTROLLABLE if Controllable then self:SetControllable( Controllable ) end self:AddTransition( "*", "Stop", "Stopped" ) --- OnBefore Transition Handler for Event Stop. -- @function [parent=#FSM_CONTROLLABLE] OnBeforeStop -- @param #FSM_CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Stop. -- @function [parent=#FSM_CONTROLLABLE] OnAfterStop -- @param #FSM_CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Stop. -- @function [parent=#FSM_CONTROLLABLE] Stop -- @param #FSM_CONTROLLABLE self --- Asynchronous Event Trigger for Event Stop. -- @function [parent=#FSM_CONTROLLABLE] __Stop -- @param #FSM_CONTROLLABLE self -- @param #number Delay The delay in seconds. --- OnLeave Transition Handler for State Stopped. -- @function [parent=#FSM_CONTROLLABLE] OnLeaveStopped -- @param #FSM_CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Stopped. -- @function [parent=#FSM_CONTROLLABLE] OnEnterStopped -- @param #FSM_CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. return self end --- OnAfter Transition Handler for Event Stop. -- @function [parent=#FSM_CONTROLLABLE] OnAfterStop -- @param #FSM_CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function FSM_CONTROLLABLE:OnAfterStop(Controllable,From,Event,To) -- Clear all pending schedules self.CallScheduler:Clear() end --- Sets the CONTROLLABLE object that the FSM_CONTROLLABLE governs. -- @param #FSM_CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE FSMControllable -- @return #FSM_CONTROLLABLE function FSM_CONTROLLABLE:SetControllable( FSMControllable ) --self:F( FSMControllable:GetName() ) self.Controllable = FSMControllable end --- Gets the CONTROLLABLE object that the FSM_CONTROLLABLE governs. -- @param #FSM_CONTROLLABLE self -- @return Wrapper.Controllable#CONTROLLABLE function FSM_CONTROLLABLE:GetControllable() return self.Controllable end function FSM_CONTROLLABLE:_call_handler( handler, params, EventName ) local ErrorHandler = function( errmsg ) env.info( "Error in SCHEDULER function:" .. errmsg ) if debug ~= nil then env.info( debug.traceback() ) end return errmsg end if self[handler] then self:F3( "Calling " .. handler ) self._EventSchedules[EventName] = nil local Result, Value = xpcall( function() return self[handler]( self, self.Controllable, unpack( params ) ) end, ErrorHandler ) return Value --return self[handler]( self, self.Controllable, unpack( params ) ) end end end do -- FSM_PROCESS --- @type FSM_PROCESS -- @field Tasking.Task#TASK Task -- @extends Core.Fsm#FSM_CONTROLLABLE --- # FSM_PROCESS, extends @{#FSM} -- -- FSM_PROCESS class models Finite State Machines for @{Task} actions, which control @{Client}s. -- -- === -- -- @field #FSM_PROCESS FSM_PROCESS -- FSM_PROCESS = { ClassName = "FSM_PROCESS", } --- Creates a new FSM_PROCESS object. -- @param #FSM_PROCESS self -- @return #FSM_PROCESS function FSM_PROCESS:New( Controllable, Task ) local self = BASE:Inherit( self, FSM_CONTROLLABLE:New() ) -- Core.Fsm#FSM_PROCESS --self:F( Controllable ) self:Assign( Controllable, Task ) return self end function FSM_PROCESS:Init( FsmProcess ) self:T( "No Initialisation" ) end function FSM_PROCESS:_call_handler( handler, params, EventName ) local ErrorHandler = function( errmsg ) env.info( "Error in FSM_PROCESS call handler:" .. errmsg ) if debug ~= nil then env.info( debug.traceback() ) end return errmsg end if self[handler] then self:F3( "Calling " .. handler ) self._EventSchedules[EventName] = nil local Result, Value = xpcall( function() return self[handler]( self, self.Controllable, self.Task, unpack( params ) ) end, ErrorHandler ) return Value --return self[handler]( self, self.Controllable, unpack( params ) ) end end --- Creates a new FSM_PROCESS object based on this FSM_PROCESS. -- @param #FSM_PROCESS self -- @return #FSM_PROCESS function FSM_PROCESS:Copy( Controllable, Task ) self:T( { self:GetClassNameAndID() } ) local NewFsm = self:New( Controllable, Task ) -- Core.Fsm#FSM_PROCESS NewFsm:Assign( Controllable, Task ) -- Polymorphic call to initialize the new FSM_PROCESS based on self FSM_PROCESS NewFsm:Init( self ) -- Set Start State NewFsm:SetStartState( self:GetStartState() ) -- Copy Transitions for TransitionID, Transition in pairs( self:GetTransitions() ) do NewFsm:AddTransition( Transition.From, Transition.Event, Transition.To ) end -- Copy Processes for ProcessID, Process in pairs( self:GetProcesses() ) do --self:E( { Process:GetName() } ) local FsmProcess = NewFsm:AddProcess( Process.From, Process.Event, Process.fsm:Copy( Controllable, Task ), Process.ReturnEvents ) end -- Copy End States for EndStateID, EndState in pairs( self:GetEndStates() ) do self:T( EndState ) NewFsm:AddEndState( EndState ) end -- Copy the score tables for ScoreID, Score in pairs( self:GetScores() ) do self:T( Score ) NewFsm:AddScore( ScoreID, Score.ScoreText, Score.Score ) end return NewFsm end --- Removes an FSM_PROCESS object. -- @param #FSM_PROCESS self -- @return #FSM_PROCESS function FSM_PROCESS:Remove() self:F( { self:GetClassNameAndID() } ) self:F( "Clearing Schedules" ) self.CallScheduler:Clear() -- Copy Processes for ProcessID, Process in pairs( self:GetProcesses() ) do if Process.fsm then Process.fsm:Remove() Process.fsm = nil end end return self end --- Sets the task of the process. -- @param #FSM_PROCESS self -- @param Tasking.Task#TASK Task -- @return #FSM_PROCESS function FSM_PROCESS:SetTask( Task ) self.Task = Task return self end --- Gets the task of the process. -- @param #FSM_PROCESS self -- @return Tasking.Task#TASK function FSM_PROCESS:GetTask() return self.Task end --- Gets the mission of the process. -- @param #FSM_PROCESS self -- @return Tasking.Mission#MISSION function FSM_PROCESS:GetMission() return self.Task.Mission end --- Gets the mission of the process. -- @param #FSM_PROCESS self -- @return Tasking.CommandCenter#COMMANDCENTER function FSM_PROCESS:GetCommandCenter() return self:GetTask():GetMission():GetCommandCenter() end -- TODO: Need to check and fix that an FSM_PROCESS is only for a UNIT. Not for a GROUP. --- Send a message of the @{Task} to the Group of the Unit. -- @param #FSM_PROCESS self function FSM_PROCESS:Message( Message ) self:F( { Message = Message } ) local CC = self:GetCommandCenter() local TaskGroup = self.Controllable:GetGroup() local PlayerName = self.Controllable:GetPlayerName() -- Only for a unit PlayerName = PlayerName and " (" .. PlayerName .. ")" or "" -- If PlayerName is nil, then keep it nil, otherwise add brackets. local Callsign = self.Controllable:GetCallsign() local Prefix = Callsign and " @ " .. Callsign .. PlayerName or "" Message = Prefix .. ": " .. Message CC:MessageToGroup( Message, TaskGroup ) end --- Assign the process to a @{Unit} and activate the process. -- @param #FSM_PROCESS self -- @param Task.Tasking#TASK Task -- @param Wrapper.Unit#UNIT ProcessUnit -- @return #FSM_PROCESS self function FSM_PROCESS:Assign( ProcessUnit, Task ) --self:T( { Task:GetName(), ProcessUnit:GetName() } ) self:SetControllable( ProcessUnit ) self:SetTask( Task ) --self.ProcessGroup = ProcessUnit:GetGroup() return self end function FSM_PROCESS:onenterAssigned( ProcessUnit ) self:T( "Assign" ) self.Task:Assign() end function FSM_PROCESS:onenterFailed( ProcessUnit ) self:T( "Failed" ) self.Task:Fail() end --- StateMachine callback function for a FSM_PROCESS -- @param #FSM_PROCESS self -- @param Wrapper.Controllable#CONTROLLABLE ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function FSM_PROCESS:onstatechange( ProcessUnit, Task, From, Event, To, Dummy ) self:T( { ProcessUnit:GetName(), From, Event, To, Dummy, self:IsTrace() } ) if self:IsTrace() then --MESSAGE:New( "@ Process " .. self:GetClassNameAndID() .. " : " .. Event .. " changed to state " .. To, 2 ):ToAll() end self:T( { Scores = self._Scores, To = To } ) -- TODO: This needs to be reworked with a callback functions allocated within Task, and set within the mission script from the Task Objects... if self._Scores[To] then local Task = self.Task local Scoring = Task:GetScoring() if Scoring then Scoring:_AddMissionTaskScore( Task.Mission, ProcessUnit, self._Scores[To].ScoreText, self._Scores[To].Score ) end end end end do -- FSM_TASK --- FSM_TASK class -- @type FSM_TASK -- @field Tasking.Task#TASK Task -- @extends #FSM --- # FSM_TASK, extends @{#FSM} -- -- FSM_TASK class models Finite State Machines for @{Task}s. -- -- === -- -- @field #FSM_TASK FSM_TASK -- FSM_TASK = { ClassName = "FSM_TASK", } --- Creates a new FSM_TASK object. -- @param #FSM_TASK self -- @param #table FSMT -- @param Tasking.Task#TASK Task -- @param Wrapper.Unit#UNIT TaskUnit -- @return #FSM_TASK function FSM_TASK:New( FSMT ) local self = BASE:Inherit( self, FSM_CONTROLLABLE:New( FSMT ) ) -- Core.Fsm#FSM_TASK self["onstatechange"] = self.OnStateChange return self end function FSM_TASK:_call_handler( handler, params, EventName ) if self[handler] then self:T( "Calling " .. handler ) self._EventSchedules[EventName] = nil return self[handler]( self, unpack( params ) ) end end end -- FSM_TASK do -- FSM_SET --- FSM_SET class -- @type FSM_SET -- @field Core.Set#SET_BASE Set -- @extends Core.Fsm#FSM --- # FSM_SET, extends @{#FSM} -- -- FSM_SET class models Finite State Machines for @{Set}s. Note that these FSMs control multiple objects!!! So State concerns here -- for multiple objects or the position of the state machine in the process. -- -- === -- -- @field #FSM_SET FSM_SET -- FSM_SET = { ClassName = "FSM_SET", } --- Creates a new FSM_SET object. -- @param #FSM_SET self -- @param #table FSMT Finite State Machine Table -- @param Set_SET_BASE FSMSet (optional) The Set object that the FSM_SET governs. -- @return #FSM_SET function FSM_SET:New( FSMSet ) -- Inherits from BASE self = BASE:Inherit( self, FSM:New() ) -- Core.Fsm#FSM_SET if FSMSet then self:Set( FSMSet ) end return self end --- Sets the SET_BASE object that the FSM_SET governs. -- @param #FSM_SET self -- @param Core.Set#SET_BASE FSMSet -- @return #FSM_SET function FSM_SET:Set( FSMSet ) self:F( FSMSet ) self.Set = FSMSet end --- Gets the SET_BASE object that the FSM_SET governs. -- @param #FSM_SET self -- @return Core.Set#SET_BASE function FSM_SET:Get() return self.Controllable end function FSM_SET:_call_handler( handler, params, EventName ) if self[handler] then self:T( "Calling " .. handler ) self._EventSchedules[EventName] = nil return self[handler]( self, self.Set, unpack( params ) ) end end end -- FSM_SET --- **Core** -- The RADIO Module is responsible for everything that is related to radio transmission and you can hear in DCS, be it TACAN beacons, Radio transmissions... -- -- ![Banner Image](..\Presentations\RADIO\Dia1.JPG) -- -- === -- -- The Radio contains 2 classes : RADIO and BEACON -- -- What are radio communications in DCS ? -- -- * Radio transmissions consist of **sound files** that are broadcasted on a specific **frequency** (e.g. 115MHz) and **modulation** (e.g. AM), -- * They can be **subtitled** for a specific **duration**, the **power** in Watts of the transmiter's antenna can be set, and the transmission can be **looped**. -- -- How to supply DCS my own Sound Files ? -- -- * Your sound files need to be encoded in **.ogg** or .wav, -- * Your sound files should be **as tiny as possible**. It is suggested you encode in .ogg with low bitrate and sampling settings, -- * They need to be added in .\l10n\DEFAULT\ in you .miz file (wich can be decompressed like a .zip file), -- * For simplicty sake, you can **let DCS' Mission Editor add the file** itself, by creating a new Trigger with the action "Sound to Country", and choosing your sound file and a country you don't use in your mission. -- -- Due to weird DCS quirks, **radio communications behave differently** if sent by a @{Unit#UNIT} or a @{Group#GROUP} or by any other @{Positionable#POSITIONABLE} -- -- * If the transmitter is a @{Unit#UNIT} or a @{Group#GROUP}, DCS will set the power of the transmission automatically, -- * If the transmitter is any other @{Positionable#POSITIONABLE}, the transmisison can't be subtitled or looped. -- -- Note that obviously, the **frequency** and the **modulation** of the transmission are important only if the players are piloting an **Advanced System Modelling** enabled aircraft, -- like the A10C or the Mirage 2000C. They will **hear the transmission** if they are tuned on the **right frequency and modulation** (and if they are close enough - more on that below). -- If a FC3 airacraft is used, it will **hear every communication, whatever the frequency and the modulation** is set to. The same is true for TACAN beacons. If your aircaft isn't compatible, -- you won't hear/be able to use the TACAN beacon informations. -- -- === -- -- ### Author: Hugues "Grey_Echo" Bousquet -- -- @module Radio --- # RADIO class, extends @{Base#BASE} -- -- ## RADIO usage -- -- There are 3 steps to a successful radio transmission. -- -- * First, you need to **"add a @{#RADIO} object** to your @{Positionable#POSITIONABLE}. This is done using the @{Positionable#POSITIONABLE.GetRadio}() function, -- * Then, you will **set the relevant parameters** to the transmission (see below), -- * When done, you can actually **broadcast the transmission** (i.e. play the sound) with the @{RADIO.Broadcast}() function. -- -- Methods to set relevant parameters for both a @{Unit#UNIT} or a @{Group#GROUP} or any other @{Positionable#POSITIONABLE} -- -- * @{#RADIO.SetFileName}() : Sets the file name of your sound file (e.g. "Noise.ogg"), -- * @{#RADIO.SetFrequency}() : Sets the frequency of your transmission. -- * @{#RADIO.SetModulation}() : Sets the modulation of your transmission. -- * @{#RADIO.SetLoop}() : Choose if you want the transmission to be looped. If you need your transmission to be looped, you might need a @{#BEACON} instead... -- -- Additional Methods to set relevant parameters if the transmiter is a @{Unit#UNIT} or a @{Group#GROUP} -- -- * @{#RADIO.SetSubtitle}() : Set both the subtitle and its duration, -- * @{#RADIO.NewUnitTransmission}() : Shortcut to set all the relevant parameters in one method call -- -- Additional Methods to set relevant parameters if the transmiter is any other @{Positionable#POSITIONABLE} -- -- * @{#RADIO.SetPower}() : Sets the power of the antenna in Watts -- * @{#RADIO.NewGenericTransmission}() : Shortcut to set all the relevant parameters in one method call -- -- What is this power thing ? -- -- * If your transmission is sent by a @{Positionable#POSITIONABLE} other than a @{Unit#UNIT} or a @{Group#GROUP}, you can set the power of the antenna, -- * Otherwise, DCS sets it automatically, depending on what's available on your Unit, -- * If the player gets **too far** from the transmiter, or if the antenna is **too weak**, the transmission will **fade** and **become noisyer**, -- * This an automated DCS calculation you have no say on, -- * For reference, a standard VOR station has a 100W antenna, a standard AA TACAN has a 120W antenna, and civilian ATC's antenna usually range between 300 and 500W, -- * Note that if the transmission has a subtitle, it will be readable, regardless of the quality of the transmission. -- -- @type RADIO -- @field Positionable#POSITIONABLE Positionable The transmiter -- @field #string FileName Name of the sound file -- @field #number Frequency Frequency of the transmission in Hz -- @field #number Modulation Modulation of the transmission (either radio.modulation.AM or radio.modulation.FM) -- @field #string Subtitle Subtitle of the transmission -- @field #number SubtitleDuration Duration of the Subtitle in seconds -- @field #number Power Power of the antenna is Watts -- @field #boolean Loop (default true) -- @extends Core.Base#BASE RADIO = { ClassName = "RADIO", FileName = "", Frequency = 0, Modulation = radio.modulation.AM, Subtitle = "", SubtitleDuration = 0, Power = 100, Loop = true, } --- Create a new RADIO Object. This doesn't broadcast a transmission, though, use @{#RADIO.Broadcast} to actually broadcast -- If you want to create a RADIO, you probably should use @{Positionable#POSITIONABLE.GetRadio}() instead -- @param #RADIO self -- @param Wrapper.Positionable#POSITIONABLE Positionable The @{Positionable} that will receive radio capabilities. -- @return #RADIO Radio -- @return #nil If Positionable is invalid function RADIO:New(Positionable) local self = BASE:Inherit( self, BASE:New() ) -- Core.Radio#RADIO self.Loop = true -- default Loop to true (not sure the above RADIO definition actually is working) self:F(Positionable) if Positionable:GetPointVec2() then -- It's stupid, but the only way I found to make sure positionable is valid self.Positionable = Positionable return self end self:E({"The passed positionable is invalid, no RADIO created", Positionable}) return nil end --- Check validity of the filename passed and sets RADIO.FileName -- @param #RADIO self -- @param #string FileName File name of the sound file (i.e. "Noise.ogg") -- @return #RADIO self function RADIO:SetFileName(FileName) self:F2(FileName) if type(FileName) == "string" then if FileName:find(".ogg") or FileName:find(".wav") then if not FileName:find("l10n/DEFAULT/") then FileName = "l10n/DEFAULT/" .. FileName end self.FileName = FileName return self end end self:E({"File name invalid. Maybe something wrong with the extension ?", self.FileName}) return self end --- Check validity of the frequency passed and sets RADIO.Frequency -- @param #RADIO self -- @param #number Frequency in MHz (Ranges allowed for radio transmissions in DCS : 30-88 / 108-152 / 225-400MHz) -- @return #RADIO self function RADIO:SetFrequency(Frequency) self:F2(Frequency) if type(Frequency) == "number" then -- If frequency is in range if (Frequency >= 30 and Frequency < 88) or (Frequency >= 108 and Frequency < 152) or (Frequency >= 225 and Frequency < 400) then self.Frequency = Frequency * 1000000 -- Conversion in Hz -- If the RADIO is attached to a UNIT or a GROUP, we need to send the DCS Command "SetFrequency" to change the UNIT or GROUP frequency if self.Positionable.ClassName == "UNIT" or self.Positionable.ClassName == "GROUP" then self.Positionable:SetCommand({ id = "SetFrequency", params = { frequency = self.Frequency, modulation = self.Modulation, } }) end return self end end self:E({"Frequency is outside of DCS Frequency ranges (30-80, 108-152, 225-400). Frequency unchanged.", self.Frequency}) return self end --- Check validity of the frequency passed and sets RADIO.Modulation -- @param #RADIO self -- @param #number Modulation either radio.modulation.AM or radio.modulation.FM -- @return #RADIO self function RADIO:SetModulation(Modulation) self:F2(Modulation) if type(Modulation) == "number" then if Modulation == radio.modulation.AM or Modulation == radio.modulation.FM then --TODO Maybe make this future proof if ED decides to add an other modulation ? self.Modulation = Modulation return self end end self:E({"Modulation is invalid. Use DCS's enum radio.modulation. Modulation unchanged.", self.Modulation}) return self end --- Check validity of the power passed and sets RADIO.Power -- @param #RADIO self -- @param #number Power in W -- @return #RADIO self function RADIO:SetPower(Power) self:F2(Power) if type(Power) == "number" then self.Power = math.floor(math.abs(Power)) --TODO Find what is the maximum power allowed by DCS and limit power to that return self end self:E({"Power is invalid. Power unchanged.", self.Power}) return self end --- Check validity of the loop passed and sets RADIO.Loop -- @param #RADIO self -- @param #boolean Loop -- @return #RADIO self -- @usage function RADIO:SetLoop(Loop) self:F2(Loop) if type(Loop) == "boolean" then self.Loop = Loop return self end self:E({"Loop is invalid. Loop unchanged.", self.Loop}) return self end --- Check validity of the subtitle and the subtitleDuration passed and sets RADIO.subtitle and RADIO.subtitleDuration -- Both parameters are mandatory, since it wouldn't make much sense to change the Subtitle and not its duration -- @param #RADIO self -- @param #string Subtitle -- @param #number SubtitleDuration in s -- @return #RADIO self -- @usage -- -- create the broadcaster and attaches it a RADIO -- local MyUnit = UNIT:FindByName("MyUnit") -- local MyUnitRadio = MyUnit:GetRadio() -- -- -- add a subtitle for the next transmission, which will be up for 10s -- MyUnitRadio:SetSubtitle("My Subtitle, 10) function RADIO:SetSubtitle(Subtitle, SubtitleDuration) self:F2({Subtitle, SubtitleDuration}) if type(Subtitle) == "string" then self.Subtitle = Subtitle else self.Subtitle = "" self:E({"Subtitle is invalid. Subtitle reset.", self.Subtitle}) end if type(SubtitleDuration) == "number" then if math.floor(math.abs(SubtitleDuration)) == SubtitleDuration then self.SubtitleDuration = SubtitleDuration return self end end self.SubtitleDuration = 0 self:E({"SubtitleDuration is invalid. SubtitleDuration reset.", self.SubtitleDuration}) end --- Create a new transmission, that is to say, populate the RADIO with relevant data -- In this function the data is especially relevant if the broadcaster is anything but a UNIT or a GROUP, -- but it will work with a UNIT or a GROUP anyway. -- Only the #RADIO and the Filename are mandatory -- @param #RADIO self -- @param #string FileName -- @param #number Frequency in MHz -- @param #number Modulation either radio.modulation.AM or radio.modulation.FM -- @param #number Power in W -- @return #RADIO self function RADIO:NewGenericTransmission(FileName, Frequency, Modulation, Power, Loop) self:F({FileName, Frequency, Modulation, Power}) self:SetFileName(FileName) if Frequency then self:SetFrequency(Frequency) end if Modulation then self:SetModulation(Modulation) end if Power then self:SetPower(Power) end if Loop then self:SetLoop(Loop) end return self end --- Create a new transmission, that is to say, populate the RADIO with relevant data -- In this function the data is especially relevant if the broadcaster is a UNIT or a GROUP, -- but it will work for any @{Positionable#POSITIONABLE}. -- Only the RADIO and the Filename are mandatory. -- @param #RADIO self -- @param #string FileName -- @param #string Subtitle -- @param #number SubtitleDuration in s -- @param #number Frequency in MHz -- @param #number Modulation either radio.modulation.AM or radio.modulation.FM -- @param #boolean Loop -- @return #RADIO self function RADIO:NewUnitTransmission(FileName, Subtitle, SubtitleDuration, Frequency, Modulation, Loop) self:F({FileName, Subtitle, SubtitleDuration, Frequency, Modulation, Loop}) self:SetFileName(FileName) if Subtitle then self:SetSubtitle(Subtitle) end if SubtitleDuration then self:SetSubtitleDuration(SubtitleDuration) end if Frequency then self:SetFrequency(Frequency) end if Modulation then self:SetModulation(Modulation) end if Loop then self:SetLoop(Loop) end return self end --- Actually Broadcast the transmission -- * The Radio has to be populated with the new transmission before broadcasting. -- * Please use RADIO setters or either @{Radio#RADIO.NewGenericTransmission} or @{Radio#RADIO.NewUnitTransmission} -- * This class is in fact pretty smart, it determines the right DCS function to use depending on the type of POSITIONABLE -- * If the POSITIONABLE is not a UNIT or a GROUP, we use the generic (but limited) trigger.action.radioTransmission() -- * If the POSITIONABLE is a UNIT or a GROUP, we use the "TransmitMessage" Command -- * If your POSITIONABLE is a UNIT or a GROUP, the Power is ignored. -- * If your POSITIONABLE is not a UNIT or a GROUP, the Subtitle, SubtitleDuration are ignored -- @param #RADIO self -- @return #RADIO self function RADIO:Broadcast() self:F() -- If the POSITIONABLE is actually a UNIT or a GROUP, use the more complicated DCS command system if self.Positionable.ClassName == "UNIT" or self.Positionable.ClassName == "GROUP" then self:T2("Broadcasting from a UNIT or a GROUP") self.Positionable:SetCommand({ id = "TransmitMessage", params = { file = self.FileName, duration = self.SubtitleDuration, subtitle = self.Subtitle, loop = self.Loop, } }) else -- If the POSITIONABLE is anything else, we revert to the general singleton function -- I need to give it a unique name, so that the transmission can be stopped later. I use the class ID self:T2("Broadcasting from a POSITIONABLE") trigger.action.radioTransmission(self.FileName, self.Positionable:GetPositionVec3(), self.Modulation, self.Loop, self.Frequency, self.Power, tostring(self.ID)) end return self end --- Stops a transmission -- This function is especially usefull to stop the broadcast of looped transmissions -- @param #RADIO self -- @return #RADIO self function RADIO:StopBroadcast() self:F() -- If the POSITIONABLE is a UNIT or a GROUP, stop the transmission with the DCS "StopTransmission" command if self.Positionable.ClassName == "UNIT" or self.Positionable.ClassName == "GROUP" then self.Positionable:SetCommand({ id = "StopTransmission", params = {} }) else -- Else, we use the appropriate singleton funciton trigger.action.stopRadioTransmission(tostring(self.ID)) end return self end --- # BEACON class, extends @{Base#BASE} -- -- After attaching a @{#BEACON} to your @{Positionable#POSITIONABLE}, you need to select the right function to activate the kind of beacon you want. -- There are two types of BEACONs available : the AA TACAN Beacon and the general purpose Radio Beacon. -- Note that in both case, you can set an optional parameter : the `BeaconDuration`. This can be very usefull to simulate the battery time if your BEACON is -- attach to a cargo crate, for exemple. -- -- ## AA TACAN Beacon usage -- -- This beacon only works with airborne @{Unit#UNIT} or a @{Group#GROUP}. Use @{#BEACON:AATACAN}() to set the beacon parameters and start the beacon. -- Use @#BEACON:StopAATACAN}() to stop it. -- -- ## General Purpose Radio Beacon usage -- -- This beacon will work with any @{Positionable#POSITIONABLE}, but **it won't follow the @{Positionable#POSITIONABLE}** ! This means that you should only use it with -- @{Positionable#POSITIONABLE} that don't move, or move very slowly. Use @{#BEACON:RadioBeacon}() to set the beacon parameters and start the beacon. -- Use @{#BEACON:StopRadioBeacon}() to stop it. -- -- @type BEACON -- @extends Core.Base#BASE BEACON = { ClassName = "BEACON", } --- Create a new BEACON Object. This doesn't activate the beacon, though, use @{#BEACON.AATACAN} or @{#BEACON.Generic} -- If you want to create a BEACON, you probably should use @{Positionable#POSITIONABLE.GetBeacon}() instead. -- @param #BEACON self -- @param Wrapper.Positionable#POSITIONABLE Positionable The @{Positionable} that will receive radio capabilities. -- @return #BEACON Beacon -- @return #nil If Positionable is invalid function BEACON:New(Positionable) local self = BASE:Inherit(self, BASE:New()) self:F(Positionable) if Positionable:GetPointVec2() then -- It's stupid, but the only way I found to make sure positionable is valid self.Positionable = Positionable return self end self:E({"The passed positionable is invalid, no BEACON created", Positionable}) return nil end --- Converts a TACAN Channel/Mode couple into a frequency in Hz -- @param #BEACON self -- @param #number TACANChannel -- @param #string TACANMode -- @return #number Frequecy -- @return #nil if parameters are invalid function BEACON:_TACANToFrequency(TACANChannel, TACANMode) self:F3({TACANChannel, TACANMode}) if type(TACANChannel) ~= "number" then if TACANMode ~= "X" and TACANMode ~= "Y" then return nil -- error in arguments end end -- This code is largely based on ED's code, in DCS World\Scripts\World\Radio\BeaconTypes.lua, line 137. -- I have no idea what it does but it seems to work local A = 1151 -- 'X', channel >= 64 local B = 64 -- channel >= 64 if TACANChannel < 64 then B = 1 end if TACANMode == 'Y' then A = 1025 if TACANChannel < 64 then A = 1088 end else -- 'X' if TACANChannel < 64 then A = 962 end end return (A + TACANChannel - B) * 1000000 end --- Activates a TACAN BEACON on an Aircraft. -- @param #BEACON self -- @param #number TACANChannel (the "10" part in "10Y"). Note that AA TACAN are only available on Y Channels -- @param #string Message The Message that is going to be coded in Morse and broadcasted by the beacon -- @param #boolean Bearing Can the BEACON be homed on ? -- @param #number BeaconDuration How long will the beacon last in seconds. Omit for forever. -- @return #BEACON self -- @usage -- -- Let's create a TACAN Beacon for a tanker -- local myUnit = UNIT:FindByName("MyUnit") -- local myBeacon = myUnit:GetBeacon() -- Creates the beacon -- -- myBeacon:AATACAN(20, "TEXACO", true) -- Activate the beacon function BEACON:AATACAN(TACANChannel, Message, Bearing, BeaconDuration) self:F({TACANChannel, Message, Bearing, BeaconDuration}) local IsValid = true if not self.Positionable:IsAir() then self:E({"The POSITIONABLE you want to attach the AA Tacan Beacon is not an aircraft ! The BEACON is not emitting", self.Positionable}) IsValid = false end local Frequency = self:_TACANToFrequency(TACANChannel, "Y") if not Frequency then self:E({"The passed TACAN channel is invalid, the BEACON is not emitting"}) IsValid = false end -- I'm using the beacon type 4 (BEACON_TYPE_TACAN). For System, I'm using 5 (TACAN_TANKER_MODE_Y) if the bearing shows its bearing -- or 14 (TACAN_AA_MODE_Y) if it does not local System if Bearing then System = 5 else System = 14 end if IsValid then -- Starts the BEACON self:T2({"AA TACAN BEACON started !"}) self.Positionable:SetCommand({ id = "ActivateBeacon", params = { type = 4, system = System, callsign = Message, frequency = Frequency, } }) if BeaconDuration then -- Schedule the stop of the BEACON if asked by the MD SCHEDULER:New( nil, function() self:StopAATACAN() end, {}, BeaconDuration) end end return self end --- Stops the AA TACAN BEACON -- @param #BEACON self -- @return #BEACON self function BEACON:StopAATACAN() self:F() if not self.Positionable then self:E({"Start the beacon first before stoping it !"}) else self.Positionable:SetCommand({ id = 'DeactivateBeacon', params = { } }) end end --- Activates a general pupose Radio Beacon -- This uses the very generic singleton function "trigger.action.radioTransmission()" provided by DCS to broadcast a sound file on a specific frequency. -- Although any frequency could be used, only 2 DCS Modules can home on radio beacons at the time of writing : the Huey and the Mi-8. -- They can home in on these specific frequencies : -- * **Mi8** -- * R-828 -> 20-60MHz -- * ARKUD -> 100-150MHz (canal 1 : 114166, canal 2 : 114333, canal 3 : 114583, canal 4 : 121500, canal 5 : 123100, canal 6 : 124100) AM -- * ARK9 -> 150-1300KHz -- * **Huey** -- * AN/ARC-131 -> 30-76 Mhz FM -- @param #BEACON self -- @param #string FileName The name of the audio file -- @param #number Frequency in MHz -- @param #number Modulation either radio.modulation.AM or radio.modulation.FM -- @param #number Power in W -- @param #number BeaconDuration How long will the beacon last in seconds. Omit for forever. -- @return #BEACON self -- @usage -- -- Let's create a beacon for a unit in distress. -- -- Frequency will be 40MHz FM (home-able by a Huey's AN/ARC-131) -- -- The beacon they use is battery-powered, and only lasts for 5 min -- local UnitInDistress = UNIT:FindByName("Unit1") -- local UnitBeacon = UnitInDistress:GetBeacon() -- -- -- Set the beacon and start it -- UnitBeacon:RadioBeacon("MySoundFileSOS.ogg", 40, radio.modulation.FM, 20, 5*60) function BEACON:RadioBeacon(FileName, Frequency, Modulation, Power, BeaconDuration) self:F({FileName, Frequency, Modulation, Power, BeaconDuration}) local IsValid = false -- Check the filename if type(FileName) == "string" then if FileName:find(".ogg") or FileName:find(".wav") then if not FileName:find("l10n/DEFAULT/") then FileName = "l10n/DEFAULT/" .. FileName end IsValid = true end end if not IsValid then self:E({"File name invalid. Maybe something wrong with the extension ? ", FileName}) end -- Check the Frequency if type(Frequency) ~= "number" and IsValid then self:E({"Frequency invalid. ", Frequency}) IsValid = false end Frequency = Frequency * 1000000 -- Conversion to Hz -- Check the modulation if Modulation ~= radio.modulation.AM and Modulation ~= radio.modulation.FM and IsValid then --TODO Maybe make this future proof if ED decides to add an other modulation ? self:E({"Modulation is invalid. Use DCS's enum radio.modulation.", Modulation}) IsValid = false end -- Check the Power if type(Power) ~= "number" and IsValid then self:E({"Power is invalid. ", Power}) IsValid = false end Power = math.floor(math.abs(Power)) --TODO Find what is the maximum power allowed by DCS and limit power to that if IsValid then self:T2({"Activating Beacon on ", Frequency, Modulation}) -- Note that this is looped. I have to give this transmission a unique name, I use the class ID trigger.action.radioTransmission(FileName, self.Positionable:GetPositionVec3(), Modulation, true, Frequency, Power, tostring(self.ID)) if BeaconDuration then -- Schedule the stop of the BEACON if asked by the MD SCHEDULER:New( nil, function() self:StopRadioBeacon() end, {}, BeaconDuration) end end end --- Stops the AA TACAN BEACON -- @param #BEACON self -- @return #BEACON self function BEACON:StopRadioBeacon() self:F() -- The unique name of the transmission is the class ID trigger.action.stopRadioTransmission(tostring(self.ID)) end--- **Core** -- Spawn dynamically new STATICs in your missions. -- -- ![Banner Image](..\Presentations\SPAWNSTATIC\Dia1.JPG) -- -- ==== -- -- SPAWNSTATIC spawns static structures in your missions dynamically. See below the SPAWNSTATIC class documentation. -- -- ==== -- -- # Demo Missions -- -- ### [SPAWNSTATIC Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/SPS - Spawning Statics) -- -- ### [SPAWNSTATIC Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/SPS%20-%20Spawning%20Statics) -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [SPAWNSTATIC YouTube Channel]() -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @module SpawnStatic --- @type SPAWNSTATIC -- @extends Core.Base#BASE --- # SPAWNSTATIC class, extends @{Base#BASE} -- -- The SPAWNSTATIC class allows to spawn dynamically new @{Static}s. -- Through creating a copy of an existing static object template as defined in the Mission Editor (ME), -- SPAWNSTATIC can retireve the properties of the defined static object template (like type, category etc), and "copy" -- these properties to create a new static object and place it at the desired coordinate. -- -- New spawned @{Static}s get **the same name** as the name of the template Static, -- or gets the given name when a new name is provided at the Spawn method. -- By default, spawned @{Static}s will follow a naming convention at run-time: -- -- * Spawned @{Static}s will have the name _StaticName_#_nnn_, where _StaticName_ is the name of the **Template Static**, -- and _nnn_ is a **counter from 0 to 99999**. -- -- -- ## SPAWNSTATIC construction methods -- -- Create a new SPAWNSTATIC object with the @{#SPAWNSTATIC.NewFromStatic}(): -- -- * @{#SPAWNSTATIC.NewFromStatic}(): Creates a new SPAWNSTATIC object given a name that is used as the base of the naming of each spawned Static. -- -- ## **Spawn** methods -- -- Groups can be spawned at different times and methods: -- -- * @{#SPAWNSTATIC.SpawnFromPointVec2}(): Spawn a new group from a POINT_VEC2 coordinate. -- (The group will be spawned at land height ). -- * @{#SPAWNSTATIC.SpawnFromZone}(): Spawn a new group in a @{Zone}. -- -- @field #SPAWNSTATIC SPAWNSTATIC -- SPAWNSTATIC = { ClassName = "SPAWNSTATIC", } --- @type SPAWNSTATIC.SpawnZoneTable -- @list SpawnZone --- Creates the main object to spawn a @{Static} defined in the ME. -- @param #SPAWNSTATIC self -- @param #string SpawnTemplatePrefix is the name of the Group in the ME that defines the Template. Each new group will have the name starting with SpawnTemplatePrefix. -- @return #SPAWNSTATIC function SPAWNSTATIC:NewFromStatic( SpawnTemplatePrefix, CountryID ) --R2.1 local self = BASE:Inherit( self, BASE:New() ) -- #SPAWNSTATIC self:F( { SpawnTemplatePrefix } ) local TemplateStatic = StaticObject.getByName( SpawnTemplatePrefix ) if TemplateStatic then self.SpawnTemplatePrefix = SpawnTemplatePrefix self.CountryID = CountryID self.SpawnIndex = 0 else error( "SPAWNSTATIC:New: There is no group declared in the mission editor with SpawnTemplatePrefix = '" .. SpawnTemplatePrefix .. "'" ) end self:SetEventPriority( 5 ) return self end --- Creates the main object to spawn a @{Static} based on a type name. -- @param #SPAWNSTATIC self -- @param #string SpawnTypeName is the name of the type. -- @return #SPAWNSTATIC function SPAWNSTATIC:NewFromType( SpawnTypeName, SpawnShapeName, SpawnCategory, CountryID ) --R2.1 local self = BASE:Inherit( self, BASE:New() ) -- #SPAWNSTATIC self:F( { SpawnTypeName } ) self.SpawnTypeName = SpawnTypeName self.CountryID = CountryID self.SpawnIndex = 0 self:SetEventPriority( 5 ) return self end --- Creates a new @{Static} from a POINT_VEC2. -- @param #SPAWNSTATIC self -- @param Core.Point#POINT_VEC2 PointVec2 The 2D coordinate where to spawn the static. -- @param #number Heading The heading of the static, which is a number in degrees from 0 to 360. -- @param #string (optional) The name of the new static. -- @return #SPAWNSTATIC function SPAWNSTATIC:SpawnFromPointVec2( PointVec2, Heading, NewName ) --R2.1 self:F( { PointVec2, Heading, NewName } ) local CountryName = _DATABASE.COUNTRY_NAME[self.CountryID] local StaticTemplate = _DATABASE:GetStaticUnitTemplate( self.SpawnTemplatePrefix ) StaticTemplate.x = PointVec2:GetLat() StaticTemplate.y = PointVec2:GetLon() StaticTemplate.name = NewName or string.format("%s#%05d", self.SpawnTemplatePrefix, self.SpawnIndex ) StaticTemplate.heading = ( Heading / 180 ) * math.pi StaticTemplate.CountryID = nil StaticTemplate.CoalitionID = nil StaticTemplate.CategoryID = nil local Static = coalition.addStaticObject( self.CountryID, StaticTemplate ) self.SpawnIndex = self.SpawnIndex + 1 return Static end --- Creates a new @{Static} from a @{Zone}. -- @param #SPAWNSTATIC self -- @param Core.Zone#ZONE_BASE Zone The Zone where to spawn the static. -- @param #number Heading The heading of the static, which is a number in degrees from 0 to 360. -- @param #string (optional) The name of the new static. -- @return #SPAWNSTATIC function SPAWNSTATIC:SpawnFromZone( Zone, Heading, NewName ) --R2.1 self:F( { Zone, Heading, NewName } ) local Static = self:SpawnFromPointVec2( Zone:GetPointVec2(), Heading, NewName ) return Static end --- **Core** -- Management of CARGO logistics, that can be transported from and to transportation carriers. -- -- ![Banner Image](..\Presentations\CARGO\Dia1.JPG) -- -- === -- -- Cargo can be of various forms, always are composed out of ONE object ( one unit or one static or one slingload crate ): -- -- * CARGO_UNIT, represented by a @{Unit} in a singleton @{Group}: Cargo can be represented by a Unit in a Group. a CARGO_UNIT is representable... -- * CARGO_GROUP, represented by a @{Group}. A CARGO_GROUP is reportable... -- -- This module is still under construction, but is described above works already, and will keep working ... -- -- ==== -- -- # Demo Missions -- -- ### [CARGO Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/CGO%20-%20Cargo) -- -- ### [CARGO Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/CGO%20-%20Cargo) -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [CARGO YouTube Channel](https://www.youtube.com/watch?v=tM00lTlkpYs&list=PL7ZUrU4zZUl2zUTuKrLW5RsO9zLMqUtbf) -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @module Cargo -- Events -- Board --- Boards the cargo to a Carrier. The event will create a movement (= running or driving) of the cargo to the Carrier. -- The cargo must be in the **UnLoaded** state. -- @function [parent=#CARGO] Board -- @param #CARGO self -- @param Wrapper.Controllable#CONTROLLABLE ToCarrier The Carrier that will hold the cargo. -- @param #number NearRadius The radius when the cargo will board the Carrier (to avoid collision). --- Boards the cargo to a Carrier. The event will create a movement (= running or driving) of the cargo to the Carrier. -- The cargo must be in the **UnLoaded** state. -- @function [parent=#CARGO] __Board -- @param #CARGO self -- @param #number DelaySeconds The amount of seconds to delay the action. -- @param Wrapper.Controllable#CONTROLLABLE ToCarrier The Carrier that will hold the cargo. -- @param #number NearRadius The radius when the cargo will board the Carrier (to avoid collision). -- UnBoard --- UnBoards the cargo to a Carrier. The event will create a movement (= running or driving) of the cargo from the Carrier. -- The cargo must be in the **Loaded** state. -- @function [parent=#CARGO] UnBoard -- @param #CARGO self -- @param Core.Point#POINT_VEC2 ToPointVec2 (optional) @{Point#POINT_VEC2) to where the cargo should run after onboarding. If not provided, the cargo will run to 60 meters behind the Carrier location. --- UnBoards the cargo to a Carrier. The event will create a movement (= running or driving) of the cargo from the Carrier. -- The cargo must be in the **Loaded** state. -- @function [parent=#CARGO] __UnBoard -- @param #CARGO self -- @param #number DelaySeconds The amount of seconds to delay the action. -- @param Core.Point#POINT_VEC2 ToPointVec2 (optional) @{Point#POINT_VEC2) to where the cargo should run after onboarding. If not provided, the cargo will run to 60 meters behind the Carrier location. -- Load --- Loads the cargo to a Carrier. The event will load the cargo into the Carrier regardless of its position. There will be no movement simulated of the cargo loading. -- The cargo must be in the **UnLoaded** state. -- @function [parent=#CARGO] Load -- @param #CARGO self -- @param Wrapper.Controllable#CONTROLLABLE ToCarrier The Carrier that will hold the cargo. --- Loads the cargo to a Carrier. The event will load the cargo into the Carrier regardless of its position. There will be no movement simulated of the cargo loading. -- The cargo must be in the **UnLoaded** state. -- @function [parent=#CARGO] __Load -- @param #CARGO self -- @param #number DelaySeconds The amount of seconds to delay the action. -- @param Wrapper.Controllable#CONTROLLABLE ToCarrier The Carrier that will hold the cargo. -- UnLoad --- UnLoads the cargo to a Carrier. The event will unload the cargo from the Carrier. There will be no movement simulated of the cargo loading. -- The cargo must be in the **Loaded** state. -- @function [parent=#CARGO] UnLoad -- @param #CARGO self -- @param Core.Point#POINT_VEC2 ToPointVec2 (optional) @{Point#POINT_VEC2) to where the cargo will be placed after unloading. If not provided, the cargo will be placed 60 meters behind the Carrier location. --- UnLoads the cargo to a Carrier. The event will unload the cargo from the Carrier. There will be no movement simulated of the cargo loading. -- The cargo must be in the **Loaded** state. -- @function [parent=#CARGO] __UnLoad -- @param #CARGO self -- @param #number DelaySeconds The amount of seconds to delay the action. -- @param Core.Point#POINT_VEC2 ToPointVec2 (optional) @{Point#POINT_VEC2) to where the cargo will be placed after unloading. If not provided, the cargo will be placed 60 meters behind the Carrier location. -- State Transition Functions -- UnLoaded --- @function [parent=#CARGO] OnLeaveUnLoaded -- @param #CARGO self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @return #boolean --- @function [parent=#CARGO] OnEnterUnLoaded -- @param #CARGO self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- Loaded --- @function [parent=#CARGO] OnLeaveLoaded -- @param #CARGO self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @return #boolean --- @function [parent=#CARGO] OnEnterLoaded -- @param #CARGO self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- Boarding --- @function [parent=#CARGO] OnLeaveBoarding -- @param #CARGO self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @return #boolean --- @function [parent=#CARGO] OnEnterBoarding -- @param #CARGO self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @param #number NearRadius The radius when the cargo will board the Carrier (to avoid collision). -- UnBoarding --- @function [parent=#CARGO] OnLeaveUnBoarding -- @param #CARGO self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @return #boolean --- @function [parent=#CARGO] OnEnterUnBoarding -- @param #CARGO self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- TODO: Find all Carrier objects and make the type of the Carriers Wrapper.Unit#UNIT in the documentation. CARGOS = {} do -- CARGO --- @type CARGO -- @extends Core.Fsm#FSM_PROCESS -- @field #string Type A string defining the type of the cargo. eg. Engineers, Equipment, Screwdrivers. -- @field #string Name A string defining the name of the cargo. The name is the unique identifier of the cargo. -- @field #number Weight A number defining the weight of the cargo. The weight is expressed in kg. -- @field #number NearRadius (optional) A number defining the radius in meters when the cargo is near to a Carrier, so that it can be loaded. -- @field Wrapper.Controllable#CONTROLLABLE CargoObject The alive DCS object representing the cargo. This value can be nil, meaning, that the cargo is not represented anywhere... -- @field Wrapper.Client#CLIENT CargoCarrier The alive DCS object carrying the cargo. This value can be nil, meaning, that the cargo is not contained anywhere... -- @field #boolean Slingloadable This flag defines if the cargo can be slingloaded. -- @field #boolean Moveable This flag defines if the cargo is moveable. -- @field #boolean Representable This flag defines if the cargo can be represented by a DCS Unit. -- @field #boolean Containable This flag defines if the cargo can be contained within a DCS Unit. --- # (R2.1) CARGO class, extends @{Fsm#FSM_PROCESS} -- -- The CARGO class defines the core functions that defines a cargo object within MOOSE. -- A cargo is a logical object defined that is available for transport, and has a life status within a simulation. -- -- The CARGO is a state machine: it manages the different events and states of the cargo. -- All derived classes from CARGO follow the same state machine, expose the same cargo event functions, and provide the same cargo states. -- -- ## CARGO Events: -- -- * @{#CARGO.Board}( ToCarrier ): Boards the cargo to a carrier. -- * @{#CARGO.Load}( ToCarrier ): Loads the cargo into a carrier, regardless of its position. -- * @{#CARGO.UnBoard}( ToPointVec2 ): UnBoard the cargo from a carrier. This will trigger a movement of the cargo to the option ToPointVec2. -- * @{#CARGO.UnLoad}( ToPointVec2 ): UnLoads the cargo from a carrier. -- * @{#CARGO.Dead}( Controllable ): The cargo is dead. The cargo process will be ended. -- -- ## CARGO States: -- -- * **UnLoaded**: The cargo is unloaded from a carrier. -- * **Boarding**: The cargo is currently boarding (= running) into a carrier. -- * **Loaded**: The cargo is loaded into a carrier. -- * **UnBoarding**: The cargo is currently unboarding (=running) from a carrier. -- * **Dead**: The cargo is dead ... -- * **End**: The process has come to an end. -- -- ## CARGO state transition methods: -- -- State transition functions can be set **by the mission designer** customizing or improving the behaviour of the state. -- There are 2 moments when state transition methods will be called by the state machine: -- -- * **Leaving** the state. -- The state transition method needs to start with the name **OnLeave + the name of the state**. -- If the state transition method returns false, then the processing of the state transition will not be done! -- If you want to change the behaviour of the AIControllable at this event, return false, -- but then you'll need to specify your own logic using the AIControllable! -- -- * **Entering** the state. -- The state transition method needs to start with the name **OnEnter + the name of the state**. -- These state transition methods need to provide a return value, which is specified at the function description. -- -- @field #CARGO CARGO = { ClassName = "CARGO", Type = nil, Name = nil, Weight = nil, CargoObject = nil, CargoCarrier = nil, Representable = false, Slingloadable = false, Moveable = false, Containable = false, } --- @type CARGO.CargoObjects -- @map < #string, Wrapper.Positionable#POSITIONABLE > The alive POSITIONABLE objects representing the the cargo. --- CARGO Constructor. This class is an abstract class and should not be instantiated. -- @param #CARGO self -- @param #string Type -- @param #string Name -- @param #number Weight -- @param #number NearRadius (optional) -- @return #CARGO function CARGO:New( Type, Name, Weight ) --R2.1 local self = BASE:Inherit( self, FSM:New() ) -- #CARGO self:F( { Type, Name, Weight } ) self:SetStartState( "UnLoaded" ) self:AddTransition( { "UnLoaded", "Boarding" }, "Board", "Boarding" ) self:AddTransition( "Boarding" , "Boarding", "Boarding" ) self:AddTransition( "Boarding", "CancelBoarding", "UnLoaded" ) self:AddTransition( "Boarding", "Load", "Loaded" ) self:AddTransition( "UnLoaded", "Load", "Loaded" ) self:AddTransition( "Loaded", "UnBoard", "UnBoarding" ) self:AddTransition( "UnBoarding", "UnBoarding", "UnBoarding" ) self:AddTransition( "UnBoarding", "UnLoad", "UnLoaded" ) self:AddTransition( "Loaded", "UnLoad", "UnLoaded" ) self:AddTransition( "*", "Damaged", "Damaged" ) self:AddTransition( "*", "Destroyed", "Destroyed" ) self:AddTransition( "*", "Respawn", "UnLoaded" ) self.Type = Type self.Name = Name self.Weight = Weight self.CargoObject = nil self.CargoCarrier = nil self.Representable = false self.Slingloadable = false self.Moveable = false self.Containable = false self:SetDeployed( false ) self.CargoScheduler = SCHEDULER:New() CARGOS[self.Name] = self return self end --- Destroy the cargo. -- @param #CARGO self function CARGO:Destroy() if self.CargoObject then self.CargoObject:Destroy() end self:Destroyed() end --- Get the name of the Cargo. -- @param #CARGO self -- @return #string The name of the Cargo. function CARGO:GetName() --R2.1 return self.Name end --- Get the object name of the Cargo. -- @param #CARGO self -- @return #string The object name of the Cargo. function CARGO:GetObjectName() --R2.1 if self:IsLoaded() then return self.CargoCarrier:GetName() else return self.CargoObject:GetName() end end --- Get the type of the Cargo. -- @param #CARGO self -- @return #string The type of the Cargo. function CARGO:GetType() return self.Type end --- Get the current coordinates of the Cargo. -- @param #CARGO self -- @return Core.Point#COORDINATE The coordinates of the Cargo. function CARGO:GetCoordinate() return self.CargoObject:GetCoordinate() end --- Check if cargo is destroyed. -- @param #CARGO self -- @return #boolean true if destroyed function CARGO:IsDestroyed() return self:Is( "Destroyed" ) end --- Check if cargo is loaded. -- @param #CARGO self -- @return #boolean true if loaded function CARGO:IsLoaded() return self:Is( "Loaded" ) end --- Check if cargo is unloaded. -- @param #CARGO self -- @return #boolean true if unloaded function CARGO:IsUnLoaded() return self:Is( "UnLoaded" ) end --- Check if cargo is alive. -- @param #CARGO self -- @return #boolean true if unloaded function CARGO:IsAlive() if self:IsLoaded() then return self.CargoCarrier:IsAlive() else return self.CargoObject:IsAlive() end end --- Set the cargo as deployed -- @param #CARGO self function CARGO:SetDeployed( Deployed ) self.Deployed = Deployed end --- Is the cargo deployed -- @param #CARGO self -- @return #boolean function CARGO:IsDeployed() return self.Deployed end --- Template method to spawn a new representation of the CARGO in the simulator. -- @param #CARGO self -- @return #CARGO function CARGO:Spawn( PointVec2 ) self:F() end --- Signal a flare at the position of the CARGO. -- @param #CARGO self -- @param Utilities.Utils#FLARECOLOR FlareColor function CARGO:Flare( FlareColor ) if self:IsUnLoaded() then trigger.action.signalFlare( self.CargoObject:GetVec3(), FlareColor , 0 ) end end --- Signal a white flare at the position of the CARGO. -- @param #CARGO self function CARGO:FlareWhite() self:Flare( trigger.flareColor.White ) end --- Signal a yellow flare at the position of the CARGO. -- @param #CARGO self function CARGO:FlareYellow() self:Flare( trigger.flareColor.Yellow ) end --- Signal a green flare at the position of the CARGO. -- @param #CARGO self function CARGO:FlareGreen() self:Flare( trigger.flareColor.Green ) end --- Signal a red flare at the position of the CARGO. -- @param #CARGO self function CARGO:FlareRed() self:Flare( trigger.flareColor.Red ) end --- Smoke the CARGO. -- @param #CARGO self function CARGO:Smoke( SmokeColor, Range ) self:F2() if self:IsUnLoaded() then if Range then trigger.action.smoke( self.CargoObject:GetRandomVec3( Range ), SmokeColor ) else trigger.action.smoke( self.CargoObject:GetVec3(), SmokeColor ) end end end --- Smoke the CARGO Green. -- @param #CARGO self function CARGO:SmokeGreen() self:Smoke( trigger.smokeColor.Green, Range ) end --- Smoke the CARGO Red. -- @param #CARGO self function CARGO:SmokeRed() self:Smoke( trigger.smokeColor.Red, Range ) end --- Smoke the CARGO White. -- @param #CARGO self function CARGO:SmokeWhite() self:Smoke( trigger.smokeColor.White, Range ) end --- Smoke the CARGO Orange. -- @param #CARGO self function CARGO:SmokeOrange() self:Smoke( trigger.smokeColor.Orange, Range ) end --- Smoke the CARGO Blue. -- @param #CARGO self function CARGO:SmokeBlue() self:Smoke( trigger.smokeColor.Blue, Range ) end --- Check if Cargo is the given @{Zone}. -- @param #CARGO self -- @param Core.Zone#ZONE_BASE Zone -- @return #boolean **true** if cargo is in the Zone, **false** if cargo is not in the Zone. function CARGO:IsInZone( Zone ) self:F( { Zone } ) if self:IsLoaded() then return Zone:IsPointVec2InZone( self.CargoCarrier:GetPointVec2() ) else self:F( { Size = self.CargoObject:GetSize(), Units = self.CargoObject:GetUnits() } ) if self.CargoObject:GetSize() ~= 0 then return Zone:IsPointVec2InZone( self.CargoObject:GetPointVec2() ) else return false end end return nil end --- Check if CargoCarrier is near the Cargo to be Loaded. -- @param #CARGO self -- @param Core.Point#POINT_VEC2 PointVec2 -- @param #number NearRadius The radius when the cargo will board the Carrier (to avoid collision). -- @return #boolean function CARGO:IsNear( PointVec2, NearRadius ) self:F( { PointVec2, NearRadius } ) local Distance = PointVec2:DistanceFromPointVec2( self.CargoObject:GetPointVec2() ) self:T( Distance ) if Distance <= NearRadius then return true else return false end end --- Get the current PointVec2 of the cargo. -- @param #CARGO self -- @return Core.Point#POINT_VEC2 function CARGO:GetPointVec2() return self.CargoObject:GetPointVec2() end --- Get the current Coordinate of the cargo. -- @param #CARGO self -- @return Core.Point#COORDINATE function CARGO:GetCoordinate() return self.CargoObject:GetCoordinate() end --- Set the weight of the cargo. -- @param #CARGO self -- @param #number Weight The weight in kg. -- @return #CARGO function CARGO:SetWeight( Weight ) self.Weight = Weight return self end end do -- CARGO_REPRESENTABLE --- @type CARGO_REPRESENTABLE -- @extends #CARGO -- @field test --- -- @field #CARGO_REPRESENTABLE CARGO_REPRESENTABLE CARGO_REPRESENTABLE = { ClassName = "CARGO_REPRESENTABLE" } --- CARGO_REPRESENTABLE Constructor. -- @param #CARGO_REPRESENTABLE self -- @param #string Type -- @param #string Name -- @param #number Weight -- @param #number ReportRadius (optional) -- @param #number NearRadius (optional) -- @return #CARGO_REPRESENTABLE function CARGO_REPRESENTABLE:New( CargoObject, Type, Name, Weight, ReportRadius, NearRadius ) local self = BASE:Inherit( self, CARGO:New( Type, Name, Weight, ReportRadius, NearRadius ) ) -- #CARGO_REPRESENTABLE self:F( { Type, Name, Weight, ReportRadius, NearRadius } ) return self end --- Route a cargo unit to a PointVec2. -- @param #CARGO_REPRESENTABLE self -- @param Core.Point#POINT_VEC2 ToPointVec2 -- @param #number Speed -- @return #CARGO_REPRESENTABLE function CARGO_REPRESENTABLE:RouteTo( ToPointVec2, Speed ) self:F2( ToPointVec2 ) local Points = {} local PointStartVec2 = self.CargoObject:GetPointVec2() Points[#Points+1] = PointStartVec2:WaypointGround( Speed ) Points[#Points+1] = ToPointVec2:WaypointGround( Speed ) local TaskRoute = self.CargoObject:TaskRoute( Points ) self.CargoObject:SetTask( TaskRoute, 2 ) return self end end -- CARGO_REPRESENTABLE do -- CARGO_REPORTABLE --- @type CARGO_REPORTABLE -- @extends #CARGO CARGO_REPORTABLE = { ClassName = "CARGO_REPORTABLE" } --- CARGO_REPORTABLE Constructor. -- @param #CARGO_REPORTABLE self -- @param Wrapper.Controllable#Controllable CargoObject -- @param #string Type -- @param #string Name -- @param #number Weight -- @param #number ReportRadius (optional) -- @param #number NearRadius (optional) -- @return #CARGO_REPORTABLE function CARGO_REPORTABLE:New( CargoObject, Type, Name, Weight, ReportRadius ) local self = BASE:Inherit( self, CARGO:New( Type, Name, Weight ) ) -- #CARGO_REPORTABLE self:F( { Type, Name, Weight, ReportRadius } ) self.CargoSet = SET_CARGO:New() -- Core.Set#SET_CARGO self.ReportRadius = ReportRadius or 1000 self.CargoObject = CargoObject return self end --- Check if CargoCarrier is in the ReportRadius for the Cargo to be Loaded. -- @param #CARGO_REPORTABLE self -- @param Core.Point#POINT_VEC2 PointVec2 -- @return #boolean function CARGO_REPORTABLE:IsInRadius( PointVec2 ) self:F( { PointVec2 } ) local Distance = 0 if self:IsLoaded() then Distance = PointVec2:DistanceFromPointVec2( self.CargoCarrier:GetPointVec2() ) else Distance = PointVec2:DistanceFromPointVec2( self.CargoObject:GetPointVec2() ) end self:T( Distance ) if Distance <= self.ReportRadius then return true else return false end end --- Send a CC message to a GROUP. -- @param #CARGO_REPORTABLE self -- @param #string Message -- @param Wrapper.Group#GROUP TaskGroup -- @param #sring Name (optional) The name of the Group used as a prefix for the message to the Group. If not provided, there will be nothing shown. function CARGO_REPORTABLE:MessageToGroup( Message, TaskGroup, Name ) local Prefix = Name and "@ " .. Name .. ": " or "@ " .. TaskGroup:GetCallsign() .. ": " Message = Prefix .. Message MESSAGE:New( Message, 20, "Cargo: " .. self:GetName() ):ToGroup( TaskGroup ) end --- Get the range till cargo will board. -- @param #CARGO_REPORTABLE self -- @return #number The range till cargo will board. function CARGO_REPORTABLE:GetBoardingRange() return self.ReportRadius end --- Respawn the cargo. -- @param #CARGO_REPORTABLE self function CARGO_REPORTABLE:Respawn() self:F({"Respawning"}) for CargoID, CargoData in pairs( self.CargoSet:GetSet() ) do local Cargo = CargoData -- #CARGO Cargo:Destroy() Cargo:SetStartState( "UnLoaded" ) end local CargoObject = self.CargoObject -- Wrapper.Group#GROUP CargoObject:Destroy() local Template = CargoObject:GetTemplate() CargoObject:Respawn( Template ) self:SetDeployed( false ) local WeightGroup = 0 self:SetStartState( "UnLoaded" ) end end do -- CARGO_UNIT --- Hello -- @type CARGO_UNIT -- @extends #CARGO_REPRESENTABLE --- # CARGO\_UNIT class, extends @{#CARGO_REPRESENTABLE} -- -- The CARGO\_UNIT class defines a cargo that is represented by a UNIT object within the simulator, and can be transported by a carrier. -- Use the event functions as described above to Load, UnLoad, Board, UnBoard the CARGO\_UNIT objects to and from carriers. -- -- === -- -- @field #CARGO_UNIT CARGO_UNIT -- CARGO_UNIT = { ClassName = "CARGO_UNIT" } --- CARGO_UNIT Constructor. -- @param #CARGO_UNIT self -- @param Wrapper.Unit#UNIT CargoUnit -- @param #string Type -- @param #string Name -- @param #number Weight -- @param #number ReportRadius (optional) -- @param #number NearRadius (optional) -- @return #CARGO_UNIT function CARGO_UNIT:New( CargoUnit, Type, Name, Weight, NearRadius ) local self = BASE:Inherit( self, CARGO_REPRESENTABLE:New( CargoUnit, Type, Name, Weight, NearRadius ) ) -- #CARGO_UNIT self:F( { Type, Name, Weight, NearRadius } ) self:T( CargoUnit ) self.CargoObject = CargoUnit self:T( self.ClassName ) -- self:HandleEvent( EVENTS.Dead, -- --- @param #CARGO Cargo -- -- @param Core.Event#EVENTDATA EventData -- function( Cargo, EventData ) -- if Cargo:GetObjectName() == EventData.IniUnit:GetName() then -- self:E( { "Cargo destroyed", Cargo } ) -- Cargo:Destroyed() -- end -- end -- ) self:SetEventPriority( 5 ) return self end --- CARGO_UNIT Destructor. -- @param #CARGO_UNIT self -- @return #CARGO_UNIT function CARGO_UNIT:Destroy() -- Cargo objects are deleted from the _DATABASE and SET_CARGO objects. self:F( { CargoName = self:GetName() } ) _EVENTDISPATCHER:CreateEventDeleteCargo( self ) return self end --- Enter UnBoarding State. -- @param #CARGO_UNIT self -- @param #string Event -- @param #string From -- @param #string To -- @param Core.Point#POINT_VEC2 ToPointVec2 function CARGO_UNIT:onenterUnBoarding( From, Event, To, ToPointVec2, NearRadius ) self:F( { From, Event, To, ToPointVec2, NearRadius } ) NearRadius = NearRadius or 25 local Angle = 180 local Speed = 60 local DeployDistance = 9 local RouteDistance = 60 if From == "Loaded" then local CargoCarrier = self.CargoCarrier -- Wrapper.Controllable#CONTROLLABLE local CargoCarrierPointVec2 = CargoCarrier:GetPointVec2() local CargoCarrierHeading = self.CargoCarrier:GetHeading() -- Get Heading of object in degrees. local CargoDeployHeading = ( ( CargoCarrierHeading + Angle ) >= 360 ) and ( CargoCarrierHeading + Angle - 360 ) or ( CargoCarrierHeading + Angle ) local CargoRoutePointVec2 = CargoCarrierPointVec2:Translate( RouteDistance, CargoDeployHeading ) -- if there is no ToPointVec2 given, then use the CargoRoutePointVec2 ToPointVec2 = ToPointVec2 or CargoRoutePointVec2 local DirectionVec3 = CargoCarrierPointVec2:GetDirectionVec3(ToPointVec2) local Angle = CargoCarrierPointVec2:GetAngleDegrees(DirectionVec3) local CargoDeployPointVec2 = CargoCarrierPointVec2:Translate( DeployDistance, Angle ) local FromPointVec2 = CargoCarrierPointVec2 -- Respawn the group... if self.CargoObject then self.CargoObject:ReSpawn( CargoDeployPointVec2:GetVec3(), CargoDeployHeading ) self:F( { "CargoUnits:", self.CargoObject:GetGroup():GetName() } ) self.CargoCarrier = nil local Points = {} Points[#Points+1] = CargoCarrierPointVec2:WaypointGround( Speed ) Points[#Points+1] = ToPointVec2:WaypointGround( Speed ) local TaskRoute = self.CargoObject:TaskRoute( Points ) self.CargoObject:SetTask( TaskRoute, 1 ) self:__UnBoarding( 1, ToPointVec2, NearRadius ) end end end --- Leave UnBoarding State. -- @param #CARGO_UNIT self -- @param #string Event -- @param #string From -- @param #string To -- @param Core.Point#POINT_VEC2 ToPointVec2 function CARGO_UNIT:onleaveUnBoarding( From, Event, To, ToPointVec2, NearRadius ) self:F( { From, Event, To, ToPointVec2, NearRadius } ) NearRadius = NearRadius or 25 local Angle = 180 local Speed = 10 local Distance = 5 if From == "UnBoarding" then if self:IsNear( ToPointVec2, NearRadius ) then return true else self:__UnBoarding( 1, ToPointVec2, NearRadius ) end return false end end --- UnBoard Event. -- @param #CARGO_UNIT self -- @param #string Event -- @param #string From -- @param #string To -- @param Core.Point#POINT_VEC2 ToPointVec2 function CARGO_UNIT:onafterUnBoarding( From, Event, To, ToPointVec2, NearRadius ) self:F( { From, Event, To, ToPointVec2, NearRadius } ) NearRadius = NearRadius or 25 self.CargoInAir = self.CargoObject:InAir() self:T( self.CargoInAir ) -- Only unboard the cargo when the carrier is not in the air. -- (eg. cargo can be on a oil derrick, moving the cargo on the oil derrick will drop the cargo on the sea). if not self.CargoInAir then end self:__UnLoad( 1, ToPointVec2, NearRadius ) end --- Enter UnLoaded State. -- @param #CARGO_UNIT self -- @param #string Event -- @param #string From -- @param #string To -- @param Core.Point#POINT_VEC2 function CARGO_UNIT:onenterUnLoaded( From, Event, To, ToPointVec2 ) self:F( { ToPointVec2, From, Event, To } ) local Angle = 180 local Speed = 10 local Distance = 5 if From == "Loaded" then local StartPointVec2 = self.CargoCarrier:GetPointVec2() local CargoCarrierHeading = self.CargoCarrier:GetHeading() -- Get Heading of object in degrees. local CargoDeployHeading = ( ( CargoCarrierHeading + Angle ) >= 360 ) and ( CargoCarrierHeading + Angle - 360 ) or ( CargoCarrierHeading + Angle ) local CargoDeployPointVec2 = StartPointVec2:Translate( Distance, CargoDeployHeading ) ToPointVec2 = ToPointVec2 or POINT_VEC2:New( CargoDeployPointVec2:GetX(), CargoDeployPointVec2:GetY() ) -- Respawn the group... if self.CargoObject then self.CargoObject:ReSpawn( ToPointVec2:GetVec3(), 0 ) self.CargoCarrier = nil end end if self.OnUnLoadedCallBack then self.OnUnLoadedCallBack( self, unpack( self.OnUnLoadedParameters ) ) self.OnUnLoadedCallBack = nil end end --- Board Event. -- @param #CARGO_UNIT self -- @param #string Event -- @param #string From -- @param #string To function CARGO_UNIT:onafterBoard( From, Event, To, CargoCarrier, NearRadius, ... ) self:F( { From, Event, To, CargoCarrier, NearRadius } ) local NearRadius = NearRadius or 25 self.CargoInAir = self.CargoObject:InAir() self:T( self.CargoInAir ) -- Only move the group to the carrier when the cargo is not in the air -- (eg. cargo can be on a oil derrick, moving the cargo on the oil derrick will drop the cargo on the sea). if not self.CargoInAir then if self:IsNear( CargoCarrier:GetPointVec2(), NearRadius ) then self:Load( CargoCarrier, NearRadius, ... ) else local Speed = 90 local Angle = 180 local Distance = 5 NearRadius = NearRadius or 25 local CargoCarrierPointVec2 = CargoCarrier:GetPointVec2() local CargoCarrierHeading = CargoCarrier:GetHeading() -- Get Heading of object in degrees. local CargoDeployHeading = ( ( CargoCarrierHeading + Angle ) >= 360 ) and ( CargoCarrierHeading + Angle - 360 ) or ( CargoCarrierHeading + Angle ) local CargoDeployPointVec2 = CargoCarrierPointVec2:Translate( Distance, CargoDeployHeading ) local Points = {} local PointStartVec2 = self.CargoObject:GetPointVec2() Points[#Points+1] = PointStartVec2:WaypointGround( Speed ) Points[#Points+1] = CargoDeployPointVec2:WaypointGround( Speed ) local TaskRoute = self.CargoObject:TaskRoute( Points ) self.CargoObject:SetTask( TaskRoute, 2 ) self:__Boarding( -1, CargoCarrier, NearRadius ) self.RunCount = 0 end end end --- Boarding Event. -- @param #CARGO_UNIT self -- @param #string Event -- @param #string From -- @param #string To -- @param Wrapper.Unit#UNIT CargoCarrier -- @param #number NearRadius function CARGO_UNIT:onafterBoarding( From, Event, To, CargoCarrier, NearRadius, ... ) self:F( { From, Event, To, CargoCarrier.UnitName, NearRadius } ) if CargoCarrier and CargoCarrier:IsAlive() then if CargoCarrier:InAir() == false then if self:IsNear( CargoCarrier:GetPointVec2(), NearRadius ) then self:__Load( 1, CargoCarrier, ... ) else self:__Boarding( -1, CargoCarrier, NearRadius, ... ) self.RunCount = self.RunCount + 1 if self.RunCount >= 20 then self.RunCount = 0 local Speed = 90 local Angle = 180 local Distance = 5 NearRadius = NearRadius or 25 local CargoCarrierPointVec2 = CargoCarrier:GetPointVec2() local CargoCarrierHeading = CargoCarrier:GetHeading() -- Get Heading of object in degrees. local CargoDeployHeading = ( ( CargoCarrierHeading + Angle ) >= 360 ) and ( CargoCarrierHeading + Angle - 360 ) or ( CargoCarrierHeading + Angle ) local CargoDeployPointVec2 = CargoCarrierPointVec2:Translate( Distance, CargoDeployHeading ) local Points = {} local PointStartVec2 = self.CargoObject:GetPointVec2() Points[#Points+1] = PointStartVec2:WaypointGround( Speed ) Points[#Points+1] = CargoDeployPointVec2:WaypointGround( Speed ) local TaskRoute = self.CargoObject:TaskRoute( Points ) self.CargoObject:SetTask( TaskRoute, 0.2 ) end end else self.CargoObject:MessageToGroup( "Cancelling Boarding... Get back on the ground!", 5, CargoCarrier:GetGroup(), self:GetName() ) self:CancelBoarding( CargoCarrier, NearRadius, ... ) self.CargoObject:SetCommand( self.CargoObject:CommandStopRoute( true ) ) end else self:E("Something is wrong") end end --- Enter Boarding State. -- @param #CARGO_UNIT self -- @param #string Event -- @param #string From -- @param #string To -- @param Wrapper.Unit#UNIT CargoCarrier function CARGO_UNIT:onenterBoarding( From, Event, To, CargoCarrier, NearRadius, ... ) self:F( { From, Event, To, CargoCarrier.UnitName, NearRadius } ) local Speed = 90 local Angle = 180 local Distance = 5 local NearRadius = NearRadius or 25 if From == "UnLoaded" or From == "Boarding" then end end --- Loaded State. -- @param #CARGO_UNIT self -- @param #string Event -- @param #string From -- @param #string To -- @param Wrapper.Unit#UNIT CargoCarrier function CARGO_UNIT:onenterLoaded( From, Event, To, CargoCarrier ) self:F( { From, Event, To, CargoCarrier } ) self.CargoCarrier = CargoCarrier -- Only destroy the CargoObject is if there is a CargoObject (packages don't have CargoObjects). if self.CargoObject then self:T("Destroying") self.CargoObject:Destroy() end end end do -- CARGO_GROUP --- @type CARGO_GROUP -- @extends #CARGO_REPORTABLE --- # CARGO\_GROUP class -- -- The CARGO\_GROUP class defines a cargo that is represented by a @{Group} object within the simulator, and can be transported by a carrier. -- Use the event functions as described above to Load, UnLoad, Board, UnBoard the CARGO\_GROUP to and from carrier. -- -- @field #CARGO_GROUP CARGO_GROUP -- CARGO_GROUP = { ClassName = "CARGO_GROUP", } --- CARGO_GROUP constructor. -- @param #CARGO_GROUP self -- @param Wrapper.Group#GROUP CargoGroup -- @param #string Type -- @param #string Name -- @param #number ReportRadius (optional) -- @param #number NearRadius (optional) -- @return #CARGO_GROUP function CARGO_GROUP:New( CargoGroup, Type, Name, ReportRadius ) local self = BASE:Inherit( self, CARGO_REPORTABLE:New( CargoGroup, Type, Name, 0, ReportRadius ) ) -- #CARGO_GROUP self:F( { Type, Name, ReportRadius } ) self.CargoObject = CargoGroup self:SetDeployed( false ) self.CargoGroup = CargoGroup local WeightGroup = 0 for UnitID, UnitData in pairs( CargoGroup:GetUnits() ) do local Unit = UnitData -- Wrapper.Unit#UNIT local WeightUnit = Unit:GetDesc().massEmpty WeightGroup = WeightGroup + WeightUnit local CargoUnit = CARGO_UNIT:New( Unit, Type, Unit:GetName(), WeightUnit ) self.CargoSet:Add( CargoUnit:GetName(), CargoUnit ) end self:SetWeight( WeightGroup ) self:T( { "Weight Cargo", WeightGroup } ) -- Cargo objects are added to the _DATABASE and SET_CARGO objects. _EVENTDISPATCHER:CreateEventNewCargo( self ) self:HandleEvent( EVENTS.Dead, self.OnEventCargoDead ) self:HandleEvent( EVENTS.Crash, self.OnEventCargoDead ) self:HandleEvent( EVENTS.PlayerLeaveUnit, self.OnEventCargoDead ) self:SetEventPriority( 4 ) return self end --- @param #CARGO_GROUP self -- @param Core.Event#EVENTDATA EventData function CARGO_GROUP:OnEventCargoDead( EventData ) local Destroyed = false if self:IsDestroyed() or self:IsUnLoaded() then Destroyed = true for CargoID, CargoData in pairs( self.CargoSet:GetSet() ) do local Cargo = CargoData -- #CARGO if Cargo:IsAlive() then Destroyed = false else Cargo:Destroyed() end end else local CarrierName = self.CargoCarrier:GetName() if CarrierName == EventData.IniDCSUnitName then MESSAGE:New( "Cargo is lost from carrier " .. CarrierName, 15 ):ToAll() Destroyed = true self.CargoCarrier:ClearCargo() end end if Destroyed then self:Destroyed() self:E( { "Cargo group destroyed" } ) end end --- Enter Boarding State. -- @param #CARGO_GROUP self -- @param Wrapper.Unit#UNIT CargoCarrier -- @param #string Event -- @param #string From -- @param #string To function CARGO_GROUP:onenterBoarding( From, Event, To, CargoCarrier, NearRadius, ... ) self:F( { CargoCarrier.UnitName, From, Event, To } ) local NearRadius = NearRadius or 25 if From == "UnLoaded" then -- For each Cargo object within the CARGO_GROUPED, route each object to the CargoLoadPointVec2 self.CargoSet:ForEach( function( Cargo, ... ) Cargo:__Board( 1, CargoCarrier, NearRadius, ... ) end, ... ) self:__Boarding( 1, CargoCarrier, NearRadius, ... ) end end --- Enter Loaded State. -- @param #CARGO_GROUP self -- @param Wrapper.Unit#UNIT CargoCarrier -- @param #string Event -- @param #string From -- @param #string To function CARGO_GROUP:onenterLoaded( From, Event, To, CargoCarrier, ... ) self:F( { From, Event, To, CargoCarrier, ...} ) if From == "UnLoaded" then -- For each Cargo object within the CARGO_GROUP, load each cargo to the CargoCarrier. for CargoID, Cargo in pairs( self.CargoSet:GetSet() ) do Cargo:Load( CargoCarrier ) end end --self.CargoObject:Destroy() self.CargoCarrier = CargoCarrier end --- Leave Boarding State. -- @param #CARGO_GROUP self -- @param Wrapper.Unit#UNIT CargoCarrier -- @param #string Event -- @param #string From -- @param #string To function CARGO_GROUP:onafterBoarding( From, Event, To, CargoCarrier, NearRadius, ... ) self:F( { CargoCarrier.UnitName, From, Event, To } ) local NearRadius = NearRadius or 25 local Boarded = true local Cancelled = false local Dead = true self.CargoSet:Flush() -- For each Cargo object within the CARGO_GROUP, route each object to the CargoLoadPointVec2 for CargoID, Cargo in pairs( self.CargoSet:GetSet() ) do self:T( { Cargo:GetName(), Cargo.current } ) if not Cargo:is( "Loaded" ) then Boarded = false end if Cargo:is( "UnLoaded" ) then Cancelled = true end if not Cargo:is( "Destroyed" ) then Dead = false end end if not Dead then if not Cancelled then if not Boarded then self:__Boarding( 1, CargoCarrier, NearRadius, ... ) else self:__Load( 1, CargoCarrier, ... ) end else self:__CancelBoarding( 1, CargoCarrier, NearRadius, ... ) end else self:__Destroyed( 1, CargoCarrier, NearRadius, ... ) end end --- Get the amount of cargo units in the group. -- @param #CARGO_GROUP self -- @return #CARGO_GROUP function CARGO_GROUP:GetCount() return self.CargoSet:Count() end --- Enter UnBoarding State. -- @param #CARGO_GROUP self -- @param Core.Point#POINT_VEC2 ToPointVec2 -- @param #string Event -- @param #string From -- @param #string To function CARGO_GROUP:onenterUnBoarding( From, Event, To, ToPointVec2, NearRadius, ... ) self:F( {From, Event, To, ToPointVec2, NearRadius } ) NearRadius = NearRadius or 25 local Timer = 1 if From == "Loaded" then if self.CargoObject then self.CargoObject:Destroy() end -- For each Cargo object within the CARGO_GROUP, route each object to the CargoLoadPointVec2 self.CargoSet:ForEach( function( Cargo, NearRadius ) Cargo:__UnBoard( Timer, ToPointVec2, NearRadius ) Timer = Timer + 10 end, { NearRadius } ) self:__UnBoarding( 1, ToPointVec2, NearRadius, ... ) end end --- Leave UnBoarding State. -- @param #CARGO_GROUP self -- @param Core.Point#POINT_VEC2 ToPointVec2 -- @param #string Event -- @param #string From -- @param #string To function CARGO_GROUP:onleaveUnBoarding( From, Event, To, ToPointVec2, NearRadius, ... ) self:F( { From, Event, To, ToPointVec2, NearRadius } ) --local NearRadius = NearRadius or 25 local Angle = 180 local Speed = 10 local Distance = 5 if From == "UnBoarding" then local UnBoarded = true -- For each Cargo object within the CARGO_GROUP, route each object to the CargoLoadPointVec2 for CargoID, Cargo in pairs( self.CargoSet:GetSet() ) do self:T( Cargo.current ) if not Cargo:is( "UnLoaded" ) then UnBoarded = false end end if UnBoarded then return true else self:__UnBoarding( 1, ToPointVec2, NearRadius, ... ) end return false end end --- UnBoard Event. -- @param #CARGO_GROUP self -- @param Core.Point#POINT_VEC2 ToPointVec2 -- @param #string Event -- @param #string From -- @param #string To function CARGO_GROUP:onafterUnBoarding( From, Event, To, ToPointVec2, NearRadius, ... ) self:F( { From, Event, To, ToPointVec2, NearRadius } ) --local NearRadius = NearRadius or 25 self:__UnLoad( 1, ToPointVec2, ... ) end --- Enter UnLoaded State. -- @param #CARGO_GROUP self -- @param Core.Point#POINT_VEC2 -- @param #string Event -- @param #string From -- @param #string To function CARGO_GROUP:onenterUnLoaded( From, Event, To, ToPointVec2, ... ) self:F( { From, Event, To, ToPointVec2 } ) if From == "Loaded" then -- For each Cargo object within the CARGO_GROUP, route each object to the CargoLoadPointVec2 self.CargoSet:ForEach( function( Cargo ) Cargo:UnLoad( ToPointVec2 ) end ) end end --- Respawn the cargo when destroyed -- @param #CARGO_GROUP self -- @param #boolean RespawnDestroyed function CARGO_GROUP:RespawnOnDestroyed( RespawnDestroyed ) self:F({"In function RespawnOnDestroyed"}) if RespawnDestroyed then self.onenterDestroyed = function( self ) self:F("IN FUNCTION") self:Respawn() end else self.onenterDestroyed = nil end end end -- CARGO_GROUP do -- CARGO_PACKAGE --- @type CARGO_PACKAGE -- @extends #CARGO_REPRESENTABLE CARGO_PACKAGE = { ClassName = "CARGO_PACKAGE" } --- CARGO_PACKAGE Constructor. -- @param #CARGO_PACKAGE self -- @param Wrapper.Unit#UNIT CargoCarrier The UNIT carrying the package. -- @param #string Type -- @param #string Name -- @param #number Weight -- @param #number ReportRadius (optional) -- @param #number NearRadius (optional) -- @return #CARGO_PACKAGE function CARGO_PACKAGE:New( CargoCarrier, Type, Name, Weight, ReportRadius, NearRadius ) local self = BASE:Inherit( self, CARGO_REPRESENTABLE:New( CargoCarrier, Type, Name, Weight, ReportRadius, NearRadius ) ) -- #CARGO_PACKAGE self:F( { Type, Name, Weight, ReportRadius, NearRadius } ) self:T( CargoCarrier ) self.CargoCarrier = CargoCarrier return self end --- Board Event. -- @param #CARGO_PACKAGE self -- @param #string Event -- @param #string From -- @param #string To -- @param Wrapper.Unit#UNIT CargoCarrier -- @param #number Speed -- @param #number BoardDistance -- @param #number Angle function CARGO_PACKAGE:onafterOnBoard( From, Event, To, CargoCarrier, Speed, BoardDistance, LoadDistance, Angle ) self:F() self.CargoInAir = self.CargoCarrier:InAir() self:T( self.CargoInAir ) -- Only move the CargoCarrier to the New CargoCarrier when the New CargoCarrier is not in the air. if not self.CargoInAir then local Points = {} local StartPointVec2 = self.CargoCarrier:GetPointVec2() local CargoCarrierHeading = CargoCarrier:GetHeading() -- Get Heading of object in degrees. local CargoDeployHeading = ( ( CargoCarrierHeading + Angle ) >= 360 ) and ( CargoCarrierHeading + Angle - 360 ) or ( CargoCarrierHeading + Angle ) self:T( { CargoCarrierHeading, CargoDeployHeading } ) local CargoDeployPointVec2 = CargoCarrier:GetPointVec2():Translate( BoardDistance, CargoDeployHeading ) Points[#Points+1] = StartPointVec2:WaypointGround( Speed ) Points[#Points+1] = CargoDeployPointVec2:WaypointGround( Speed ) local TaskRoute = self.CargoCarrier:TaskRoute( Points ) self.CargoCarrier:SetTask( TaskRoute, 1 ) end self:Boarded( CargoCarrier, Speed, BoardDistance, LoadDistance, Angle ) end --- Check if CargoCarrier is near the Cargo to be Loaded. -- @param #CARGO_PACKAGE self -- @param Wrapper.Unit#UNIT CargoCarrier -- @return #boolean function CARGO_PACKAGE:IsNear( CargoCarrier ) self:F() local CargoCarrierPoint = CargoCarrier:GetPointVec2() local Distance = CargoCarrierPoint:DistanceFromPointVec2( self.CargoCarrier:GetPointVec2() ) self:T( Distance ) if Distance <= self.NearRadius then return true else return false end end --- Boarded Event. -- @param #CARGO_PACKAGE self -- @param #string Event -- @param #string From -- @param #string To -- @param Wrapper.Unit#UNIT CargoCarrier function CARGO_PACKAGE:onafterOnBoarded( From, Event, To, CargoCarrier, Speed, BoardDistance, LoadDistance, Angle ) self:F() if self:IsNear( CargoCarrier ) then self:__Load( 1, CargoCarrier, Speed, LoadDistance, Angle ) else self:__Boarded( 1, CargoCarrier, Speed, BoardDistance, LoadDistance, Angle ) end end --- UnBoard Event. -- @param #CARGO_PACKAGE self -- @param #string Event -- @param #string From -- @param #string To -- @param #number Speed -- @param #number UnLoadDistance -- @param #number UnBoardDistance -- @param #number Radius -- @param #number Angle function CARGO_PACKAGE:onafterUnBoard( From, Event, To, CargoCarrier, Speed, UnLoadDistance, UnBoardDistance, Radius, Angle ) self:F() self.CargoInAir = self.CargoCarrier:InAir() self:T( self.CargoInAir ) -- Only unboard the cargo when the carrier is not in the air. -- (eg. cargo can be on a oil derrick, moving the cargo on the oil derrick will drop the cargo on the sea). if not self.CargoInAir then self:_Next( self.FsmP.UnLoad, UnLoadDistance, Angle ) local Points = {} local StartPointVec2 = CargoCarrier:GetPointVec2() local CargoCarrierHeading = self.CargoCarrier:GetHeading() -- Get Heading of object in degrees. local CargoDeployHeading = ( ( CargoCarrierHeading + Angle ) >= 360 ) and ( CargoCarrierHeading + Angle - 360 ) or ( CargoCarrierHeading + Angle ) self:T( { CargoCarrierHeading, CargoDeployHeading } ) local CargoDeployPointVec2 = StartPointVec2:Translate( UnBoardDistance, CargoDeployHeading ) Points[#Points+1] = StartPointVec2:WaypointGround( Speed ) Points[#Points+1] = CargoDeployPointVec2:WaypointGround( Speed ) local TaskRoute = CargoCarrier:TaskRoute( Points ) CargoCarrier:SetTask( TaskRoute, 1 ) end self:__UnBoarded( 1 , CargoCarrier, Speed ) end --- UnBoarded Event. -- @param #CARGO_PACKAGE self -- @param #string Event -- @param #string From -- @param #string To -- @param Wrapper.Unit#UNIT CargoCarrier function CARGO_PACKAGE:onafterUnBoarded( From, Event, To, CargoCarrier, Speed ) self:F() if self:IsNear( CargoCarrier ) then self:__UnLoad( 1, CargoCarrier, Speed ) else self:__UnBoarded( 1, CargoCarrier, Speed ) end end --- Load Event. -- @param #CARGO_PACKAGE self -- @param #string Event -- @param #string From -- @param #string To -- @param Wrapper.Unit#UNIT CargoCarrier -- @param #number Speed -- @param #number LoadDistance -- @param #number Angle function CARGO_PACKAGE:onafterLoad( From, Event, To, CargoCarrier, Speed, LoadDistance, Angle ) self:F() self.CargoCarrier = CargoCarrier local StartPointVec2 = self.CargoCarrier:GetPointVec2() local CargoCarrierHeading = self.CargoCarrier:GetHeading() -- Get Heading of object in degrees. local CargoDeployHeading = ( ( CargoCarrierHeading + Angle ) >= 360 ) and ( CargoCarrierHeading + Angle - 360 ) or ( CargoCarrierHeading + Angle ) local CargoDeployPointVec2 = StartPointVec2:Translate( LoadDistance, CargoDeployHeading ) local Points = {} Points[#Points+1] = StartPointVec2:WaypointGround( Speed ) Points[#Points+1] = CargoDeployPointVec2:WaypointGround( Speed ) local TaskRoute = self.CargoCarrier:TaskRoute( Points ) self.CargoCarrier:SetTask( TaskRoute, 1 ) end --- UnLoad Event. -- @param #CARGO_PACKAGE self -- @param #string Event -- @param #string From -- @param #string To -- @param #number Distance -- @param #number Angle function CARGO_PACKAGE:onafterUnLoad( From, Event, To, CargoCarrier, Speed, Distance, Angle ) self:F() local StartPointVec2 = self.CargoCarrier:GetPointVec2() local CargoCarrierHeading = self.CargoCarrier:GetHeading() -- Get Heading of object in degrees. local CargoDeployHeading = ( ( CargoCarrierHeading + Angle ) >= 360 ) and ( CargoCarrierHeading + Angle - 360 ) or ( CargoCarrierHeading + Angle ) local CargoDeployPointVec2 = StartPointVec2:Translate( Distance, CargoDeployHeading ) self.CargoCarrier = CargoCarrier local Points = {} Points[#Points+1] = StartPointVec2:WaypointGround( Speed ) Points[#Points+1] = CargoDeployPointVec2:WaypointGround( Speed ) local TaskRoute = self.CargoCarrier:TaskRoute( Points ) self.CargoCarrier:SetTask( TaskRoute, 1 ) end end --- **Core** -- Management of SPOT logistics, that can be transported from and to transportation carriers. -- -- ![Banner Image](..\Presentations\SPOT\Dia1.JPG) -- -- ==== -- -- SPOT implements the DCS Spot class functionality, but adds additional luxury to be able to: -- -- * Spot for a defined duration. -- * wiggle the spot at the target. -- * Provide a @{Unit} as a target, instead of a point. -- * Implement a status machine, LaseOn, LaseOff. -- -- ==== -- -- # Demo Missions -- -- ### [SPOT Demo Missions source code]() -- -- ### [SPOT Demo Missions, only for beta testers]() -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [SPOT YouTube Channel]() -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- * [**Ciribob**](https://forums.eagle.ru/member.php?u=112175): Showing the way how to lase targets + how laser codes work!!! Explained the autolase script. -- * [**EasyEB**](https://forums.eagle.ru/member.php?u=112055): Ideas and Beta Testing -- * [**Wingthor**](https://forums.eagle.ru/member.php?u=123698): Beta Testing -- -- ==== -- -- @module Spot do --- @type SPOT -- @extends Core.Fsm#FSM --- # SPOT class, extends @{Fsm#FSM} -- -- SPOT implements the DCS Spot class functionality, but adds additional luxury to be able to: -- -- * Mark targets for a defined duration. -- * wiggle the spot at the target. -- * Provide a @{Unit} as a target, instead of a point. -- * Implement a status machine, LaseOn, LaseOff. -- -- ## 1. SPOT constructor -- -- * @{#SPOT.New}(..\Presentations\SPOT\Dia2.JPG): Creates a new SPOT object. -- -- ## 2. SPOT is a FSM -- -- ![Process]() -- -- ### 2.1 SPOT States -- -- * **Off**: Lasing is switched off. -- * **On**: Lasing is switched on. -- * **Destroyed**: Target is destroyed. -- -- ### 2.2 SPOT Events -- -- * **@{#SPOT.LaseOn}(Target, LaserCode, Duration)**: Lase to a target. -- * **@{#SPOT.LaseOff}()**: Stop lasing the target. -- * **@{#SPOT.Lasing}()**: Target is being lased. -- * **@{#SPOT.Destroyed}()**: Triggered when target is destroyed. -- -- ## 3. Check if a Target is being lased -- -- The method @{#SPOT.IsLasing}() indicates whether lasing is on or off. -- -- @field #SPOT SPOT = { ClassName = "SPOT", } --- SPOT Constructor. -- @param #SPOT self -- @param Wrapper.Unit#UNIT Recce -- @param #number LaserCode -- @param #number Duration -- @return #SPOT function SPOT:New( Recce ) local self = BASE:Inherit( self, FSM:New() ) -- #SPOT self:F( {} ) self:SetStartState( "Off" ) self:AddTransition( "Off", "LaseOn", "On" ) --- LaseOn Handler OnBefore for SPOT -- @function [parent=#SPOT] OnBeforeLaseOn -- @param #SPOT self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- LaseOn Handler OnAfter for SPOT -- @function [parent=#SPOT] OnAfterLaseOn -- @param #SPOT self -- @param #string From -- @param #string Event -- @param #string To --- LaseOn Trigger for SPOT -- @function [parent=#SPOT] LaseOn -- @param #SPOT self --- LaseOn Asynchronous Trigger for SPOT -- @function [parent=#SPOT] __LaseOn -- @param #SPOT self -- @param #number Delay self:AddTransition( "On", "Lasing", "On" ) self:AddTransition( { "On", "Destroyed" } , "LaseOff", "Off" ) --- LaseOff Handler OnBefore for SPOT -- @function [parent=#SPOT] OnBeforeLaseOff -- @param #SPOT self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- LaseOff Handler OnAfter for SPOT -- @function [parent=#SPOT] OnAfterLaseOff -- @param #SPOT self -- @param #string From -- @param #string Event -- @param #string To --- LaseOff Trigger for SPOT -- @function [parent=#SPOT] LaseOff -- @param #SPOT self --- LaseOff Asynchronous Trigger for SPOT -- @function [parent=#SPOT] __LaseOff -- @param #SPOT self -- @param #number Delay self:AddTransition( "*" , "Destroyed", "Destroyed" ) --- Destroyed Handler OnBefore for SPOT -- @function [parent=#SPOT] OnBeforeDestroyed -- @param #SPOT self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- Destroyed Handler OnAfter for SPOT -- @function [parent=#SPOT] OnAfterDestroyed -- @param #SPOT self -- @param #string From -- @param #string Event -- @param #string To --- Destroyed Trigger for SPOT -- @function [parent=#SPOT] Destroyed -- @param #SPOT self --- Destroyed Asynchronous Trigger for SPOT -- @function [parent=#SPOT] __Destroyed -- @param #SPOT self -- @param #number Delay self.Recce = Recce self.LaseScheduler = SCHEDULER:New( self ) self:SetEventPriority( 5 ) self.Lasing = false return self end --- @param #SPOT self -- @param From -- @param Event -- @param To -- @param Wrapper.Positionable#POSITIONABLE Target -- @param #number LaserCode -- @param #number Duration function SPOT:onafterLaseOn( From, Event, To, Target, LaserCode, Duration ) self:E( { "LaseOn", Target, LaserCode, Duration } ) local function StopLase( self ) self:LaseOff() end self.Target = Target self.LaserCode = LaserCode self.Lasing = true local RecceDcsUnit = self.Recce:GetDCSObject() self.SpotIR = Spot.createInfraRed( RecceDcsUnit, { x = 0, y = 2, z = 0 }, Target:GetPointVec3():AddY(1):GetVec3() ) self.SpotLaser = Spot.createLaser( RecceDcsUnit, { x = 0, y = 2, z = 0 }, Target:GetPointVec3():AddY(1):GetVec3(), LaserCode ) if Duration then self.ScheduleID = self.LaseScheduler:Schedule( self, StopLase, {self}, Duration ) end self:HandleEvent( EVENTS.Dead ) self:__Lasing( -1 ) end --- @param #SPOT self -- @param Core.Event#EVENTDATA EventData function SPOT:OnEventDead(EventData) self:E( { Dead = EventData.IniDCSUnitName, Target = self.Target } ) if self.Target then if EventData.IniDCSUnitName == self.Target:GetName() then self:E( {"Target dead ", self.Target:GetName() } ) self:Destroyed() self:LaseOff() end end end --- @param #SPOT self -- @param From -- @param Event -- @param To function SPOT:onafterLasing( From, Event, To ) if self.Target:IsAlive() then self.SpotIR:setPoint( self.Target:GetPointVec3():AddY(1):AddY(math.random(-100,100)/100):AddX(math.random(-100,100)/100):GetVec3() ) self.SpotLaser:setPoint( self.Target:GetPointVec3():AddY(1):GetVec3() ) self:__Lasing( -0.2 ) else self:E( { "Target is not alive", self.Target:IsAlive() } ) end end --- @param #SPOT self -- @param From -- @param Event -- @param To -- @return #SPOT function SPOT:onafterLaseOff( From, Event, To ) self:E( {"Stopped lasing for ", self.Target:GetName() , SpotIR = self.SportIR, SpotLaser = self.SpotLaser } ) self.Lasing = false self.SpotIR:destroy() self.SpotLaser:destroy() self.SpotIR = nil self.SpotLaser = nil if self.ScheduleID then self.LaseScheduler:Stop(self.ScheduleID) end self.ScheduleID = nil self.Target = nil return self end --- Check if the SPOT is lasing -- @param #SPOT self -- @return #boolean true if it is lasing function SPOT:IsLasing() return self.Lasing end end--- **Wrapper** -- OBJECT wraps the DCS Object derived objects. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- === -- -- @module Object --- @type OBJECT -- @extends Core.Base#BASE -- @field #string ObjectName The name of the Object. --- # OBJECT class, extends @{Base#BASE} -- -- OBJECT handles the DCS Object objects: -- -- * Support all DCS Object APIs. -- * Enhance with Object specific APIs not in the DCS Object API set. -- * Manage the "state" of the DCS Object. -- -- ## OBJECT constructor: -- -- The OBJECT class provides the following functions to construct a OBJECT instance: -- -- * @{Object#OBJECT.New}(): Create a OBJECT instance. -- -- @field #OBJECT OBJECT = { ClassName = "OBJECT", ObjectName = "", } --- A DCSObject -- @type DCSObject -- @field id_ The ID of the controllable in DCS --- Create a new OBJECT from a DCSObject -- @param #OBJECT self -- @param Dcs.DCSWrapper.Object#Object ObjectName The Object name -- @return #OBJECT self function OBJECT:New( ObjectName, Test ) local self = BASE:Inherit( self, BASE:New() ) self:F2( ObjectName ) self.ObjectName = ObjectName return self end --- Returns the unit's unique identifier. -- @param Wrapper.Object#OBJECT self -- @return Dcs.DCSWrapper.Object#Object.ID ObjectID -- @return #nil The DCS Object is not existing or alive. function OBJECT:GetID() self:F2( self.ObjectName ) local DCSObject = self:GetDCSObject() if DCSObject then local ObjectID = DCSObject:getID() return ObjectID end return nil end --- Destroys the OBJECT. -- @param #OBJECT self -- @return #nil The DCS Unit is not existing or alive. function OBJECT:Destroy() self:F2( self.ObjectName ) local DCSObject = self:GetDCSObject() if DCSObject then DCSObject:destroy() end return nil end --- **Wrapper** -- IDENTIFIABLE is an intermediate class wrapping DCS Object class derived Objects. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Identifiable --- @type IDENTIFIABLE -- @extends Wrapper.Object#OBJECT -- @field #string IdentifiableName The name of the identifiable. --- # IDENTIFIABLE class, extends @{Object#OBJECT} -- -- The IDENTIFIABLE class is a wrapper class to handle the DCS Identifiable objects: -- -- * Support all DCS Identifiable APIs. -- * Enhance with Identifiable specific APIs not in the DCS Identifiable API set. -- * Manage the "state" of the DCS Identifiable. -- -- ## IDENTIFIABLE constructor -- -- The IDENTIFIABLE class provides the following functions to construct a IDENTIFIABLE instance: -- -- * @{#IDENTIFIABLE.New}(): Create a IDENTIFIABLE instance. -- -- @field #IDENTIFIABLE IDENTIFIABLE = { ClassName = "IDENTIFIABLE", IdentifiableName = "", } local _CategoryName = { [Unit.Category.AIRPLANE] = "Airplane", [Unit.Category.HELICOPTER] = "Helicoper", [Unit.Category.GROUND_UNIT] = "Ground Identifiable", [Unit.Category.SHIP] = "Ship", [Unit.Category.STRUCTURE] = "Structure", } --- Create a new IDENTIFIABLE from a DCSIdentifiable -- @param #IDENTIFIABLE self -- @param Dcs.DCSWrapper.Identifiable#Identifiable IdentifiableName The DCS Identifiable name -- @return #IDENTIFIABLE self function IDENTIFIABLE:New( IdentifiableName ) local self = BASE:Inherit( self, OBJECT:New( IdentifiableName ) ) self:F2( IdentifiableName ) self.IdentifiableName = IdentifiableName return self end --- Returns if the Identifiable is alive. -- If the Identifiable is not alive, nil is returned. -- If the Identifiable is alive, true is returned. -- @param #IDENTIFIABLE self -- @return #boolean true if Identifiable is alive. -- @return #nil if the Identifiable is not existing or is not alive. function IDENTIFIABLE:IsAlive() self:F3( self.IdentifiableName ) local DCSIdentifiable = self:GetDCSObject() -- Dcs.DCSObject#Object if DCSIdentifiable then local IdentifiableIsAlive = DCSIdentifiable:isExist() return IdentifiableIsAlive end return false end --- Returns DCS Identifiable object name. -- The function provides access to non-activated objects too. -- @param #IDENTIFIABLE self -- @return #string The name of the DCS Identifiable. -- @return #nil The DCS Identifiable is not existing or alive. function IDENTIFIABLE:GetName() self:F2( self.IdentifiableName ) local IdentifiableName = self.IdentifiableName return IdentifiableName end --- Returns the type name of the DCS Identifiable. -- @param #IDENTIFIABLE self -- @return #string The type name of the DCS Identifiable. -- @return #nil The DCS Identifiable is not existing or alive. function IDENTIFIABLE:GetTypeName() self:F2( self.IdentifiableName ) local DCSIdentifiable = self:GetDCSObject() if DCSIdentifiable then local IdentifiableTypeName = DCSIdentifiable:getTypeName() self:T3( IdentifiableTypeName ) return IdentifiableTypeName end self:E( self.ClassName .. " " .. self.IdentifiableName .. " not found!" ) return nil end --- Returns category of the DCS Identifiable. -- @param #IDENTIFIABLE self -- @return Dcs.DCSWrapper.Object#Object.Category The category ID function IDENTIFIABLE:GetCategory() self:F2( self.ObjectName ) local DCSObject = self:GetDCSObject() if DCSObject then local ObjectCategory = DCSObject:getCategory() self:T3( ObjectCategory ) return ObjectCategory end return nil end --- Returns the DCS Identifiable category name as defined within the DCS Identifiable Descriptor. -- @param #IDENTIFIABLE self -- @return #string The DCS Identifiable Category Name function IDENTIFIABLE:GetCategoryName() local DCSIdentifiable = self:GetDCSObject() if DCSIdentifiable then local IdentifiableCategoryName = _CategoryName[ self:GetDesc().category ] return IdentifiableCategoryName end self:E( self.ClassName .. " " .. self.IdentifiableName .. " not found!" ) return nil end --- Returns coalition of the Identifiable. -- @param #IDENTIFIABLE self -- @return Dcs.DCSCoalitionWrapper.Object#coalition.side The side of the coalition. -- @return #nil The DCS Identifiable is not existing or alive. function IDENTIFIABLE:GetCoalition() self:F2( self.IdentifiableName ) local DCSIdentifiable = self:GetDCSObject() if DCSIdentifiable then local IdentifiableCoalition = DCSIdentifiable:getCoalition() self:T3( IdentifiableCoalition ) return IdentifiableCoalition end self:E( self.ClassName .. " " .. self.IdentifiableName .. " not found!" ) return nil end --- Returns country of the Identifiable. -- @param #IDENTIFIABLE self -- @return Dcs.DCScountry#country.id The country identifier. -- @return #nil The DCS Identifiable is not existing or alive. function IDENTIFIABLE:GetCountry() self:F2( self.IdentifiableName ) local DCSIdentifiable = self:GetDCSObject() if DCSIdentifiable then local IdentifiableCountry = DCSIdentifiable:getCountry() self:T3( IdentifiableCountry ) return IdentifiableCountry end self:E( self.ClassName .. " " .. self.IdentifiableName .. " not found!" ) return nil end --- Returns Identifiable descriptor. Descriptor type depends on Identifiable category. -- @param #IDENTIFIABLE self -- @return Dcs.DCSWrapper.Identifiable#Identifiable.Desc The Identifiable descriptor. -- @return #nil The DCS Identifiable is not existing or alive. function IDENTIFIABLE:GetDesc() self:F2( self.IdentifiableName ) local DCSIdentifiable = self:GetDCSObject() if DCSIdentifiable then local IdentifiableDesc = DCSIdentifiable:getDesc() self:T2( IdentifiableDesc ) return IdentifiableDesc end self:E( self.ClassName .. " " .. self.IdentifiableName .. " not found!" ) return nil end --- Gets the CallSign of the IDENTIFIABLE, which is a blank by default. -- @param #IDENTIFIABLE self -- @return #string The CallSign of the IDENTIFIABLE. function IDENTIFIABLE:GetCallsign() return '' end function IDENTIFIABLE:GetThreatLevel() return 0, "Scenery" end --- **Wrapper** -- POSITIONABLE wraps DCS classes that are "positionable". -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Positionable --- @type POSITIONABLE.__ Methods which are not intended for mission designers, but which are used interally by the moose designer :-) -- @extends Wrapper.Identifiable#IDENTIFIABLE --- @type POSITIONABLE -- @extends Wrapper.Identifiable#IDENTIFIABLE --- # POSITIONABLE class, extends @{Identifiable#IDENTIFIABLE} -- -- The POSITIONABLE class is a wrapper class to handle the POSITIONABLE objects: -- -- * Support all DCS APIs. -- * Enhance with POSITIONABLE specific APIs not in the DCS API set. -- * Manage the "state" of the POSITIONABLE. -- -- ## POSITIONABLE constructor -- -- The POSITIONABLE class provides the following functions to construct a POSITIONABLE instance: -- -- * @{#POSITIONABLE.New}(): Create a POSITIONABLE instance. -- -- ## Get the current speed -- -- There are 3 methods that can be used to determine the speed. -- Use @{#POSITIONABLE.GetVelocityKMH}() to retrieve the current speed in km/h. Use @{#POSITIONABLE.GetVelocityMPS}() to retrieve the speed in meters per second. -- The method @{#POSITIONABLE.GetVelocity}() returns the speed vector (a Vec3). -- -- ## Get the current altitude -- -- Altitude can be retrieved using the method @{#POSITIONABLE.GetHeight}() and returns the current altitude in meters from the orthonormal plane. -- -- -- @field #POSITIONABLE POSITIONABLE = { ClassName = "POSITIONABLE", PositionableName = "", } --- @field #POSITIONABLE.__ POSITIONABLE.__ = {} --- @field #POSITIONABLE.__.Cargo POSITIONABLE.__.Cargo = {} --- A DCSPositionable -- @type DCSPositionable -- @field id_ The ID of the controllable in DCS --- Create a new POSITIONABLE from a DCSPositionable -- @param #POSITIONABLE self -- @param Dcs.DCSWrapper.Positionable#Positionable PositionableName The POSITIONABLE name -- @return #POSITIONABLE self function POSITIONABLE:New( PositionableName ) local self = BASE:Inherit( self, IDENTIFIABLE:New( PositionableName ) ) self.PositionableName = PositionableName return self end --- Returns the @{DCSTypes#Position3} position vectors indicating the point and direction vectors in 3D of the POSITIONABLE within the mission. -- @param Wrapper.Positionable#POSITIONABLE self -- @return Dcs.DCSTypes#Position The 3D position vectors of the POSITIONABLE. -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:GetPositionVec3() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionablePosition = DCSPositionable:getPosition().p self:T3( PositionablePosition ) return PositionablePosition end return nil end --- Returns the @{DCSTypes#Vec2} vector indicating the point in 2D of the POSITIONABLE within the mission. -- @param Wrapper.Positionable#POSITIONABLE self -- @return Dcs.DCSTypes#Vec2 The 2D point vector of the POSITIONABLE. -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:GetVec2() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionableVec3 = DCSPositionable:getPosition().p local PositionableVec2 = {} PositionableVec2.x = PositionableVec3.x PositionableVec2.y = PositionableVec3.z self:T2( PositionableVec2 ) return PositionableVec2 end return nil end --- Returns a POINT_VEC2 object indicating the point in 2D of the POSITIONABLE within the mission. -- @param Wrapper.Positionable#POSITIONABLE self -- @return Core.Point#POINT_VEC2 The 2D point vector of the POSITIONABLE. -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:GetPointVec2() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionableVec3 = DCSPositionable:getPosition().p local PositionablePointVec2 = POINT_VEC2:NewFromVec3( PositionableVec3 ) self:T2( PositionablePointVec2 ) return PositionablePointVec2 end return nil end --- Returns a POINT_VEC3 object indicating the point in 3D of the POSITIONABLE within the mission. -- @param Wrapper.Positionable#POSITIONABLE self -- @return Core.Point#POINT_VEC3 The 3D point vector of the POSITIONABLE. -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:GetPointVec3() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionableVec3 = self:GetPositionVec3() local PositionablePointVec3 = POINT_VEC3:NewFromVec3( PositionableVec3 ) self:T2( PositionablePointVec3 ) return PositionablePointVec3 end return nil end --- Returns a COORDINATE object indicating the point in 3D of the POSITIONABLE within the mission. -- @param Wrapper.Positionable#POSITIONABLE self -- @return Core.Point#COORDINATE The COORDINATE of the POSITIONABLE. function POSITIONABLE:GetCoordinate() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionableVec3 = self:GetPositionVec3() local PositionableCoordinate = COORDINATE:NewFromVec3( PositionableVec3 ) PositionableCoordinate:SetHeading( self:GetHeading() ) PositionableCoordinate:SetVelocity( self:GetVelocityMPS() ) self:T2( PositionableCoordinate ) return PositionableCoordinate end return nil end --- Returns a random @{DCSTypes#Vec3} vector within a range, indicating the point in 3D of the POSITIONABLE within the mission. -- @param Wrapper.Positionable#POSITIONABLE self -- @param #number Radius -- @return Dcs.DCSTypes#Vec3 The 3D point vector of the POSITIONABLE. -- @return #nil The POSITIONABLE is not existing or alive. -- @usage -- -- If Radius is ignored, returns the Dcs.DCSTypes#Vec3 of first UNIT of the GROUP function POSITIONABLE:GetRandomVec3( Radius ) self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionablePointVec3 = DCSPositionable:getPosition().p if Radius then local PositionableRandomVec3 = {} local angle = math.random() * math.pi*2; PositionableRandomVec3.x = PositionablePointVec3.x + math.cos( angle ) * math.random() * Radius; PositionableRandomVec3.y = PositionablePointVec3.y PositionableRandomVec3.z = PositionablePointVec3.z + math.sin( angle ) * math.random() * Radius; self:T3( PositionableRandomVec3 ) return PositionableRandomVec3 else self:E("Radius is nil, returning the PointVec3 of the POSITIONABLE", PositionablePointVec3) return PositionablePointVec3 end end return nil end --- Returns the @{DCSTypes#Vec3} vector indicating the 3D vector of the POSITIONABLE within the mission. -- @param Wrapper.Positionable#POSITIONABLE self -- @return Dcs.DCSTypes#Vec3 The 3D point vector of the POSITIONABLE. -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:GetVec3() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionableVec3 = DCSPositionable:getPosition().p self:T3( PositionableVec3 ) return PositionableVec3 end return nil end --- Get the bounding box of the underlying POSITIONABLE DCS Object. -- @param #POSITIONABLE self -- @return Dcs.DCSTypes#Distance The bounding box of the POSITIONABLE. -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:GetBoundingBox() --R2.1 self:F2() local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionableDesc = DCSPositionable:getDesc() --Dcs.DCSTypes#Desc if PositionableDesc then local PositionableBox = PositionableDesc.box return PositionableBox end end return nil end --- Returns the altitude of the POSITIONABLE. -- @param Wrapper.Positionable#POSITIONABLE self -- @return Dcs.DCSTypes#Distance The altitude of the POSITIONABLE. -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:GetAltitude() self:F2() local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionablePointVec3 = DCSPositionable:getPoint() --Dcs.DCSTypes#Vec3 return PositionablePointVec3.y end return nil end --- Returns if the Positionable is located above a runway. -- @param Wrapper.Positionable#POSITIONABLE self -- @return #boolean true if Positionable is above a runway. -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:IsAboveRunway() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local Vec2 = self:GetVec2() local SurfaceType = land.getSurfaceType( Vec2 ) local IsAboveRunway = SurfaceType == land.SurfaceType.RUNWAY self:T2( IsAboveRunway ) return IsAboveRunway end return nil end --- Returns the POSITIONABLE heading in degrees. -- @param Wrapper.Positionable#POSITIONABLE self -- @return #number The POSTIONABLE heading -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:GetHeading() local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionablePosition = DCSPositionable:getPosition() if PositionablePosition then local PositionableHeading = math.atan2( PositionablePosition.x.z, PositionablePosition.x.x ) if PositionableHeading < 0 then PositionableHeading = PositionableHeading + 2 * math.pi end PositionableHeading = PositionableHeading * 180 / math.pi self:T2( PositionableHeading ) return PositionableHeading end end return nil end --- Returns true if the POSITIONABLE is in the air. -- Polymorphic, is overridden in GROUP and UNIT. -- @param Wrapper.Positionable#POSITIONABLE self -- @return #boolean true if in the air. -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:InAir() self:F2( self.PositionableName ) return nil end --- Returns the POSITIONABLE velocity vector. -- @param Wrapper.Positionable#POSITIONABLE self -- @return Dcs.DCSTypes#Vec3 The velocity vector -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:GetVelocity() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionableVelocityVec3 = DCSPositionable:getVelocity() self:T3( PositionableVelocityVec3 ) return PositionableVelocityVec3 end return nil end --- Returns the POSITIONABLE height in meters. -- @param Wrapper.Positionable#POSITIONABLE self -- @return Dcs.DCSTypes#Vec3 The height of the positionable. -- @return #nil The POSITIONABLE is not existing or alive. function POSITIONABLE:GetHeight() --R2.1 self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionablePosition = DCSPositionable:getPosition() if PositionablePosition then local PositionableHeight = PositionablePosition.p.y self:T2( PositionableHeight ) return PositionableHeight end end return nil end --- Returns the POSITIONABLE velocity in km/h. -- @param Wrapper.Positionable#POSITIONABLE self -- @return #number The velocity in km/h function POSITIONABLE:GetVelocityKMH() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local VelocityVec3 = self:GetVelocity() local Velocity = ( VelocityVec3.x ^ 2 + VelocityVec3.y ^ 2 + VelocityVec3.z ^ 2 ) ^ 0.5 -- in meters / sec local Velocity = Velocity * 3.6 -- now it is in km/h. self:T3( Velocity ) return Velocity end return 0 end --- Returns the POSITIONABLE velocity in meters per second. -- @param Wrapper.Positionable#POSITIONABLE self -- @return #number The velocity in meters per second. function POSITIONABLE:GetVelocityMPS() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local VelocityVec3 = self:GetVelocity() local Velocity = ( VelocityVec3.x ^ 2 + VelocityVec3.y ^ 2 + VelocityVec3.z ^ 2 ) ^ 0.5 -- in meters / sec self:T3( Velocity ) return Velocity end return 0 end --- Returns the message text with the callsign embedded (if there is one). -- @param #POSITIONABLE self -- @param #string Message The message text -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. -- @return #string The message text function POSITIONABLE:GetMessageText( Message, Name ) --R2.1 added local DCSObject = self:GetDCSObject() if DCSObject then Name = Name and ( " (" .. Name .. ")" ) or "" local Callsign = string.format( "[%s]", self:GetCallsign() ~= "" and self:GetCallsign() or self:GetName() ) local MessageText = Callsign .. Name .. ": " .. Message return MessageText end return nil end --- Returns a message with the callsign embedded (if there is one). -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Dcs.DCSTypes#Duration Duration The duration of the message. -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. -- @return Core.Message#MESSAGE function POSITIONABLE:GetMessage( Message, Duration, Name ) --R2.1 changed callsign and name and using GetMessageText local DCSObject = self:GetDCSObject() if DCSObject then local MessageText = self:GetMessageText( Message, Name ) return MESSAGE:New( MessageText, Duration ) end return nil end --- Returns a message of a specified type with the callsign embedded (if there is one). -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Core.Message#MESSAGE MessageType MessageType The message type. -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. -- @return Core.Message#MESSAGE function POSITIONABLE:GetMessageType( Message, MessageType, Name ) -- R2.2 changed callsign and name and using GetMessageText local DCSObject = self:GetDCSObject() if DCSObject then local MessageText = self:GetMessageText( Message, Name ) return MESSAGE:NewType( MessageText, MessageType ) end return nil end --- Send a message to all coalitions. -- The message will appear in the message area. The message will begin with the callsign of the group and the type of the first unit sending the message. -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Dcs.DCSTypes#Duration Duration The duration of the message. -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. function POSITIONABLE:MessageToAll( Message, Duration, Name ) self:F2( { Message, Duration } ) local DCSObject = self:GetDCSObject() if DCSObject then self:GetMessage( Message, Duration, Name ):ToAll() end return nil end --- Send a message to a coalition. -- The message will appear in the message area. The message will begin with the callsign of the group and the type of the first unit sending the message. -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Dcs.DCSTYpes#Duration Duration The duration of the message. -- @param Dcs.DCScoalition#coalition MessageCoalition The Coalition receiving the message. function POSITIONABLE:MessageToCoalition( Message, Duration, MessageCoalition ) self:F2( { Message, Duration } ) local Name = "" local DCSObject = self:GetDCSObject() if DCSObject then if MessageCoalition == coalition.side.BLUE then Name = "Blue coalition" end if MessageCoalition == coalition.side.RED then Name = "Red coalition" end self:GetMessage( Message, Duration, Name ):ToCoalition( MessageCoalition ) end return nil end --- Send a message to a coalition. -- The message will appear in the message area. The message will begin with the callsign of the group and the type of the first unit sending the message. -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Core.Message#MESSAGE.Type MessageType The message type that determines the duration. -- @param Dcs.DCScoalition#coalition MessageCoalition The Coalition receiving the message. function POSITIONABLE:MessageTypeToCoalition( Message, MessageType, MessageCoalition ) self:F2( { Message, MessageType } ) local Name = "" local DCSObject = self:GetDCSObject() if DCSObject then if MessageCoalition == coalition.side.BLUE then Name = "Blue coalition" end if MessageCoalition == coalition.side.RED then Name = "Red coalition" end self:GetMessageType( Message, MessageType, Name ):ToCoalition( MessageCoalition ) end return nil end --- Send a message to the red coalition. -- The message will appear in the message area. The message will begin with the callsign of the group and the type of the first unit sending the message. -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Dcs.DCSTYpes#Duration Duration The duration of the message. -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. function POSITIONABLE:MessageToRed( Message, Duration, Name ) self:F2( { Message, Duration } ) local DCSObject = self:GetDCSObject() if DCSObject then self:GetMessage( Message, Duration, Name ):ToRed() end return nil end --- Send a message to the blue coalition. -- The message will appear in the message area. The message will begin with the callsign of the group and the type of the first unit sending the message. -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Dcs.DCSTypes#Duration Duration The duration of the message. -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. function POSITIONABLE:MessageToBlue( Message, Duration, Name ) self:F2( { Message, Duration } ) local DCSObject = self:GetDCSObject() if DCSObject then self:GetMessage( Message, Duration, Name ):ToBlue() end return nil end --- Send a message to a client. -- The message will appear in the message area. The message will begin with the callsign of the group and the type of the first unit sending the message. -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Dcs.DCSTypes#Duration Duration The duration of the message. -- @param Wrapper.Client#CLIENT Client The client object receiving the message. -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. function POSITIONABLE:MessageToClient( Message, Duration, Client, Name ) self:F2( { Message, Duration } ) local DCSObject = self:GetDCSObject() if DCSObject then self:GetMessage( Message, Duration, Name ):ToClient( Client ) end return nil end --- Send a message to a @{Group}. -- The message will appear in the message area. The message will begin with the callsign of the group and the type of the first unit sending the message. -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Dcs.DCSTypes#Duration Duration The duration of the message. -- @param Wrapper.Group#GROUP MessageGroup The GROUP object receiving the message. -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. function POSITIONABLE:MessageToGroup( Message, Duration, MessageGroup, Name ) self:F2( { Message, Duration } ) local DCSObject = self:GetDCSObject() if DCSObject then if DCSObject:isExist() then self:GetMessage( Message, Duration, Name ):ToGroup( MessageGroup ) end end return nil end --- Send a message of a message type to a @{Group}. -- The message will appear in the message area. The message will begin with the callsign of the group and the type of the first unit sending the message. -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Core.Message#MESSAGE.Type MessageType The message type that determines the duration. -- @param Wrapper.Group#GROUP MessageGroup The GROUP object receiving the message. -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. function POSITIONABLE:MessageTypeToGroup( Message, MessageType, MessageGroup, Name ) self:F2( { Message, MessageType } ) local DCSObject = self:GetDCSObject() if DCSObject then if DCSObject:isExist() then self:GetMessageType( Message, MessageType, Name ):ToGroup( MessageGroup ) end end return nil end --- Send a message to a @{Set#SET_GROUP}. -- The message will appear in the message area. The message will begin with the callsign of the group and the type of the first unit sending the message. -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Dcs.DCSTypes#Duration Duration The duration of the message. -- @param Core.Set#SET_GROUP MessageSetGroup The SET_GROUP collection receiving the message. -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. function POSITIONABLE:MessageToSetGroup( Message, Duration, MessageSetGroup, Name ) --R2.1 self:F2( { Message, Duration } ) local DCSObject = self:GetDCSObject() if DCSObject then if DCSObject:isExist() then MessageSetGroup:ForEachGroup( function( MessageGroup ) self:GetMessage( Message, Duration, Name ):ToGroup( MessageGroup ) end ) end end return nil end --- Send a message to the players in the @{Group}. -- The message will appear in the message area. The message will begin with the callsign of the group and the type of the first unit sending the message. -- @param #POSITIONABLE self -- @param #string Message The message text -- @param Dcs.DCSTypes#Duration Duration The duration of the message. -- @param #string Name (optional) The Name of the sender. If not provided, the Name is the type of the Positionable. function POSITIONABLE:Message( Message, Duration, Name ) self:F2( { Message, Duration } ) local DCSObject = self:GetDCSObject() if DCSObject then self:GetMessage( Message, Duration, Name ):ToGroup( self ) end return nil end --- Create a @{Radio#RADIO}, to allow radio transmission for this POSITIONABLE. -- Set parameters with the methods provided, then use RADIO:Broadcast() to actually broadcast the message -- @param #POSITIONABLE self -- @return #RADIO Radio function POSITIONABLE:GetRadio() --R2.1 self:F2(self) return RADIO:New(self) end --- Create a @{Radio#BEACON}, to allow this POSITIONABLE to broadcast beacon signals -- @param #POSITIONABLE self -- @return #RADIO Radio function POSITIONABLE:GetBeacon() --R2.1 self:F2(self) return BEACON:New(self) end --- Start Lasing a POSITIONABLE -- @param #POSITIONABLE self -- @param #POSITIONABLE Target -- @param #number LaserCode -- @param #number Duration -- @return Core.Spot#SPOT function POSITIONABLE:LaseUnit( Target, LaserCode, Duration ) --R2.1 self:F2() LaserCode = LaserCode or math.random( 1000, 9999 ) local RecceDcsUnit = self:GetDCSObject() local TargetVec3 = Target:GetVec3() self:E("bulding spot") self.Spot = SPOT:New( self ) -- Core.Spot#SPOT self.Spot:LaseOn( Target, LaserCode, Duration) self.LaserCode = LaserCode return self.Spot end --- Stop Lasing a POSITIONABLE -- @param #POSITIONABLE self -- @return #POSITIONABLE function POSITIONABLE:LaseOff() --R2.1 self:F2() if self.Spot then self.Spot:LaseOff() self.Spot = nil end return self end --- Check if the POSITIONABLE is lasing a target -- @param #POSITIONABLE self -- @return #boolean true if it is lasing a target function POSITIONABLE:IsLasing() --R2.1 self:F2() local Lasing = false if self.Spot then Lasing = self.Spot:IsLasing() end return Lasing end --- Get the Spot -- @param #POSITIONABLE self -- @return Core.Spot#SPOT The Spot function POSITIONABLE:GetSpot() --R2.1 return self.Spot end --- Get the last assigned laser code -- @param #POSITIONABLE self -- @return #number The laser code function POSITIONABLE:GetLaserCode() --R2.1 return self.LaserCode end --- Add cargo. -- @param #POSITIONABLE self -- @param Core.Cargo#CARGO Cargo -- @return #POSITIONABLE function POSITIONABLE:AddCargo( Cargo ) self.__.Cargo[Cargo] = Cargo return self end --- Remove cargo. -- @param #POSITIONABLE self -- @param Core.Cargo#CARGO Cargo -- @return #POSITIONABLE function POSITIONABLE:RemoveCargo( Cargo ) self.__.Cargo[Cargo] = nil return self end --- Returns if carrier has given cargo. -- @param #POSITIONABLE self -- @return Core.Cargo#CARGO Cargo function POSITIONABLE:HasCargo( Cargo ) return self.__.Cargo[Cargo] end --- Clear all cargo. -- @param #POSITIONABLE self function POSITIONABLE:ClearCargo() self.__.Cargo = {} end --- Get cargo item count. -- @param #POSITIONABLE self -- @return Core.Cargo#CARGO Cargo function POSITIONABLE:CargoItemCount() local ItemCount = 0 for CargoName, Cargo in pairs( self.__.Cargo ) do ItemCount = ItemCount + Cargo:GetCount() end return ItemCount end --- Signal a flare at the position of the POSITIONABLE. -- @param #POSITIONABLE self -- @param Utilities.Utils#FLARECOLOR FlareColor function POSITIONABLE:Flare( FlareColor ) self:F2() trigger.action.signalFlare( self:GetVec3(), FlareColor , 0 ) end --- Signal a white flare at the position of the POSITIONABLE. -- @param #POSITIONABLE self function POSITIONABLE:FlareWhite() self:F2() trigger.action.signalFlare( self:GetVec3(), trigger.flareColor.White , 0 ) end --- Signal a yellow flare at the position of the POSITIONABLE. -- @param #POSITIONABLE self function POSITIONABLE:FlareYellow() self:F2() trigger.action.signalFlare( self:GetVec3(), trigger.flareColor.Yellow , 0 ) end --- Signal a green flare at the position of the POSITIONABLE. -- @param #POSITIONABLE self function POSITIONABLE:FlareGreen() self:F2() trigger.action.signalFlare( self:GetVec3(), trigger.flareColor.Green , 0 ) end --- Signal a red flare at the position of the POSITIONABLE. -- @param #POSITIONABLE self function POSITIONABLE:FlareRed() self:F2() local Vec3 = self:GetVec3() if Vec3 then trigger.action.signalFlare( Vec3, trigger.flareColor.Red, 0 ) end end --- Smoke the POSITIONABLE. -- @param #POSITIONABLE self -- @param Utilities.Utils#SMOKECOLOR SmokeColor The color to smoke to positionable. -- @param #number Range The range in meters to randomize the smoking around the positionable. -- @param #number AddHeight The height in meters to add to the altitude of the positionable. function POSITIONABLE:Smoke( SmokeColor, Range, AddHeight ) self:F2() if Range then local Vec3 = self:GetRandomVec3( Range ) Vec3.y = Vec3.y + AddHeight or 0 trigger.action.smoke( Vec3, SmokeColor ) else local Vec3 = self:GetVec3() Vec3.y = Vec3.y + AddHeight or 0 trigger.action.smoke( self:GetVec3(), SmokeColor ) end end --- Smoke the POSITIONABLE Green. -- @param #POSITIONABLE self function POSITIONABLE:SmokeGreen() self:F2() trigger.action.smoke( self:GetVec3(), trigger.smokeColor.Green ) end --- Smoke the POSITIONABLE Red. -- @param #POSITIONABLE self function POSITIONABLE:SmokeRed() self:F2() trigger.action.smoke( self:GetVec3(), trigger.smokeColor.Red ) end --- Smoke the POSITIONABLE White. -- @param #POSITIONABLE self function POSITIONABLE:SmokeWhite() self:F2() trigger.action.smoke( self:GetVec3(), trigger.smokeColor.White ) end --- Smoke the POSITIONABLE Orange. -- @param #POSITIONABLE self function POSITIONABLE:SmokeOrange() self:F2() trigger.action.smoke( self:GetVec3(), trigger.smokeColor.Orange ) end --- Smoke the POSITIONABLE Blue. -- @param #POSITIONABLE self function POSITIONABLE:SmokeBlue() self:F2() trigger.action.smoke( self:GetVec3(), trigger.smokeColor.Blue ) end --- **Wrapper** -- CONTROLLABLE is an intermediate class wrapping Group and Unit classes "controllers". -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- === -- -- @module Controllable --- @type CONTROLLABLE -- @extends Wrapper.Positionable#POSITIONABLE -- @field Dcs.DCSWrapper.Controllable#Controllable DCSControllable The DCS controllable class. -- @field #string ControllableName The name of the controllable. --- # CONTROLLABLE class, extends @{Positionable#POSITIONABLE} -- -- CONTROLLABLE is a wrapper class to handle the "DCS Controllable objects", which are Groups and Units: -- -- * Support all DCS Controllable APIs. -- * Enhance with Controllable specific APIs not in the DCS Controllable API set. -- * Handle local Controllable Controller. -- * Manage the "state" of the DCS Controllable. -- -- ## CONTROLLABLE constructor -- -- The CONTROLLABLE class provides the following functions to construct a CONTROLLABLE instance: -- -- * @{#CONTROLLABLE.New}(): Create a CONTROLLABLE instance. -- -- ## CONTROLLABLE Task methods -- -- Several controllable task methods are available that help you to prepare tasks. -- These methods return a string consisting of the task description, which can then be given to either a @{Controllable#CONTROLLABLE.PushTask} or @{Controllable#SetTask} method to assign the task to the CONTROLLABLE. -- Tasks are specific for the category of the CONTROLLABLE, more specific, for AIR, GROUND or AIR and GROUND. -- Each task description where applicable indicates for which controllable category the task is valid. -- There are 2 main subdivisions of tasks: Assigned tasks and EnRoute tasks. -- -- ### Task assignment -- -- Assigned task methods make the controllable execute the task where the location of the (possible) targets of the task are known before being detected. -- This is different from the EnRoute tasks, where the targets of the task need to be detected before the task can be executed. -- -- Find below a list of the **assigned task** methods: -- -- * @{#CONTROLLABLE.TaskAttackGroup}: (AIR) Attack a Controllable. -- * @{#CONTROLLABLE.TaskAttackMapObject}: (AIR) Attacking the map object (building, structure, e.t.c). -- * @{#CONTROLLABLE.TaskAttackUnit}: (AIR) Attack the Unit. -- * @{#CONTROLLABLE.TaskBombing}: (AIR) Delivering weapon at the point on the ground. -- * @{#CONTROLLABLE.TaskBombingRunway}: (AIR) Delivering weapon on the runway. -- * @{#CONTROLLABLE.TaskEmbarking}: (AIR) Move the controllable to a Vec2 Point, wait for a defined duration and embark a controllable. -- * @{#CONTROLLABLE.TaskEmbarkToTransport}: (GROUND) Embark to a Transport landed at a location. -- * @{#CONTROLLABLE.TaskEscort}: (AIR) Escort another airborne controllable. -- * @{#CONTROLLABLE.TaskFAC_AttackGroup}: (AIR + GROUND) The task makes the controllable/unit a FAC and orders the FAC to control the target (enemy ground controllable) destruction. -- * @{#CONTROLLABLE.TaskFireAtPoint}: (GROUND) Fire some or all ammunition at a VEC2 point. -- * @{#CONTROLLABLE.TaskFollow}: (AIR) Following another airborne controllable. -- * @{#CONTROLLABLE.TaskHold}: (GROUND) Hold ground controllable from moving. -- * @{#CONTROLLABLE.TaskHoldPosition}: (AIR) Hold position at the current position of the first unit of the controllable. -- * @{#CONTROLLABLE.TaskLand}: (AIR HELICOPTER) Landing at the ground. For helicopters only. -- * @{#CONTROLLABLE.TaskLandAtZone}: (AIR) Land the controllable at a @{Zone#ZONE_RADIUS). -- * @{#CONTROLLABLE.TaskOrbitCircle}: (AIR) Orbit at the current position of the first unit of the controllable at a specified alititude. -- * @{#CONTROLLABLE.TaskOrbitCircleAtVec2}: (AIR) Orbit at a specified position at a specified alititude during a specified duration with a specified speed. -- * @{#CONTROLLABLE.TaskRefueling}: (AIR) Refueling from the nearest tanker. No parameters. -- * @{#CONTROLLABLE.TaskRoute}: (AIR + GROUND) Return a Misson task to follow a given route defined by Points. -- * @{#CONTROLLABLE.TaskRouteToVec2}: (AIR + GROUND) Make the Controllable move to a given point. -- * @{#CONTROLLABLE.TaskRouteToVec3}: (AIR + GROUND) Make the Controllable move to a given point. -- * @{#CONTROLLABLE.TaskRouteToZone}: (AIR + GROUND) Route the controllable to a given zone. -- * @{#CONTROLLABLE.TaskReturnToBase}: (AIR) Route the controllable to an airbase. -- -- ### EnRoute assignment -- -- EnRoute tasks require the targets of the task need to be detected by the controllable (using its sensors) before the task can be executed: -- -- * @{#CONTROLLABLE.EnRouteTaskAWACS}: (AIR) Aircraft will act as an AWACS for friendly units (will provide them with information about contacts). No parameters. -- * @{#CONTROLLABLE.EnRouteTaskEngageControllable}: (AIR) Engaging a controllable. The task does not assign the target controllable to the unit/controllable to attack now; it just allows the unit/controllable to engage the target controllable as well as other assigned targets. -- * @{#CONTROLLABLE.EnRouteTaskEngageTargets}: (AIR) Engaging targets of defined types. -- * @{#CONTROLLABLE.EnRouteTaskEngageTargetsInZone}: (AIR) Engaging a targets of defined types at circle-shaped zone. -- * @{#CONTROLLABLE.EnRouteTaskEWR}: (AIR) Attack the Unit. -- * @{#CONTROLLABLE.EnRouteTaskFAC}: (AIR + GROUND) The task makes the controllable/unit a FAC and lets the FAC to choose a targets (enemy ground controllable) around as well as other assigned targets. -- * @{#CONTROLLABLE.EnRouteTaskFAC_EngageControllable}: (AIR + GROUND) The task makes the controllable/unit a FAC and lets the FAC to choose the target (enemy ground controllable) as well as other assigned targets. -- * @{#CONTROLLABLE.EnRouteTaskTanker}: (AIR) Aircraft will act as a tanker for friendly units. No parameters. -- -- ### Task preparation -- -- There are certain task methods that allow to tailor the task behaviour: -- -- * @{#CONTROLLABLE.TaskWrappedAction}: Return a WrappedAction Task taking a Command. -- * @{#CONTROLLABLE.TaskCombo}: Return a Combo Task taking an array of Tasks. -- * @{#CONTROLLABLE.TaskCondition}: Return a condition section for a controlled task. -- * @{#CONTROLLABLE.TaskControlled}: Return a Controlled Task taking a Task and a TaskCondition. -- -- ### Call a function as a Task -- -- A function can be called which is part of a Task. The method @{#CONTROLLABLE.TaskFunction}() prepares -- a Task that can call a GLOBAL function from within the Controller execution. -- This method can also be used to **embed a function call when a certain waypoint has been reached**. -- See below the **Tasks at Waypoints** section. -- -- Demonstration Mission: [GRP-502 - Route at waypoint to random point](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/release-2-2-pre/GRP - Group Commands/GRP-502 - Route at waypoint to random point) -- -- ### Tasks at Waypoints -- -- Special Task methods are available to set tasks at certain waypoints. -- The method @{#CONTROLLABLE.SetTaskWaypoint}() helps preparing a Route, embedding a Task at the Waypoint of the Route. -- -- This creates a Task element, with an action to call a function as part of a Wrapped Task. -- -- ### Obtain the mission from controllable templates -- -- Controllable templates contain complete mission descriptions. Sometimes you want to copy a complete mission from a controllable and assign it to another: -- -- * @{#CONTROLLABLE.TaskMission}: (AIR + GROUND) Return a mission task from a mission template. -- -- ## CONTROLLABLE Command methods -- -- Controllable **command methods** prepare the execution of commands using the @{#CONTROLLABLE.SetCommand} method: -- -- * @{#CONTROLLABLE.CommandDoScript}: Do Script command. -- * @{#CONTROLLABLE.CommandSwitchWayPoint}: Perform a switch waypoint command. -- -- ## Routing of Controllables -- -- Different routing methods exist to route GROUPs and UNITs to different locations: -- -- * @{#CONTROLLABLE.Route}(): Make the Controllable to follow a given route. -- * @{#CONTROLLABLE.RouteGroundTo}(): Make the GROUND Controllable to drive towards a specific coordinate. -- * @{#CONTROLLABLE.RouteAirTo}(): Make the AIR Controllable to fly towards a specific coordinate. -- -- ## Option methods -- -- Controllable **Option methods** change the behaviour of the Controllable while being alive. -- -- ### Rule of Engagement: -- -- * @{#CONTROLLABLE.OptionROEWeaponFree} -- * @{#CONTROLLABLE.OptionROEOpenFire} -- * @{#CONTROLLABLE.OptionROEReturnFire} -- * @{#CONTROLLABLE.OptionROEEvadeFire} -- -- To check whether an ROE option is valid for a specific controllable, use: -- -- * @{#CONTROLLABLE.OptionROEWeaponFreePossible} -- * @{#CONTROLLABLE.OptionROEOpenFirePossible} -- * @{#CONTROLLABLE.OptionROEReturnFirePossible} -- * @{#CONTROLLABLE.OptionROEEvadeFirePossible} -- -- ### Rule on thread: -- -- * @{#CONTROLLABLE.OptionROTNoReaction} -- * @{#CONTROLLABLE.OptionROTPassiveDefense} -- * @{#CONTROLLABLE.OptionROTEvadeFire} -- * @{#CONTROLLABLE.OptionROTVertical} -- -- To test whether an ROT option is valid for a specific controllable, use: -- -- * @{#CONTROLLABLE.OptionROTNoReactionPossible} -- * @{#CONTROLLABLE.OptionROTPassiveDefensePossible} -- * @{#CONTROLLABLE.OptionROTEvadeFirePossible} -- * @{#CONTROLLABLE.OptionROTVerticalPossible} -- -- @field #CONTROLLABLE CONTROLLABLE = { ClassName = "CONTROLLABLE", ControllableName = "", WayPointFunctions = {}, } --- Create a new CONTROLLABLE from a DCSControllable -- @param #CONTROLLABLE self -- @param Dcs.DCSWrapper.Controllable#Controllable ControllableName The DCS Controllable name -- @return #CONTROLLABLE self function CONTROLLABLE:New( ControllableName ) local self = BASE:Inherit( self, POSITIONABLE:New( ControllableName ) ) -- #CONTROLLABLE self:F2( ControllableName ) self.ControllableName = ControllableName self.TaskScheduler = SCHEDULER:New( self ) return self end -- DCS Controllable methods support. --- Get the controller for the CONTROLLABLE. -- @param #CONTROLLABLE self -- @return Dcs.DCSController#Controller function CONTROLLABLE:_GetController() local DCSControllable = self:GetDCSObject() if DCSControllable then local ControllableController = DCSControllable:getController() return ControllableController end return nil end -- Get methods --- Returns the UNITs wrappers of the DCS Units of the Controllable (default is a GROUP). -- @param #CONTROLLABLE self -- @return #list The UNITs wrappers. function CONTROLLABLE:GetUnits() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local DCSUnits = DCSControllable:getUnits() local Units = {} for Index, UnitData in pairs( DCSUnits ) do Units[#Units+1] = UNIT:Find( UnitData ) end self:T3( Units ) return Units end return nil end --- Returns the health. Dead controllables have health <= 1.0. -- @param #CONTROLLABLE self -- @return #number The controllable health value (unit or group average). -- @return #nil The controllable is not existing or alive. function CONTROLLABLE:GetLife() self:F2( self.ControllableName ) local DCSControllable = self:GetDCSObject() if DCSControllable then local UnitLife = 0 local Units = self:GetUnits() if #Units == 1 then local Unit = Units[1] -- Wrapper.Unit#UNIT UnitLife = Unit:GetLife() else local UnitLifeTotal = 0 for UnitID, Unit in pairs( Units ) do local Unit = Unit -- Wrapper.Unit#UNIT UnitLifeTotal = UnitLifeTotal + Unit:GetLife() end UnitLife = UnitLifeTotal / #Units end return UnitLife end return nil end --- Returns the initial health. -- @param #CONTROLLABLE self -- @return #number The controllable health value (unit or group average). -- @return #nil The controllable is not existing or alive. function CONTROLLABLE:GetLife0() self:F2( self.ControllableName ) local DCSControllable = self:GetDCSObject() if DCSControllable then local UnitLife = 0 local Units = self:GetUnits() if #Units == 1 then local Unit = Units[1] -- Wrapper.Unit#UNIT UnitLife = Unit:GetLife0() else local UnitLifeTotal = 0 for UnitID, Unit in pairs( Units ) do local Unit = Unit -- Wrapper.Unit#UNIT UnitLifeTotal = UnitLifeTotal + Unit:GetLife0() end UnitLife = UnitLifeTotal / #Units end return UnitLife end return nil end --- Returns relative amount of fuel (from 0.0 to 1.0) the unit has in its internal tanks. -- This method returns nil to ensure polymorphic behaviour! This method needs to be overridden by GROUP or UNIT. -- @param #CONTROLLABLE self -- @return #nil The CONTROLLABLE is not existing or alive. function CONTROLLABLE:GetFuel() self:F( self.ControllableName ) return nil end -- Tasks --- Clear all tasks from the controllable. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE function CONTROLLABLE:ClearTasks() self:F2() local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() Controller:resetTask() return self end return nil end --- Popping current Task from the controllable. -- @param #CONTROLLABLE self -- @return Wrapper.Controllable#CONTROLLABLE self function CONTROLLABLE:PopCurrentTask() self:F2() local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() Controller:popTask() return self end return nil end --- Pushing Task on the queue from the controllable. -- @param #CONTROLLABLE self -- @return Wrapper.Controllable#CONTROLLABLE self function CONTROLLABLE:PushTask( DCSTask, WaitTime ) self:F2() local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() -- When a controllable SPAWNs, it takes about a second to get the controllable in the simulator. Setting tasks to unspawned controllables provides unexpected results. -- Therefore we schedule the functions to set the mission and options for the Controllable. -- Controller:pushTask( DCSTask ) if WaitTime then self.TaskScheduler:Schedule( Controller, Controller.pushTask, { DCSTask }, WaitTime ) else Controller:pushTask( DCSTask ) end return self end return nil end --- Clearing the Task Queue and Setting the Task on the queue from the controllable. -- @param #CONTROLLABLE self -- @return Wrapper.Controllable#CONTROLLABLE self function CONTROLLABLE:SetTask( DCSTask, WaitTime ) self:F2( { DCSTask = DCSTask } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local DCSControllableName = self:GetName() -- When a controllable SPAWNs, it takes about a second to get the controllable in the simulator. Setting tasks to unspawned controllables provides unexpected results. -- Therefore we schedule the functions to set the mission and options for the Controllable. -- Controller.setTask( Controller, DCSTask ) local function SetTask( Controller, DCSTask ) if self and self:IsAlive() then local Controller = self:_GetController() Controller:setTask( DCSTask ) else BASE:E( DCSControllableName .. " is not alive anymore. Cannot set DCSTask " .. DCSTask ) end end if not WaitTime or WaitTime == 0 then SetTask( self, DCSTask ) else self.TaskScheduler:Schedule( self, SetTask, { DCSTask }, WaitTime ) end return self end return nil end --- Checking the Task Queue of the controllable. Returns false if no task is on the queue. true if there is a task. -- @param #CONTROLLABLE self -- @return Wrapper.Controllable#CONTROLLABLE self function CONTROLLABLE:HasTask() --R2.2 local HasTaskResult = false local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() HasTaskResult = Controller:hasTask() end return HasTaskResult end --- Return a condition section for a controlled task. -- @param #CONTROLLABLE self -- @param Dcs.DCSTime#Time time -- @param #string userFlag -- @param #boolean userFlagValue -- @param #string condition -- @param Dcs.DCSTime#Time duration -- @param #number lastWayPoint -- return Dcs.DCSTasking.Task#Task function CONTROLLABLE:TaskCondition( time, userFlag, userFlagValue, condition, duration, lastWayPoint ) self:F2( { time, userFlag, userFlagValue, condition, duration, lastWayPoint } ) local DCSStopCondition = {} DCSStopCondition.time = time DCSStopCondition.userFlag = userFlag DCSStopCondition.userFlagValue = userFlagValue DCSStopCondition.condition = condition DCSStopCondition.duration = duration DCSStopCondition.lastWayPoint = lastWayPoint self:T3( { DCSStopCondition } ) return DCSStopCondition end --- Return a Controlled Task taking a Task and a TaskCondition. -- @param #CONTROLLABLE self -- @param Dcs.DCSTasking.Task#Task DCSTask -- @param #DCSStopCondition DCSStopCondition -- @return Dcs.DCSTasking.Task#Task function CONTROLLABLE:TaskControlled( DCSTask, DCSStopCondition ) self:F2( { DCSTask, DCSStopCondition } ) local DCSTaskControlled DCSTaskControlled = { id = 'ControlledTask', params = { task = DCSTask, stopCondition = DCSStopCondition } } self:T3( { DCSTaskControlled } ) return DCSTaskControlled end --- Return a Combo Task taking an array of Tasks. -- @param #CONTROLLABLE self -- @param Dcs.DCSTasking.Task#TaskArray DCSTasks Array of @{DCSTasking.Task#Task} -- @return Dcs.DCSTasking.Task#Task function CONTROLLABLE:TaskCombo( DCSTasks ) self:F2( { DCSTasks } ) local DCSTaskCombo DCSTaskCombo = { id = 'ComboTask', params = { tasks = DCSTasks } } for TaskID, Task in ipairs( DCSTasks ) do self:T( Task ) end self:T3( { DCSTaskCombo } ) return DCSTaskCombo end --- Return a WrappedAction Task taking a Command. -- @param #CONTROLLABLE self -- @param Dcs.DCSCommand#Command DCSCommand -- @return Dcs.DCSTasking.Task#Task function CONTROLLABLE:TaskWrappedAction( DCSCommand, Index ) self:F2( { DCSCommand } ) local DCSTaskWrappedAction DCSTaskWrappedAction = { id = "WrappedAction", enabled = true, number = Index or 1, auto = false, params = { action = DCSCommand, }, } self:T3( { DCSTaskWrappedAction } ) return DCSTaskWrappedAction end --- Set a Task at a Waypoint using a Route list. -- @param #CONTROLLABLE self -- @param #table Waypoint The Waypoint! -- @param Dcs.DCSTasking.Task#Task Task The Task structure to be executed! -- @return Dcs.DCSTasking.Task#Task function CONTROLLABLE:SetTaskWaypoint( Waypoint, Task ) Waypoint.task = self:TaskCombo( { Task } ) self:T3( { Waypoint.task } ) return Waypoint.task end --- Executes a command action -- @param #CONTROLLABLE self -- @param Dcs.DCSCommand#Command DCSCommand -- @return #CONTROLLABLE self function CONTROLLABLE:SetCommand( DCSCommand ) self:F2( DCSCommand ) local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() Controller:setCommand( DCSCommand ) return self end return nil end --- Perform a switch waypoint command -- @param #CONTROLLABLE self -- @param #number FromWayPoint -- @param #number ToWayPoint -- @return Dcs.DCSTasking.Task#Task -- @usage -- --- This test demonstrates the use(s) of the SwitchWayPoint method of the GROUP class. -- HeliGroup = GROUP:FindByName( "Helicopter" ) -- -- --- Route the helicopter back to the FARP after 60 seconds. -- -- We use the SCHEDULER class to do this. -- SCHEDULER:New( nil, -- function( HeliGroup ) -- local CommandRTB = HeliGroup:CommandSwitchWayPoint( 2, 8 ) -- HeliGroup:SetCommand( CommandRTB ) -- end, { HeliGroup }, 90 -- ) function CONTROLLABLE:CommandSwitchWayPoint( FromWayPoint, ToWayPoint ) self:F2( { FromWayPoint, ToWayPoint } ) local CommandSwitchWayPoint = { id = 'SwitchWaypoint', params = { fromWaypointIndex = FromWayPoint, goToWaypointIndex = ToWayPoint, }, } self:T3( { CommandSwitchWayPoint } ) return CommandSwitchWayPoint end --- Create a stop route command, which returns a string containing the command. -- Use the result in the method @{#CONTROLLABLE.SetCommand}(). -- A value of true will make the ground group stop, a value of false will make it continue. -- Note that this can only work on GROUP level, although individual UNITs can be commanded, the whole GROUP will react. -- -- Example missions: -- -- * GRP-310 -- -- @param #CONTROLLABLE self -- @param #boolean StopRoute true if the ground unit needs to stop, false if it needs to continue to move. -- @return Dcs.DCSTasking.Task#Task function CONTROLLABLE:CommandStopRoute( StopRoute ) self:F2( { StopRoute } ) local CommandStopRoute = { id = 'StopRoute', params = { value = StopRoute, }, } self:T3( { CommandStopRoute } ) return CommandStopRoute end -- TASKS FOR AIR CONTROLLABLES --- (AIR) Attack a Controllable. -- @param #CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE AttackGroup The Controllable to be attacked. -- @param #number WeaponType (optional) Bitmask of weapon types those allowed to use. If parameter is not defined that means no limits on weapon usage. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend WeaponExpend (optional) Determines how much weapon will be released at each attack. If parameter is not defined the unit / controllable will choose expend on its own discretion. -- @param #number AttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth Direction (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. -- @param Dcs.DCSTypes#Distance Altitude (optional) Desired attack start altitude. Controllable/aircraft will make its attacks from the altitude. If the altitude is too low or too high to use weapon aircraft/controllable will choose closest altitude to the desired attack start altitude. If the desired altitude is defined controllable/aircraft will not attack from safe altitude. -- @param #boolean AttackQtyLimit (optional) The flag determines how to interpret attackQty parameter. If the flag is true then attackQty is a limit on maximal attack quantity for "AttackGroup" and "AttackUnit" tasks. If the flag is false then attackQty is a desired attack quantity for "Bombing" and "BombingRunway" tasks. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskAttackGroup( AttackGroup, WeaponType, WeaponExpend, AttackQty, Direction, Altitude, AttackQtyLimit ) self:F2( { self.ControllableName, AttackGroup, WeaponType, WeaponExpend, AttackQty, Direction, Altitude, AttackQtyLimit } ) -- AttackGroup = { -- id = 'AttackGroup', -- params = { -- groupId = Group.ID, -- weaponType = number, -- expend = enum AI.Task.WeaponExpend, -- attackQty = number, -- directionEnabled = boolean, -- direction = Azimuth, -- altitudeEnabled = boolean, -- altitude = Distance, -- attackQtyLimit = boolean, -- } -- } local DirectionEnabled = nil if Direction then DirectionEnabled = true end local AltitudeEnabled = nil if Altitude then AltitudeEnabled = true end local DCSTask DCSTask = { id = 'AttackGroup', params = { groupId = AttackGroup:GetID(), weaponType = WeaponType, expend = WeaponExpend, attackQty = AttackQty, directionEnabled = DirectionEnabled, direction = Direction, altitudeEnabled = AltitudeEnabled, altitude = Altitude, attackQtyLimit = AttackQtyLimit, }, }, self:T3( { DCSTask } ) return DCSTask end --- (AIR) Attack the Unit. -- @param #CONTROLLABLE self -- @param Wrapper.Unit#UNIT AttackUnit The UNIT. -- @param #boolean GroupAttack (optional) If true, all units in the group will attack the Unit when found. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend WeaponExpend (optional) Determines how much weapon will be released at each attack. If parameter is not defined the unit / controllable will choose expend on its own discretion. -- @param #number AttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth Direction (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. -- @param #number Altitude (optional) The altitude from where to attack. -- @param #boolean Visible (optional) not a clue. -- @param #number WeaponType (optional) The WeaponType. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskAttackUnit( AttackUnit, GroupAttack, WeaponExpend, AttackQty, Direction, Altitude, Visible, WeaponType ) self:F2( { self.ControllableName, AttackUnit, GroupAttack, WeaponExpend, AttackQty, Direction, Altitude, Visible, WeaponType } ) local DCSTask DCSTask = { id = 'AttackUnit', params = { unitId = AttackUnit:GetID(), groupAttack = GroupAttack or false, visible = Visible or false, expend = WeaponExpend or "Auto", directionEnabled = Direction and true or false, direction = Direction, altitudeEnabled = Altitude and true or false, altitude = Altitude or 30, attackQtyLimit = AttackQty and true or false, attackQty = AttackQty, weaponType = WeaponType } } self:T3( DCSTask ) return DCSTask end --- (AIR) Delivering weapon at the point on the ground. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Vec2 Vec2 2D-coordinates of the point to deliver weapon at. -- @param #boolean GroupAttack (optional) If true, all units in the group will attack the Unit when found. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend WeaponExpend (optional) Determines how much weapon will be released at each attack. If parameter is not defined the unit / controllable will choose expend on its own discretion. -- @param #number AttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth Direction (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. -- @param #number Altitude (optional) The altitude from where to attack. -- @param #number WeaponType (optional) The WeaponType. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskBombing( Vec2, GroupAttack, WeaponExpend, AttackQty, Direction, Altitude, WeaponType ) self:F2( { self.ControllableName, Vec2, GroupAttack, WeaponExpend, AttackQty, Direction, Altitude, WeaponType } ) local DCSTask DCSTask = { id = 'Bombing', params = { point = Vec2, groupAttack = GroupAttack or false, expend = WeaponExpend or "Auto", attackQtyLimit = AttackQty and true or false, attackQty = AttackQty, directionEnabled = Direction and true or false, direction = Direction, altitudeEnabled = Altitude and true or false, altitude = Altitude or 30, weaponType = WeaponType, }, }, self:T3( { DCSTask } ) return DCSTask end --- (AIR) Attacking the map object (building, structure, e.t.c). -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Vec2 Vec2 2D-coordinates of the point to deliver weapon at. -- @param #boolean GroupAttack (optional) If true, all units in the group will attack the Unit when found. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend WeaponExpend (optional) Determines how much weapon will be released at each attack. If parameter is not defined the unit / controllable will choose expend on its own discretion. -- @param #number AttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth Direction (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. -- @param #number Altitude (optional) The altitude from where to attack. -- @param #number WeaponType (optional) The WeaponType. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskAttackMapObject( Vec2, GroupAttack, WeaponExpend, AttackQty, Direction, Altitude, WeaponType ) self:F2( { self.ControllableName, Vec2, GroupAttack, WeaponExpend, AttackQty, Direction, Altitude, WeaponType } ) local DCSTask DCSTask = { id = 'AttackMapObject', params = { point = Vec2, groupAttack = GroupAttack or false, expend = WeaponExpend or "Auto", attackQtyLimit = AttackQty and true or false, attackQty = AttackQty, directionEnabled = Direction and true or false, direction = Direction, altitudeEnabled = Altitude and true or false, altitude = Altitude or 30, weaponType = WeaponType, }, }, self:T3( { DCSTask } ) return DCSTask end --- (AIR) Orbit at a specified position at a specified alititude during a specified duration with a specified speed. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Vec2 Point The point to hold the position. -- @param #number Altitude The altitude to hold the position. -- @param #number Speed The speed flying when holding the position. -- @return #CONTROLLABLE self function CONTROLLABLE:TaskOrbitCircleAtVec2( Point, Altitude, Speed ) self:F2( { self.ControllableName, Point, Altitude, Speed } ) -- pattern = enum AI.Task.OribtPattern, -- point = Vec2, -- point2 = Vec2, -- speed = Distance, -- altitude = Distance local LandHeight = land.getHeight( Point ) self:T3( { LandHeight } ) local DCSTask = { id = 'Orbit', params = { pattern = AI.Task.OrbitPattern.CIRCLE, point = Point, speed = Speed, altitude = Altitude + LandHeight } } -- local AITask = { id = 'ControlledTask', -- params = { task = { id = 'Orbit', -- params = { pattern = AI.Task.OrbitPattern.CIRCLE, -- point = Point, -- speed = Speed, -- altitude = Altitude + LandHeight -- } -- }, -- stopCondition = { duration = Duration -- } -- } -- } -- ) return DCSTask end --- (AIR) Orbit at the current position of the first unit of the controllable at a specified alititude. -- @param #CONTROLLABLE self -- @param #number Altitude The altitude to hold the position. -- @param #number Speed The speed flying when holding the position. -- @return #CONTROLLABLE self function CONTROLLABLE:TaskOrbitCircle( Altitude, Speed ) self:F2( { self.ControllableName, Altitude, Speed } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local ControllablePoint = self:GetVec2() return self:TaskOrbitCircleAtVec2( ControllablePoint, Altitude, Speed ) end return nil end --- (AIR) Hold position at the current position of the first unit of the controllable. -- @param #CONTROLLABLE self -- @param #number Duration The maximum duration in seconds to hold the position. -- @return #CONTROLLABLE self function CONTROLLABLE:TaskHoldPosition() self:F2( { self.ControllableName } ) return self:TaskOrbitCircle( 30, 10 ) end --- (AIR) Delivering weapon on the runway. -- @param #CONTROLLABLE self -- @param Wrapper.Airbase#AIRBASE Airbase Airbase to attack. -- @param #number WeaponType (optional) Bitmask of weapon types those allowed to use. If parameter is not defined that means no limits on weapon usage. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend WeaponExpend (optional) Determines how much weapon will be released at each attack. If parameter is not defined the unit / controllable will choose expend on its own discretion. -- @param #number AttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth Direction (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. -- @param #boolean ControllableAttack (optional) Flag indicates that the target must be engaged by all aircrafts of the controllable. Has effect only if the task is assigned to a controllable, not to a single aircraft. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskBombingRunway( Airbase, WeaponType, WeaponExpend, AttackQty, Direction, ControllableAttack ) self:F2( { self.ControllableName, Airbase, WeaponType, WeaponExpend, AttackQty, Direction, ControllableAttack } ) -- BombingRunway = { -- id = 'BombingRunway', -- params = { -- runwayId = AirdromeId, -- weaponType = number, -- expend = enum AI.Task.WeaponExpend, -- attackQty = number, -- direction = Azimuth, -- controllableAttack = boolean, -- } -- } local DCSTask DCSTask = { id = 'BombingRunway', params = { point = Airbase:GetID(), weaponType = WeaponType, expend = WeaponExpend, attackQty = AttackQty, direction = Direction, controllableAttack = ControllableAttack, }, }, self:T3( { DCSTask } ) return DCSTask end --- (AIR) Refueling from the nearest tanker. No parameters. -- @param #CONTROLLABLE self -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskRefueling() self:F2( { self.ControllableName } ) -- Refueling = { -- id = 'Refueling', -- params = {} -- } local DCSTask DCSTask = { id = 'Refueling', params = { }, }, self:T3( { DCSTask } ) return DCSTask end --- (AIR HELICOPTER) Landing at the ground. For helicopters only. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Vec2 Point The point where to land. -- @param #number Duration The duration in seconds to stay on the ground. -- @return #CONTROLLABLE self function CONTROLLABLE:TaskLandAtVec2( Point, Duration ) self:F2( { self.ControllableName, Point, Duration } ) -- Land = { -- id= 'Land', -- params = { -- point = Vec2, -- durationFlag = boolean, -- duration = Time -- } -- } local DCSTask if Duration and Duration > 0 then DCSTask = { id = 'Land', params = { point = Point, durationFlag = true, duration = Duration, }, } else DCSTask = { id = 'Land', params = { point = Point, durationFlag = false, }, } end self:T3( DCSTask ) return DCSTask end --- (AIR) Land the controllable at a @{Zone#ZONE_RADIUS). -- @param #CONTROLLABLE self -- @param Core.Zone#ZONE Zone The zone where to land. -- @param #number Duration The duration in seconds to stay on the ground. -- @return #CONTROLLABLE self function CONTROLLABLE:TaskLandAtZone( Zone, Duration, RandomPoint ) self:F2( { self.ControllableName, Zone, Duration, RandomPoint } ) local Point if RandomPoint then Point = Zone:GetRandomVec2() else Point = Zone:GetVec2() end local DCSTask = self:TaskLandAtVec2( Point, Duration ) self:T3( DCSTask ) return DCSTask end --- (AIR) Following another airborne controllable. -- The unit / controllable will follow lead unit of another controllable, wingmens of both controllables will continue following their leaders. -- If another controllable is on land the unit / controllable will orbit around. -- @param #CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE FollowControllable The controllable to be followed. -- @param Dcs.DCSTypes#Vec3 Vec3 Position of the unit / lead unit of the controllable relative lead unit of another controllable in frame reference oriented by course of lead unit of another controllable. If another controllable is on land the unit / controllable will orbit around. -- @param #number LastWaypointIndex Detach waypoint of another controllable. Once reached the unit / controllable Follow task is finished. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskFollow( FollowControllable, Vec3, LastWaypointIndex ) self:F2( { self.ControllableName, FollowControllable, Vec3, LastWaypointIndex } ) -- Follow = { -- id = 'Follow', -- params = { -- groupId = Group.ID, -- pos = Vec3, -- lastWptIndexFlag = boolean, -- lastWptIndex = number -- } -- } local LastWaypointIndexFlag = false if LastWaypointIndex then LastWaypointIndexFlag = true end local DCSTask DCSTask = { id = 'Follow', params = { groupId = FollowControllable:GetID(), pos = Vec3, lastWptIndexFlag = LastWaypointIndexFlag, lastWptIndex = LastWaypointIndex } } self:T3( { DCSTask } ) return DCSTask end --- (AIR) Escort another airborne controllable. -- The unit / controllable will follow lead unit of another controllable, wingmens of both controllables will continue following their leaders. -- The unit / controllable will also protect that controllable from threats of specified types. -- @param #CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE EscortControllable The controllable to be escorted. -- @param Dcs.DCSTypes#Vec3 Vec3 Position of the unit / lead unit of the controllable relative lead unit of another controllable in frame reference oriented by course of lead unit of another controllable. If another controllable is on land the unit / controllable will orbit around. -- @param #number LastWaypointIndex Detach waypoint of another controllable. Once reached the unit / controllable Follow task is finished. -- @param #number EngagementDistanceMax Maximal distance from escorted controllable to threat. If the threat is already engaged by escort escort will disengage if the distance becomes greater than 1.5 * engagementDistMax. -- @param Dcs.DCSTypes#AttributeNameArray TargetTypes Array of AttributeName that is contains threat categories allowed to engage. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskEscort( FollowControllable, Vec3, LastWaypointIndex, EngagementDistance, TargetTypes ) self:F2( { self.ControllableName, FollowControllable, Vec3, LastWaypointIndex, EngagementDistance, TargetTypes } ) -- Escort = { -- id = 'Escort', -- params = { -- groupId = Group.ID, -- pos = Vec3, -- lastWptIndexFlag = boolean, -- lastWptIndex = number, -- engagementDistMax = Distance, -- targetTypes = array of AttributeName, -- } -- } local LastWaypointIndexFlag = false if LastWaypointIndex then LastWaypointIndexFlag = true end local DCSTask DCSTask = { id = 'Escort', params = { groupId = FollowControllable:GetID(), pos = Vec3, lastWptIndexFlag = LastWaypointIndexFlag, lastWptIndex = LastWaypointIndex, engagementDistMax = EngagementDistance, targetTypes = TargetTypes, }, }, self:T3( { DCSTask } ) return DCSTask end -- GROUND TASKS --- (GROUND) Fire at a VEC2 point until ammunition is finished. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Vec2 Vec2 The point to fire at. -- @param Dcs.DCSTypes#Distance Radius The radius of the zone to deploy the fire at. -- @param #number AmmoCount (optional) Quantity of ammunition to expand (omit to fire until ammunition is depleted). -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskFireAtPoint( Vec2, Radius, AmmoCount ) self:F2( { self.ControllableName, Vec2, Radius, AmmoCount } ) -- FireAtPoint = { -- id = 'FireAtPoint', -- params = { -- point = Vec2, -- radius = Distance, -- expendQty = number, -- expendQtyEnabled = boolean, -- } -- } local DCSTask DCSTask = { id = 'FireAtPoint', params = { point = Vec2, radius = Radius, expendQty = 100, -- dummy value expendQtyEnabled = false, } } if AmmoCount then DCSTask.params.expendQty = AmmoCount DCSTask.params.expendQtyEnabled = true end self:T3( { DCSTask } ) return DCSTask end --- (GROUND) Hold ground controllable from moving. -- @param #CONTROLLABLE self -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskHold() self:F2( { self.ControllableName } ) -- Hold = { -- id = 'Hold', -- params = { -- } -- } local DCSTask DCSTask = { id = 'Hold', params = { } } self:T3( { DCSTask } ) return DCSTask end -- TASKS FOR AIRBORNE AND GROUND UNITS/CONTROLLABLES --- (AIR + GROUND) The task makes the controllable/unit a FAC and orders the FAC to control the target (enemy ground controllable) destruction. -- The killer is player-controlled allied CAS-aircraft that is in contact with the FAC. -- If the task is assigned to the controllable lead unit will be a FAC. -- @param #CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE AttackGroup Target CONTROLLABLE. -- @param #number WeaponType Bitmask of weapon types those allowed to use. If parameter is not defined that means no limits on weapon usage. -- @param Dcs.DCSTypes#AI.Task.Designation Designation (optional) Designation type. -- @param #boolean Datalink (optional) Allows to use datalink to send the target information to attack aircraft. Enabled by default. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskFAC_AttackGroup( AttackGroup, WeaponType, Designation, Datalink ) self:F2( { self.ControllableName, AttackGroup, WeaponType, Designation, Datalink } ) -- FAC_AttackGroup = { -- id = 'FAC_AttackGroup', -- params = { -- groupId = Group.ID, -- weaponType = number, -- designation = enum AI.Task.Designation, -- datalink = boolean -- } -- } local DCSTask DCSTask = { id = 'FAC_AttackGroup', params = { groupId = AttackGroup:GetID(), weaponType = WeaponType, designation = Designation, datalink = Datalink, } } self:T3( { DCSTask } ) return DCSTask end -- EN-ACT_ROUTE TASKS FOR AIRBORNE CONTROLLABLES --- (AIR) Engaging targets of defined types. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Distance Distance Maximal distance from the target to a route leg. If the target is on a greater distance it will be ignored. -- @param Dcs.DCSTypes#AttributeNameArray TargetTypes Array of target categories allowed to engage. -- @param #number Priority All enroute tasks have the priority parameter. This is a number (less value - higher priority) that determines actions related to what task will be performed first. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:EnRouteTaskEngageTargets( Distance, TargetTypes, Priority ) self:F2( { self.ControllableName, Distance, TargetTypes, Priority } ) -- EngageTargets ={ -- id = 'EngageTargets', -- params = { -- maxDist = Distance, -- targetTypes = array of AttributeName, -- priority = number -- } -- } local DCSTask DCSTask = { id = 'EngageTargets', params = { maxDist = Distance, targetTypes = TargetTypes, priority = Priority } } self:T3( { DCSTask } ) return DCSTask end --- (AIR) Engaging a targets of defined types at circle-shaped zone. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Vec2 Vec2 2D-coordinates of the zone. -- @param Dcs.DCSTypes#Distance Radius Radius of the zone. -- @param Dcs.DCSTypes#AttributeNameArray TargetTypes Array of target categories allowed to engage. -- @param #number Priority All en-route tasks have the priority parameter. This is a number (less value - higher priority) that determines actions related to what task will be performed first. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:EnRouteTaskEngageTargetsInZone( Vec2, Radius, TargetTypes, Priority ) self:F2( { self.ControllableName, Vec2, Radius, TargetTypes, Priority } ) -- EngageTargetsInZone = { -- id = 'EngageTargetsInZone', -- params = { -- point = Vec2, -- zoneRadius = Distance, -- targetTypes = array of AttributeName, -- priority = number -- } -- } local DCSTask DCSTask = { id = 'EngageTargetsInZone', params = { point = Vec2, zoneRadius = Radius, targetTypes = TargetTypes, priority = Priority } } self:T3( { DCSTask } ) return DCSTask end --- (AIR) Engaging a controllable. The task does not assign the target controllable to the unit/controllable to attack now; it just allows the unit/controllable to engage the target controllable as well as other assigned targets. -- @param #CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE AttackGroup The Controllable to be attacked. -- @param #number Priority All en-route tasks have the priority parameter. This is a number (less value - higher priority) that determines actions related to what task will be performed first. -- @param #number WeaponType (optional) Bitmask of weapon types those allowed to use. If parameter is not defined that means no limits on weapon usage. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend WeaponExpend (optional) Determines how much weapon will be released at each attack. If parameter is not defined the unit / controllable will choose expend on its own discretion. -- @param #number AttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth Direction (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. -- @param Dcs.DCSTypes#Distance Altitude (optional) Desired attack start altitude. Controllable/aircraft will make its attacks from the altitude. If the altitude is too low or too high to use weapon aircraft/controllable will choose closest altitude to the desired attack start altitude. If the desired altitude is defined controllable/aircraft will not attack from safe altitude. -- @param #boolean AttackQtyLimit (optional) The flag determines how to interpret attackQty parameter. If the flag is true then attackQty is a limit on maximal attack quantity for "AttackGroup" and "AttackUnit" tasks. If the flag is false then attackQty is a desired attack quantity for "Bombing" and "BombingRunway" tasks. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:EnRouteTaskEngageGroup( AttackGroup, Priority, WeaponType, WeaponExpend, AttackQty, Direction, Altitude, AttackQtyLimit ) self:F2( { self.ControllableName, AttackGroup, Priority, WeaponType, WeaponExpend, AttackQty, Direction, Altitude, AttackQtyLimit } ) -- EngageControllable = { -- id = 'EngageControllable ', -- params = { -- groupId = Group.ID, -- weaponType = number, -- expend = enum AI.Task.WeaponExpend, -- attackQty = number, -- directionEnabled = boolean, -- direction = Azimuth, -- altitudeEnabled = boolean, -- altitude = Distance, -- attackQtyLimit = boolean, -- priority = number, -- } -- } local DirectionEnabled = nil if Direction then DirectionEnabled = true end local AltitudeEnabled = nil if Altitude then AltitudeEnabled = true end local DCSTask DCSTask = { id = 'EngageControllable', params = { groupId = AttackGroup:GetID(), weaponType = WeaponType, expend = WeaponExpend, attackQty = AttackQty, directionEnabled = DirectionEnabled, direction = Direction, altitudeEnabled = AltitudeEnabled, altitude = Altitude, attackQtyLimit = AttackQtyLimit, priority = Priority, }, }, self:T3( { DCSTask } ) return DCSTask end --- (AIR) Search and attack the Unit. -- @param #CONTROLLABLE self -- @param Wrapper.Unit#UNIT EngageUnit The UNIT. -- @param #number Priority (optional) All en-route tasks have the priority parameter. This is a number (less value - higher priority) that determines actions related to what task will be performed first. -- @param #boolean GroupAttack (optional) If true, all units in the group will attack the Unit when found. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend WeaponExpend (optional) Determines how much weapon will be released at each attack. If parameter is not defined the unit / controllable will choose expend on its own discretion. -- @param #number AttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth Direction (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. -- @param Dcs.DCSTypes#Distance Altitude (optional) Desired altitude to perform the unit engagement. -- @param #boolean Visible (optional) Unit must be visible. -- @param #boolean ControllableAttack (optional) Flag indicates that the target must be engaged by all aircrafts of the controllable. Has effect only if the task is assigned to a controllable, not to a single aircraft. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:EnRouteTaskEngageUnit( EngageUnit, Priority, GroupAttack, WeaponExpend, AttackQty, Direction, Altitude, Visible, ControllableAttack ) self:F2( { self.ControllableName, EngageUnit, Priority, GroupAttack, WeaponExpend, AttackQty, Direction, Altitude, Visible, ControllableAttack } ) -- EngageUnit = { -- id = 'EngageUnit', -- params = { -- unitId = Unit.ID, -- weaponType = number, -- expend = enum AI.Task.WeaponExpend -- attackQty = number, -- direction = Azimuth, -- attackQtyLimit = boolean, -- controllableAttack = boolean, -- priority = number, -- } -- } local DCSTask DCSTask = { id = 'EngageUnit', params = { unitId = EngageUnit:GetID(), priority = Priority or 1, groupAttack = GroupAttack or false, visible = Visible or false, expend = WeaponExpend or "Auto", directionEnabled = Direction and true or false, direction = Direction, altitudeEnabled = Altitude and true or false, altitude = Altitude, attackQtyLimit = AttackQty and true or false, attackQty = AttackQty, controllableAttack = ControllableAttack, }, }, self:T3( { DCSTask } ) return DCSTask end --- (AIR) Aircraft will act as an AWACS for friendly units (will provide them with information about contacts). No parameters. -- @param #CONTROLLABLE self -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:EnRouteTaskAWACS( ) self:F2( { self.ControllableName } ) -- AWACS = { -- id = 'AWACS', -- params = { -- } -- } local DCSTask DCSTask = { id = 'AWACS', params = { } } self:T3( { DCSTask } ) return DCSTask end --- (AIR) Aircraft will act as a tanker for friendly units. No parameters. -- @param #CONTROLLABLE self -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:EnRouteTaskTanker( ) self:F2( { self.ControllableName } ) -- Tanker = { -- id = 'Tanker', -- params = { -- } -- } local DCSTask DCSTask = { id = 'Tanker', params = { } } self:T3( { DCSTask } ) return DCSTask end -- En-route tasks for ground units/controllables --- (GROUND) Ground unit (EW-radar) will act as an EWR for friendly units (will provide them with information about contacts). No parameters. -- @param #CONTROLLABLE self -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:EnRouteTaskEWR( ) self:F2( { self.ControllableName } ) -- EWR = { -- id = 'EWR', -- params = { -- } -- } local DCSTask DCSTask = { id = 'EWR', params = { } } self:T3( { DCSTask } ) return DCSTask end -- En-route tasks for airborne and ground units/controllables --- (AIR + GROUND) The task makes the controllable/unit a FAC and lets the FAC to choose the target (enemy ground controllable) as well as other assigned targets. -- The killer is player-controlled allied CAS-aircraft that is in contact with the FAC. -- If the task is assigned to the controllable lead unit will be a FAC. -- @param #CONTROLLABLE self -- @param Wrapper.Controllable#CONTROLLABLE AttackGroup Target CONTROLLABLE. -- @param #number Priority All en-route tasks have the priority parameter. This is a number (less value - higher priority) that determines actions related to what task will be performed first. -- @param #number WeaponType Bitmask of weapon types those allowed to use. If parameter is not defined that means no limits on weapon usage. -- @param Dcs.DCSTypes#AI.Task.Designation Designation (optional) Designation type. -- @param #boolean Datalink (optional) Allows to use datalink to send the target information to attack aircraft. Enabled by default. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:EnRouteTaskFAC_EngageGroup( AttackGroup, Priority, WeaponType, Designation, Datalink ) self:F2( { self.ControllableName, AttackGroup, WeaponType, Priority, Designation, Datalink } ) -- FAC_EngageControllable = { -- id = 'FAC_EngageControllable', -- params = { -- groupId = Group.ID, -- weaponType = number, -- designation = enum AI.Task.Designation, -- datalink = boolean, -- priority = number, -- } -- } local DCSTask DCSTask = { id = 'FAC_EngageControllable', params = { groupId = AttackGroup:GetID(), weaponType = WeaponType, designation = Designation, datalink = Datalink, priority = Priority, } } self:T3( { DCSTask } ) return DCSTask end --- (AIR + GROUND) The task makes the controllable/unit a FAC and lets the FAC to choose a targets (enemy ground controllable) around as well as other assigned targets. -- The killer is player-controlled allied CAS-aircraft that is in contact with the FAC. -- If the task is assigned to the controllable lead unit will be a FAC. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Distance Radius The maximal distance from the FAC to a target. -- @param #number Priority All en-route tasks have the priority parameter. This is a number (less value - higher priority) that determines actions related to what task will be performed first. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:EnRouteTaskFAC( Radius, Priority ) self:F2( { self.ControllableName, Radius, Priority } ) -- FAC = { -- id = 'FAC', -- params = { -- radius = Distance, -- priority = number -- } -- } local DCSTask DCSTask = { id = 'FAC', params = { radius = Radius, priority = Priority } } self:T3( { DCSTask } ) return DCSTask end --- (AIR) Move the controllable to a Vec2 Point, wait for a defined duration and embark a controllable. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Vec2 Point The point where to wait. -- @param #number Duration The duration in seconds to wait. -- @param #CONTROLLABLE EmbarkingControllable The controllable to be embarked. -- @return Dcs.DCSTasking.Task#Task The DCS task structure function CONTROLLABLE:TaskEmbarking( Point, Duration, EmbarkingControllable ) self:F2( { self.ControllableName, Point, Duration, EmbarkingControllable.DCSControllable } ) local DCSTask DCSTask = { id = 'Embarking', params = { x = Point.x, y = Point.y, duration = Duration, controllablesForEmbarking = { EmbarkingControllable.ControllableID }, durationFlag = true, distributionFlag = false, distribution = {}, } } self:T3( { DCSTask } ) return DCSTask end --- (GROUND) Embark to a Transport landed at a location. --- Move to a defined Vec2 Point, and embark to a controllable when arrived within a defined Radius. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Vec2 Point The point where to wait. -- @param #number Radius The radius of the embarking zone around the Point. -- @return Dcs.DCSTasking.Task#Task The DCS task structure. function CONTROLLABLE:TaskEmbarkToTransport( Point, Radius ) self:F2( { self.ControllableName, Point, Radius } ) local DCSTask --Dcs.DCSTasking.Task#Task DCSTask = { id = 'EmbarkToTransport', params = { x = Point.x, y = Point.y, zoneRadius = Radius, } } self:T3( { DCSTask } ) return DCSTask end --- This creates a Task element, with an action to call a function as part of a Wrapped Task. -- This Task can then be embedded at a Waypoint by calling the method @{#CONTROLLABLE.SetTaskWaypoint}. -- @param #CONTROLLABLE self -- @param #string FunctionString The function name embedded as a string that will be called. -- @param ... The variable arguments passed to the function when called! These arguments can be of any type! -- @return #CONTROLLABLE -- @usage -- -- local ZoneList = { -- ZONE:New( "ZONE1" ), -- ZONE:New( "ZONE2" ), -- ZONE:New( "ZONE3" ), -- ZONE:New( "ZONE4" ), -- ZONE:New( "ZONE5" ) -- } -- -- GroundGroup = GROUP:FindByName( "Vehicle" ) -- -- --- @param Wrapper.Group#GROUP GroundGroup -- function RouteToZone( Vehicle, ZoneRoute ) -- -- local Route = {} -- -- Vehicle:E( { ZoneRoute = ZoneRoute } ) -- -- Vehicle:MessageToAll( "Moving to zone " .. ZoneRoute:GetName(), 10 ) -- -- -- Get the current coordinate of the Vehicle -- local FromCoord = Vehicle:GetCoordinate() -- -- -- Select a random Zone and get the Coordinate of the new Zone. -- local RandomZone = ZoneList[ math.random( 1, #ZoneList ) ] -- Core.Zone#ZONE -- local ToCoord = RandomZone:GetCoordinate() -- -- -- Create a "ground route point", which is a "point" structure that can be given as a parameter to a Task -- Route[#Route+1] = FromCoord:WaypointGround( 72 ) -- Route[#Route+1] = ToCoord:WaypointGround( 60, "Vee" ) -- -- local TaskRouteToZone = Vehicle:TaskFunction( "RouteToZone", RandomZone ) -- -- Vehicle:SetTaskWaypoint( Route, #Route, TaskRouteToZone ) -- Set for the given Route at Waypoint 2 the TaskRouteToZone. -- -- Vehicle:Route( Route, math.random( 10, 20 ) ) -- Move after a random seconds to the Route. See the Route method for details. -- -- end -- -- RouteToZone( GroundGroup, ZoneList[1] ) -- function CONTROLLABLE:TaskFunction( FunctionString, ... ) self:F2( { FunctionString, arg } ) local DCSTask local DCSScript = {} DCSScript[#DCSScript+1] = "local MissionControllable = GROUP:Find( ... ) " if arg and arg.n > 0 then local ArgumentKey = '_' .. tostring( arg ):match("table: (.*)") self:SetState( self, ArgumentKey, arg ) DCSScript[#DCSScript+1] = "local Arguments = MissionControllable:GetState( MissionControllable, '" .. ArgumentKey .. "' ) " --DCSScript[#DCSScript+1] = "MissionControllable:ClearState( MissionControllable, '" .. ArgumentKey .. "' ) " DCSScript[#DCSScript+1] = FunctionString .. "( MissionControllable, unpack( Arguments ) )" else DCSScript[#DCSScript+1] = FunctionString .. "( MissionControllable )" end DCSTask = self:TaskWrappedAction( self:CommandDoScript( table.concat( DCSScript ) ) ) self:T( DCSTask ) return DCSTask end --- (AIR + GROUND) Return a mission task from a mission template. -- @param #CONTROLLABLE self -- @param #table TaskMission A table containing the mission task. -- @return Dcs.DCSTasking.Task#Task function CONTROLLABLE:TaskMission( TaskMission ) self:F2( Points ) local DCSTask DCSTask = { id = 'Mission', params = { TaskMission, }, } self:T3( { DCSTask } ) return DCSTask end do -- Patrol methods --- (GROUND) Patrol iteratively using the waypoints the for the (parent) group. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE function CONTROLLABLE:PatrolRoute() local PatrolGroup = self -- Wrapper.Group#GROUP if not self:IsInstanceOf( "GROUP" ) then PatrolGroup = self:GetGroup() -- Wrapper.Group#GROUP end self:E( { PatrolGroup = PatrolGroup:GetName() } ) if PatrolGroup:IsGround() or PatrolGroup:IsShip() then local Waypoints = PatrolGroup:GetTemplateRoutePoints() -- Calculate the new Route. local FromCoord = PatrolGroup:GetCoordinate() local From = FromCoord:WaypointGround( 120 ) table.insert( Waypoints, 1, From ) local TaskRoute = PatrolGroup:TaskFunction( "CONTROLLABLE.PatrolRoute" ) self:E({Waypoints = Waypoints}) local Waypoint = Waypoints[#Waypoints] PatrolGroup:SetTaskWaypoint( Waypoint, TaskRoute ) -- Set for the given Route at Waypoint 2 the TaskRouteToZone. PatrolGroup:Route( Waypoints ) -- Move after a random seconds to the Route. See the Route method for details. end end --- (GROUND) Patrol randomly to the waypoints the for the (parent) group. -- A random waypoint will be picked and the group will move towards that point. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE function CONTROLLABLE:PatrolRouteRandom( Speed, Formation, ToWaypoint ) local PatrolGroup = self -- Wrapper.Group#GROUP if not self:IsInstanceOf( "GROUP" ) then PatrolGroup = self:GetGroup() -- Wrapper.Group#GROUP end self:E( { PatrolGroup = PatrolGroup:GetName() } ) if PatrolGroup:IsGround() or PatrolGroup:IsShip() then local Waypoints = PatrolGroup:GetTemplateRoutePoints() -- Calculate the new Route. local FromCoord = PatrolGroup:GetCoordinate() local FromWaypoint = 1 if ToWaypoint then FromWaypoint = ToWaypoint end -- Loop until a waypoint has been found that is not the same as the current waypoint. -- Otherwise the object zon't move or drive in circles and the algorithm would not do exactly -- what it is supposed to do, which is making groups drive around. local ToWaypoint repeat -- Select a random waypoint and check if it is not the same waypoint as where the object is about. ToWaypoint = math.random( 1, #Waypoints ) until( ToWaypoint ~= FromWaypoint ) self:E( { FromWaypoint = FromWaypoint, ToWaypoint = ToWaypoint } ) local Waypoint = Waypoints[ToWaypoint] -- Select random waypoint. local ToCoord = COORDINATE:NewFromVec2( { x = Waypoint.x, y = Waypoint.y } ) -- Create a "ground route point", which is a "point" structure that can be given as a parameter to a Task local Route = {} Route[#Route+1] = FromCoord:WaypointGround( 0 ) Route[#Route+1] = ToCoord:WaypointGround( Speed, Formation ) local TaskRouteToZone = PatrolGroup:TaskFunction( "CONTROLLABLE.PatrolRouteRandom", Speed, Formation, ToWaypoint ) PatrolGroup:SetTaskWaypoint( Route[#Route], TaskRouteToZone ) -- Set for the given Route at Waypoint 2 the TaskRouteToZone. PatrolGroup:Route( Route, 1 ) -- Move after a random seconds to the Route. See the Route method for details. end end --- (GROUND) Patrol randomly to the waypoints the for the (parent) group. -- A random waypoint will be picked and the group will move towards that point. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE function CONTROLLABLE:PatrolZones( ZoneList, Speed, Formation ) if not type( ZoneList ) == "table" then ZoneList = { ZoneList } end local PatrolGroup = self -- Wrapper.Group#GROUP if not self:IsInstanceOf( "GROUP" ) then PatrolGroup = self:GetGroup() -- Wrapper.Group#GROUP end self:E( { PatrolGroup = PatrolGroup:GetName() } ) if PatrolGroup:IsGround() or PatrolGroup:IsShip() then local Waypoints = PatrolGroup:GetTemplateRoutePoints() local Waypoint = Waypoints[math.random( 1, #Waypoints )] -- Select random waypoint. -- Calculate the new Route. local FromCoord = PatrolGroup:GetCoordinate() -- Select a random Zone and get the Coordinate of the new Zone. local RandomZone = ZoneList[ math.random( 1, #ZoneList ) ] -- Core.Zone#ZONE local ToCoord = RandomZone:GetRandomCoordinate( 10 ) -- Create a "ground route point", which is a "point" structure that can be given as a parameter to a Task local Route = {} Route[#Route+1] = FromCoord:WaypointGround( 120 ) Route[#Route+1] = ToCoord:WaypointGround( Speed, Formation ) local TaskRouteToZone = PatrolGroup:TaskFunction( "CONTROLLABLE.PatrolZones", ZoneList, Speed, Formation ) PatrolGroup:SetTaskWaypoint( Route[#Route], TaskRouteToZone ) -- Set for the given Route at Waypoint 2 the TaskRouteToZone. PatrolGroup:Route( Route, 1 ) -- Move after a random seconds to the Route. See the Route method for details. end end end --- Return a Misson task to follow a given route defined by Points. -- @param #CONTROLLABLE self -- @param #table Points A table of route points. -- @return Dcs.DCSTasking.Task#Task function CONTROLLABLE:TaskRoute( Points ) self:F2( Points ) local DCSTask DCSTask = { id = 'Mission', params = { route = { points = Points, }, }, } self:T3( { DCSTask } ) return DCSTask end --- (AIR + GROUND) Make the Controllable move to fly to a given point. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Vec3 Point The destination point in Vec3 format. -- @param #number Speed The speed to travel. -- @return #CONTROLLABLE self function CONTROLLABLE:RouteToVec2( Point, Speed ) self:F2( { Point, Speed } ) local ControllablePoint = self:GetUnit( 1 ):GetVec2() local PointFrom = {} PointFrom.x = ControllablePoint.x PointFrom.y = ControllablePoint.y PointFrom.type = "Turning Point" PointFrom.action = "Turning Point" PointFrom.speed = Speed PointFrom.speed_locked = true PointFrom.properties = { ["vnav"] = 1, ["scale"] = 0, ["angle"] = 0, ["vangle"] = 0, ["steer"] = 2, } local PointTo = {} PointTo.x = Point.x PointTo.y = Point.y PointTo.type = "Turning Point" PointTo.action = "Fly Over Point" PointTo.speed = Speed PointTo.speed_locked = true PointTo.properties = { ["vnav"] = 1, ["scale"] = 0, ["angle"] = 0, ["vangle"] = 0, ["steer"] = 2, } local Points = { PointFrom, PointTo } self:T3( Points ) self:Route( Points ) return self end --- (AIR + GROUND) Make the Controllable move to a given point. -- @param #CONTROLLABLE self -- @param Dcs.DCSTypes#Vec3 Point The destination point in Vec3 format. -- @param #number Speed The speed to travel. -- @return #CONTROLLABLE self function CONTROLLABLE:RouteToVec3( Point, Speed ) self:F2( { Point, Speed } ) local ControllableVec3 = self:GetUnit( 1 ):GetVec3() local PointFrom = {} PointFrom.x = ControllableVec3.x PointFrom.y = ControllableVec3.z PointFrom.alt = ControllableVec3.y PointFrom.alt_type = "BARO" PointFrom.type = "Turning Point" PointFrom.action = "Turning Point" PointFrom.speed = Speed PointFrom.speed_locked = true PointFrom.properties = { ["vnav"] = 1, ["scale"] = 0, ["angle"] = 0, ["vangle"] = 0, ["steer"] = 2, } local PointTo = {} PointTo.x = Point.x PointTo.y = Point.z PointTo.alt = Point.y PointTo.alt_type = "BARO" PointTo.type = "Turning Point" PointTo.action = "Fly Over Point" PointTo.speed = Speed PointTo.speed_locked = true PointTo.properties = { ["vnav"] = 1, ["scale"] = 0, ["angle"] = 0, ["vangle"] = 0, ["steer"] = 2, } local Points = { PointFrom, PointTo } self:T3( Points ) self:Route( Points ) return self end --- Make the controllable to follow a given route. -- @param #CONTROLLABLE self -- @param #table Route A table of Route Points. -- @param #number DelaySeconds Wait for the specified seconds before executing the Route. -- @return #CONTROLLABLE The CONTROLLABLE. function CONTROLLABLE:Route( Route, DelaySeconds ) self:F2( Route ) local DCSControllable = self:GetDCSObject() if DCSControllable then local RouteTask = self:TaskRoute( Route ) -- Create a RouteTask, that will route the CONTROLLABLE to the Route. self:SetTask( RouteTask, DelaySeconds or 1 ) -- Execute the RouteTask after the specified seconds (default is 1). return self end return nil end --- Make the GROUND Controllable to drive towards a specific point. -- @param #CONTROLLABLE self -- @param Core.Point#COORDINATE ToCoordinate A Coordinate to drive to. -- @param #number Speed (optional) Speed in km/h. The default speed is 999 km/h. -- @param #string Formation (optional) The route point Formation, which is a text string that specifies exactly the Text in the Type of the route point, like "Vee", "Echelon Right". -- @param #number DelaySeconds Wait for the specified seconds before executing the Route. -- @return #CONTROLLABLE The CONTROLLABLE. function CONTROLLABLE:RouteGroundTo( ToCoordinate, Speed, Formation, DelaySeconds ) local FromCoordinate = self:GetCoordinate() local FromWP = FromCoordinate:WaypointGround() local ToWP = ToCoordinate:WaypointGround( Speed, Formation ) self:Route( { FromWP, ToWP }, DelaySeconds ) return self end --- Make the AIR Controllable fly towards a specific point. -- @param #CONTROLLABLE self -- @param Core.Point#COORDINATE ToCoordinate A Coordinate to drive to. -- @param Core.Point#COORDINATE.RoutePointAltType AltType The altitude type. -- @param Core.Point#COORDINATE.RoutePointType Type The route point type. -- @param Core.Point#COORDINATE.RoutePointAction Action The route point action. -- @param #number Speed (optional) Speed in km/h. The default speed is 999 km/h. -- @param #number DelaySeconds Wait for the specified seconds before executing the Route. -- @return #CONTROLLABLE The CONTROLLABLE. function CONTROLLABLE:RouteAirTo( ToCoordinate, AltType, Type, Action, Speed, DelaySeconds ) local FromCoordinate = self:GetCoordinate() local FromWP = FromCoordinate:WaypointAir() local ToWP = ToCoordinate:WaypointAir( AltType, Type, Action, Speed ) self:Route( { FromWP, ToWP }, DelaySeconds ) return self end --- (AIR + GROUND) Route the controllable to a given zone. -- The controllable final destination point can be randomized. -- A speed can be given in km/h. -- A given formation can be given. -- @param #CONTROLLABLE self -- @param Core.Zone#ZONE Zone The zone where to route to. -- @param #boolean Randomize Defines whether to target point gets randomized within the Zone. -- @param #number Speed The speed. -- @param Base#FORMATION Formation The formation string. function CONTROLLABLE:TaskRouteToZone( Zone, Randomize, Speed, Formation ) self:F2( Zone ) local DCSControllable = self:GetDCSObject() if DCSControllable then local ControllablePoint = self:GetVec2() local PointFrom = {} PointFrom.x = ControllablePoint.x PointFrom.y = ControllablePoint.y PointFrom.type = "Turning Point" PointFrom.action = Formation or "Cone" PointFrom.speed = 20 / 1.6 local PointTo = {} local ZonePoint if Randomize then ZonePoint = Zone:GetRandomVec2() else ZonePoint = Zone:GetVec2() end PointTo.x = ZonePoint.x PointTo.y = ZonePoint.y PointTo.type = "Turning Point" if Formation then PointTo.action = Formation else PointTo.action = "Cone" end if Speed then PointTo.speed = Speed else PointTo.speed = 20 / 1.6 end local Points = { PointFrom, PointTo } self:T3( Points ) self:Route( Points ) return self end return nil end --- (GROUND) Route the controllable to a given Vec2. -- A speed can be given in km/h. -- A given formation can be given. -- @param #CONTROLLABLE self -- @param #Vec2 Vec2 The Vec2 where to route to. -- @param #number Speed The speed. -- @param Base#FORMATION Formation The formation string. function CONTROLLABLE:TaskRouteToVec2( Vec2, Speed, Formation ) local DCSControllable = self:GetDCSObject() if DCSControllable then local ControllablePoint = self:GetVec2() local PointFrom = {} PointFrom.x = ControllablePoint.x PointFrom.y = ControllablePoint.y PointFrom.type = "Turning Point" PointFrom.action = Formation or "Cone" PointFrom.speed = 20 / 1.6 local PointTo = {} PointTo.x = Vec2.x PointTo.y = Vec2.y PointTo.type = "Turning Point" if Formation then PointTo.action = Formation else PointTo.action = "Cone" end if Speed then PointTo.speed = Speed else PointTo.speed = 60 / 3.6 end local Points = { PointFrom, PointTo } self:T3( Points ) self:Route( Points ) return self end return nil end -- Commands --- Do Script command -- @param #CONTROLLABLE self -- @param #string DoScript -- @return #DCSCommand function CONTROLLABLE:CommandDoScript( DoScript ) local DCSDoScript = { id = "Script", params = { command = DoScript, }, } self:T3( DCSDoScript ) return DCSDoScript end --- Return the mission template of the controllable. -- @param #CONTROLLABLE self -- @return #table The MissionTemplate -- TODO: Rework the method how to retrieve a template ... function CONTROLLABLE:GetTaskMission() self:F2( self.ControllableName ) return routines.utils.deepCopy( _DATABASE.Templates.Controllables[self.ControllableName].Template ) end --- Return the mission route of the controllable. -- @param #CONTROLLABLE self -- @return #table The mission route defined by points. function CONTROLLABLE:GetTaskRoute() self:F2( self.ControllableName ) return routines.utils.deepCopy( _DATABASE.Templates.Controllables[self.ControllableName].Template.route.points ) end --- Return the route of a controllable by using the @{Database#DATABASE} class. -- @param #CONTROLLABLE self -- @param #number Begin The route point from where the copy will start. The base route point is 0. -- @param #number End The route point where the copy will end. The End point is the last point - the End point. The last point has base 0. -- @param #boolean Randomize Randomization of the route, when true. -- @param #number Radius When randomization is on, the randomization is within the radius. function CONTROLLABLE:CopyRoute( Begin, End, Randomize, Radius ) self:F2( { Begin, End } ) local Points = {} -- Could be a Spawned Controllable local ControllableName = string.match( self:GetName(), ".*#" ) if ControllableName then ControllableName = ControllableName:sub( 1, -2 ) else ControllableName = self:GetName() end self:T3( { ControllableName } ) local Template = _DATABASE.Templates.Controllables[ControllableName].Template if Template then if not Begin then Begin = 0 end if not End then End = 0 end for TPointID = Begin + 1, #Template.route.points - End do if Template.route.points[TPointID] then Points[#Points+1] = routines.utils.deepCopy( Template.route.points[TPointID] ) if Randomize then if not Radius then Radius = 500 end Points[#Points].x = Points[#Points].x + math.random( Radius * -1, Radius ) Points[#Points].y = Points[#Points].y + math.random( Radius * -1, Radius ) end end end return Points else error( "Template not found for Controllable : " .. ControllableName ) end return nil end --- Return the detected targets of the controllable. -- The optional parametes specify the detection methods that can be applied. -- If no detection method is given, the detection will use all the available methods by default. -- @param Wrapper.Controllable#CONTROLLABLE self -- @param #boolean DetectVisual (optional) -- @param #boolean DetectOptical (optional) -- @param #boolean DetectRadar (optional) -- @param #boolean DetectIRST (optional) -- @param #boolean DetectRWR (optional) -- @param #boolean DetectDLINK (optional) -- @return #table DetectedTargets function CONTROLLABLE:GetDetectedTargets( DetectVisual, DetectOptical, DetectRadar, DetectIRST, DetectRWR, DetectDLINK ) self:F2( self.ControllableName ) local DCSControllable = self:GetDCSObject() if DCSControllable then local DetectionVisual = ( DetectVisual and DetectVisual == true ) and Controller.Detection.VISUAL or nil local DetectionOptical = ( DetectOptical and DetectOptical == true ) and Controller.Detection.OPTICAL or nil local DetectionRadar = ( DetectRadar and DetectRadar == true ) and Controller.Detection.RADAR or nil local DetectionIRST = ( DetectIRST and DetectIRST == true ) and Controller.Detection.IRST or nil local DetectionRWR = ( DetectRWR and DetectRWR == true ) and Controller.Detection.RWR or nil local DetectionDLINK = ( DetectDLINK and DetectDLINK == true ) and Controller.Detection.DLINK or nil self:T( { DetectionVisual, DetectionOptical, DetectionRadar, DetectionIRST, DetectionRWR, DetectionDLINK } ) return self:_GetController():getDetectedTargets( DetectionVisual, DetectionOptical, DetectionRadar, DetectionIRST, DetectionRWR, DetectionDLINK ) end return nil end function CONTROLLABLE:IsTargetDetected( DCSObject, DetectVisual, DetectOptical, DetectRadar, DetectIRST, DetectRWR, DetectDLINK ) self:F2( self.ControllableName ) local DCSControllable = self:GetDCSObject() if DCSControllable then local DetectionVisual = ( DetectVisual and DetectVisual == true ) and Controller.Detection.VISUAL or nil local DetectionOptical = ( DetectOptical and DetectOptical == true ) and Controller.Detection.OPTICAL or nil local DetectionRadar = ( DetectRadar and DetectRadar == true ) and Controller.Detection.RADAR or nil local DetectionIRST = ( DetectIRST and DetectIRST == true ) and Controller.Detection.IRST or nil local DetectionRWR = ( DetectRWR and DetectRWR == true ) and Controller.Detection.RWR or nil local DetectionDLINK = ( DetectDLINK and DetectDLINK == true ) and Controller.Detection.DLINK or nil local Controller = self:_GetController() local TargetIsDetected, TargetIsVisible, TargetLastTime, TargetKnowType, TargetKnowDistance, TargetLastPos, TargetLastVelocity = Controller:isTargetDetected( DCSObject, DetectionVisual, DetectionOptical, DetectionRadar, DetectionIRST, DetectionRWR, DetectionDLINK ) return TargetIsDetected, TargetIsVisible, TargetLastTime, TargetKnowType, TargetKnowDistance, TargetLastPos, TargetLastVelocity end return nil end -- Options --- Can the CONTROLLABLE hold their weapons? -- @param #CONTROLLABLE self -- @return #boolean function CONTROLLABLE:OptionROEHoldFirePossible() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then if self:IsAir() or self:IsGround() or self:IsShip() then return true end return false end return nil end --- Holding weapons. -- @param Wrapper.Controllable#CONTROLLABLE self -- @return Wrapper.Controllable#CONTROLLABLE self function CONTROLLABLE:OptionROEHoldFire() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() if self:IsAir() then Controller:setOption( AI.Option.Air.id.ROE, AI.Option.Air.val.ROE.WEAPON_HOLD ) elseif self:IsGround() then Controller:setOption( AI.Option.Ground.id.ROE, AI.Option.Ground.val.ROE.WEAPON_HOLD ) elseif self:IsShip() then Controller:setOption( AI.Option.Naval.id.ROE, AI.Option.Naval.val.ROE.WEAPON_HOLD ) end return self end return nil end --- Can the CONTROLLABLE attack returning on enemy fire? -- @param #CONTROLLABLE self -- @return #boolean function CONTROLLABLE:OptionROEReturnFirePossible() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then if self:IsAir() or self:IsGround() or self:IsShip() then return true end return false end return nil end --- Return fire. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE self function CONTROLLABLE:OptionROEReturnFire() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() if self:IsAir() then Controller:setOption( AI.Option.Air.id.ROE, AI.Option.Air.val.ROE.RETURN_FIRE ) elseif self:IsGround() then Controller:setOption( AI.Option.Ground.id.ROE, AI.Option.Ground.val.ROE.RETURN_FIRE ) elseif self:IsShip() then Controller:setOption( AI.Option.Naval.id.ROE, AI.Option.Naval.val.ROE.RETURN_FIRE ) end return self end return nil end --- Can the CONTROLLABLE attack designated targets? -- @param #CONTROLLABLE self -- @return #boolean function CONTROLLABLE:OptionROEOpenFirePossible() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then if self:IsAir() or self:IsGround() or self:IsShip() then return true end return false end return nil end --- Openfire. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE self function CONTROLLABLE:OptionROEOpenFire() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() if self:IsAir() then Controller:setOption( AI.Option.Air.id.ROE, AI.Option.Air.val.ROE.OPEN_FIRE ) elseif self:IsGround() then Controller:setOption( AI.Option.Ground.id.ROE, AI.Option.Ground.val.ROE.OPEN_FIRE ) elseif self:IsShip() then Controller:setOption( AI.Option.Naval.id.ROE, AI.Option.Naval.val.ROE.OPEN_FIRE ) end return self end return nil end --- Can the CONTROLLABLE attack targets of opportunity? -- @param #CONTROLLABLE self -- @return #boolean function CONTROLLABLE:OptionROEWeaponFreePossible() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then if self:IsAir() then return true end return false end return nil end --- Weapon free. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE self function CONTROLLABLE:OptionROEWeaponFree() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() if self:IsAir() then Controller:setOption( AI.Option.Air.id.ROE, AI.Option.Air.val.ROE.WEAPON_FREE ) end return self end return nil end --- Can the CONTROLLABLE ignore enemy fire? -- @param #CONTROLLABLE self -- @return #boolean function CONTROLLABLE:OptionROTNoReactionPossible() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then if self:IsAir() then return true end return false end return nil end --- No evasion on enemy threats. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE self function CONTROLLABLE:OptionROTNoReaction() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() if self:IsAir() then Controller:setOption( AI.Option.Air.id.REACTION_ON_THREAT, AI.Option.Air.val.REACTION_ON_THREAT.NO_REACTION ) end return self end return nil end --- Can the CONTROLLABLE evade using passive defenses? -- @param #CONTROLLABLE self -- @return #boolean function CONTROLLABLE:OptionROTPassiveDefensePossible() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then if self:IsAir() then return true end return false end return nil end --- Evasion passive defense. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE self function CONTROLLABLE:OptionROTPassiveDefense() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() if self:IsAir() then Controller:setOption( AI.Option.Air.id.REACTION_ON_THREAT, AI.Option.Air.val.REACTION_ON_THREAT.PASSIVE_DEFENCE ) end return self end return nil end --- Can the CONTROLLABLE evade on enemy fire? -- @param #CONTROLLABLE self -- @return #boolean function CONTROLLABLE:OptionROTEvadeFirePossible() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then if self:IsAir() then return true end return false end return nil end --- Evade on fire. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE self function CONTROLLABLE:OptionROTEvadeFire() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() if self:IsAir() then Controller:setOption( AI.Option.Air.id.REACTION_ON_THREAT, AI.Option.Air.val.REACTION_ON_THREAT.EVADE_FIRE ) end return self end return nil end --- Can the CONTROLLABLE evade on fire using vertical manoeuvres? -- @param #CONTROLLABLE self -- @return #boolean function CONTROLLABLE:OptionROTVerticalPossible() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then if self:IsAir() then return true end return false end return nil end --- Evade on fire using vertical manoeuvres. -- @param #CONTROLLABLE self -- @return #CONTROLLABLE self function CONTROLLABLE:OptionROTVertical() self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() if self:IsAir() then Controller:setOption( AI.Option.Air.id.REACTION_ON_THREAT, AI.Option.Air.val.REACTION_ON_THREAT.BYPASS_AND_ESCAPE ) end return self end return nil end --- Set RTB on bingo fuel. -- @param #CONTROLLABLE self -- @param #boolean RTB true if RTB on bingo fuel (default), false if no RTB on bingo fuel. -- Warning! When you switch this option off, the airborne group will continue to fly until all fuel has been consumed, and will crash. -- @return #CONTROLLABLE self function CONTROLLABLE:OptionRTBBingoFuel( RTB ) --R2.2 self:F2( { self.ControllableName } ) RTB = RTB or true local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() if self:IsAir() then Controller:setOption( AI.Option.Air.id.RTB_ON_BINGO, RTB ) end return self end return nil end --- Set RTB on ammo. -- @param #CONTROLLABLE self -- @param #boolean WeaponsFlag Weapons.flag enumerator. -- @return #CONTROLLABLE self function CONTROLLABLE:OptionRTBAmmo( WeaponsFlag ) self:F2( { self.ControllableName } ) local DCSControllable = self:GetDCSObject() if DCSControllable then local Controller = self:_GetController() if self:IsAir() then Controller:setOption( AI.Option.GROUND.id.RTB_ON_OUT_OF_AMMO, WeaponsFlag ) end return self end return nil end --- Retrieve the controllable mission and allow to place function hooks within the mission waypoint plan. -- Use the method @{Controllable#CONTROLLABLE:WayPointFunction} to define the hook functions for specific waypoints. -- Use the method @{Controllable@CONTROLLABLE:WayPointExecute) to start the execution of the new mission plan. -- Note that when WayPointInitialize is called, the Mission of the controllable is RESTARTED! -- @param #CONTROLLABLE self -- @param #table WayPoints If WayPoints is given, then use the route. -- @return #CONTROLLABLE function CONTROLLABLE:WayPointInitialize( WayPoints ) self:F( { WayPoints } ) if WayPoints then self.WayPoints = WayPoints else self.WayPoints = self:GetTaskRoute() end return self end --- Get the current WayPoints set with the WayPoint functions( Note that the WayPoints can be nil, although there ARE waypoints). -- @param #CONTROLLABLE self -- @return #table WayPoints If WayPoints is given, then return the WayPoints structure. function CONTROLLABLE:GetWayPoints() self:F( ) if self.WayPoints then return self.WayPoints end return nil end --- Registers a waypoint function that will be executed when the controllable moves over the WayPoint. -- @param #CONTROLLABLE self -- @param #number WayPoint The waypoint number. Note that the start waypoint on the route is WayPoint 1! -- @param #number WayPointIndex When defining multiple WayPoint functions for one WayPoint, use WayPointIndex to set the sequence of actions. -- @param #function WayPointFunction The waypoint function to be called when the controllable moves over the waypoint. The waypoint function takes variable parameters. -- @return #CONTROLLABLE function CONTROLLABLE:WayPointFunction( WayPoint, WayPointIndex, WayPointFunction, ... ) self:F2( { WayPoint, WayPointIndex, WayPointFunction } ) table.insert( self.WayPoints[WayPoint].task.params.tasks, WayPointIndex ) self.WayPoints[WayPoint].task.params.tasks[WayPointIndex] = self:TaskFunction( WayPointFunction, arg ) return self end --- Executes the WayPoint plan. -- The function gets a WayPoint parameter, that you can use to restart the mission at a specific WayPoint. -- Note that when the WayPoint parameter is used, the new start mission waypoint of the controllable will be 1! -- @param #CONTROLLABLE self -- @param #number WayPoint The WayPoint from where to execute the mission. -- @param #number WaitTime The amount seconds to wait before initiating the mission. -- @return #CONTROLLABLE function CONTROLLABLE:WayPointExecute( WayPoint, WaitTime ) self:F( { WayPoint, WaitTime } ) if not WayPoint then WayPoint = 1 end -- When starting the mission from a certain point, the TaskPoints need to be deleted before the given WayPoint. for TaskPointID = 1, WayPoint - 1 do table.remove( self.WayPoints, 1 ) end self:T3( self.WayPoints ) self:SetTask( self:TaskRoute( self.WayPoints ), WaitTime ) return self end --- Returns if the Controllable contains AirPlanes. -- @param #CONTROLLABLE self -- @return #boolean true if Controllable contains AirPlanes. function CONTROLLABLE:IsAirPlane() self:F2() local DCSObject = self:GetDCSObject() if DCSObject then local Category = DCSObject:getDesc().category return Category == Unit.Category.AIRPLANE end return nil end function CONTROLLABLE:GetSize() local DCSObject = self:GetDCSObject() if DCSObject then return 1 else return 0 end end -- Message APIs--- **Wrapper** -- GROUP wraps the DCS Class Group objects. -- -- === -- -- The @{#GROUP} class is a wrapper class to handle the DCS Group objects: -- -- * Support all DCS Group APIs. -- * Enhance with Group specific APIs not in the DCS Group API set. -- * Handle local Group Controller. -- * Manage the "state" of the DCS Group. -- -- **IMPORTANT: ONE SHOULD NEVER SANATIZE these GROUP OBJECT REFERENCES! (make the GROUP object references nil).** -- -- See the detailed documentation on the GROUP class. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- * [**Entropy**](https://forums.eagle.ru/member.php?u=111471), **Afinegan**: Came up with the requirement for AIOnOff(). -- -- ==== -- -- @module Group --- @type GROUP -- @extends Wrapper.Controllable#CONTROLLABLE -- @field #string GroupName The name of the group. --- -- # GROUP class, extends @{Controllable#CONTROLLABLE} -- -- For each DCS Group object alive within a running mission, a GROUP wrapper object (instance) will be created within the _@{DATABASE} object. -- This is done at the beginning of the mission (when the mission starts), and dynamically when new DCS Group objects are spawned (using the @{SPAWN} class). -- -- The GROUP class does not contain a :New() method, rather it provides :Find() methods to retrieve the object reference -- using the DCS Group or the DCS GroupName. -- -- Another thing to know is that GROUP objects do not "contain" the DCS Group object. -- The GROUP methods will reference the DCS Group object by name when it is needed during API execution. -- If the DCS Group object does not exist or is nil, the GROUP methods will return nil and log an exception in the DCS.log file. -- -- The GROUP class provides the following functions to retrieve quickly the relevant GROUP instance: -- -- * @{#GROUP.Find}(): Find a GROUP instance from the _DATABASE object using a DCS Group object. -- * @{#GROUP.FindByName}(): Find a GROUP instance from the _DATABASE object using a DCS Group name. -- -- ## GROUP task methods -- -- A GROUP is a @{Controllable}. See the @{Controllable} task methods section for a description of the task methods. -- -- ### Obtain the mission from group templates -- -- Group templates contain complete mission descriptions. Sometimes you want to copy a complete mission from a group and assign it to another: -- -- * @{Controllable#CONTROLLABLE.TaskMission}: (AIR + GROUND) Return a mission task from a mission template. -- -- ## GROUP Command methods -- -- A GROUP is a @{Controllable}. See the @{Controllable} command methods section for a description of the command methods. -- -- ## GROUP option methods -- -- A GROUP is a @{Controllable}. See the @{Controllable} option methods section for a description of the option methods. -- -- ## GROUP Zone validation methods -- -- The group can be validated whether it is completely, partly or not within a @{Zone}. -- Use the following Zone validation methods on the group: -- -- * @{#GROUP.IsCompletelyInZone}: Returns true if all units of the group are within a @{Zone}. -- * @{#GROUP.IsPartlyInZone}: Returns true if some units of the group are within a @{Zone}. -- * @{#GROUP.IsNotInZone}: Returns true if none of the group units of the group are within a @{Zone}. -- -- The zone can be of any @{Zone} class derived from @{Zone#ZONE_BASE}. So, these methods are polymorphic to the zones tested on. -- -- ## GROUP AI methods -- -- A GROUP has AI methods to control the AI activation. -- -- * @{#GROUP.SetAIOnOff}(): Turns the GROUP AI On or Off. -- * @{#GROUP.SetAIOn}(): Turns the GROUP AI On. -- * @{#GROUP.SetAIOff}(): Turns the GROUP AI Off. -- -- @field #GROUP GROUP GROUP = { ClassName = "GROUP", } --- Enumerator for location at airbases -- @type GROUP.Takeoff GROUP.Takeoff = { Air = 1, Runway = 2, Hot = 3, Cold = 4, } GROUPTEMPLATE = {} GROUPTEMPLATE.Takeoff = { [GROUP.Takeoff.Air] = { "Turning Point", "Turning Point" }, [GROUP.Takeoff.Runway] = { "TakeOff", "From Runway" }, [GROUP.Takeoff.Hot] = { "TakeOffParkingHot", "From Parking Area Hot" }, [GROUP.Takeoff.Cold] = { "TakeOffParking", "From Parking Area" } } --- Create a new GROUP from a DCSGroup -- @param #GROUP self -- @param Dcs.DCSWrapper.Group#Group GroupName The DCS Group name -- @return #GROUP self function GROUP:Register( GroupName ) self = BASE:Inherit( self, CONTROLLABLE:New( GroupName ) ) self:F2( GroupName ) self.GroupName = GroupName self:SetEventPriority( 4 ) return self end -- Reference methods. --- Find the GROUP wrapper class instance using the DCS Group. -- @param #GROUP self -- @param Dcs.DCSWrapper.Group#Group DCSGroup The DCS Group. -- @return #GROUP The GROUP. function GROUP:Find( DCSGroup ) local GroupName = DCSGroup:getName() -- Wrapper.Group#GROUP local GroupFound = _DATABASE:FindGroup( GroupName ) return GroupFound end --- Find the created GROUP using the DCS Group Name. -- @param #GROUP self -- @param #string GroupName The DCS Group Name. -- @return #GROUP The GROUP. function GROUP:FindByName( GroupName ) local GroupFound = _DATABASE:FindGroup( GroupName ) return GroupFound end -- DCS Group methods support. --- Returns the DCS Group. -- @param #GROUP self -- @return Dcs.DCSWrapper.Group#Group The DCS Group. function GROUP:GetDCSObject() local DCSGroup = Group.getByName( self.GroupName ) if DCSGroup then return DCSGroup end return nil end --- Returns the @{DCSTypes#Position3} position vectors indicating the point and direction vectors in 3D of the POSITIONABLE within the mission. -- @param Wrapper.Positionable#POSITIONABLE self -- @return Dcs.DCSTypes#Position The 3D position vectors of the POSITIONABLE. -- @return #nil The POSITIONABLE is not existing or alive. function GROUP:GetPositionVec3() -- Overridden from POSITIONABLE:GetPositionVec3() self:F2( self.PositionableName ) local DCSPositionable = self:GetDCSObject() if DCSPositionable then local PositionablePosition = DCSPositionable:getUnits()[1]:getPosition().p self:T3( PositionablePosition ) return PositionablePosition end return nil end --- Returns if the Group is alive. -- The Group must: -- -- * Exist at run-time. -- * Has at least one unit. -- -- When the first @{Unit} of the Group is active, it will return true. -- If the first @{Unit} of the Group is inactive, it will return false. -- -- @param #GROUP self -- @return #boolean true if the Group is alive and active. -- @return #boolean false if the Group is alive but inactive. -- @return #nil if the group does not exist anymore. function GROUP:IsAlive() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() -- Dcs.DCSGroup#Group if DCSGroup then if DCSGroup:isExist() then local DCSUnit = DCSGroup:getUnit(1) -- Dcs.DCSUnit#Unit if DCSUnit then local GroupIsAlive = DCSUnit:isActive() self:T3( GroupIsAlive ) return GroupIsAlive end end end return nil end --- Destroys the DCS Group and all of its DCS Units. -- Note that this destroy method also raises a destroy event at run-time. -- So all event listeners will catch the destroy event of this DCS Group. -- @param #GROUP self function GROUP:Destroy() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then for Index, UnitData in pairs( DCSGroup:getUnits() ) do self:CreateEventCrash( timer.getTime(), UnitData ) end DCSGroup:destroy() DCSGroup = nil end return nil end --- Returns category of the DCS Group. -- @param #GROUP self -- @return Dcs.DCSWrapper.Group#Group.Category The category ID function GROUP:GetCategory() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupCategory = DCSGroup:getCategory() self:T3( GroupCategory ) return GroupCategory end return nil end --- Returns the category name of the #GROUP. -- @param #GROUP self -- @return #string Category name = Helicopter, Airplane, Ground Unit, Ship function GROUP:GetCategoryName() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then local CategoryNames = { [Group.Category.AIRPLANE] = "Airplane", [Group.Category.HELICOPTER] = "Helicopter", [Group.Category.GROUND] = "Ground Unit", [Group.Category.SHIP] = "Ship", } local GroupCategory = DCSGroup:getCategory() self:T3( GroupCategory ) return CategoryNames[GroupCategory] end return nil end --- Returns the coalition of the DCS Group. -- @param #GROUP self -- @return Dcs.DCSCoalitionWrapper.Object#coalition.side The coalition side of the DCS Group. function GROUP:GetCoalition() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupCoalition = DCSGroup:getCoalition() self:T3( GroupCoalition ) return GroupCoalition end return nil end --- Returns the country of the DCS Group. -- @param #GROUP self -- @return Dcs.DCScountry#country.id The country identifier. -- @return #nil The DCS Group is not existing or alive. function GROUP:GetCountry() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupCountry = DCSGroup:getUnit(1):getCountry() self:T3( GroupCountry ) return GroupCountry end return nil end --- Returns the UNIT wrapper class with number UnitNumber. -- If the underlying DCS Unit does not exist, the method will return nil. . -- @param #GROUP self -- @param #number UnitNumber The number of the UNIT wrapper class to be returned. -- @return Wrapper.Unit#UNIT The UNIT wrapper class. function GROUP:GetUnit( UnitNumber ) self:F2( { self.GroupName, UnitNumber } ) local DCSGroup = self:GetDCSObject() if DCSGroup then local DCSUnit = DCSGroup:getUnit( UnitNumber ) local UnitFound = UNIT:Find( DCSGroup:getUnit( UnitNumber ) ) self:T2( UnitFound ) return UnitFound end return nil end --- Returns the DCS Unit with number UnitNumber. -- If the underlying DCS Unit does not exist, the method will return nil. . -- @param #GROUP self -- @param #number UnitNumber The number of the DCS Unit to be returned. -- @return Dcs.DCSWrapper.Unit#Unit The DCS Unit. function GROUP:GetDCSUnit( UnitNumber ) self:F2( { self.GroupName, UnitNumber } ) local DCSGroup = self:GetDCSObject() if DCSGroup then local DCSUnitFound = DCSGroup:getUnit( UnitNumber ) self:T3( DCSUnitFound ) return DCSUnitFound end return nil end --- Returns current size of the DCS Group. -- If some of the DCS Units of the DCS Group are destroyed the size of the DCS Group is changed. -- @param #GROUP self -- @return #number The DCS Group size. function GROUP:GetSize() self:F2( { self.GroupName } ) local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupSize = DCSGroup:getSize() if GroupSize then self:T3( GroupSize ) return GroupSize else return 0 end end return nil end --- --- Returns the initial size of the DCS Group. -- If some of the DCS Units of the DCS Group are destroyed, the initial size of the DCS Group is unchanged. -- @param #GROUP self -- @return #number The DCS Group initial size. function GROUP:GetInitialSize() self:F2( { self.GroupName } ) local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupInitialSize = DCSGroup:getInitialSize() self:T3( GroupInitialSize ) return GroupInitialSize end return nil end --- Returns the DCS Units of the DCS Group. -- @param #GROUP self -- @return #table The DCS Units. function GROUP:GetDCSUnits() self:F2( { self.GroupName } ) local DCSGroup = self:GetDCSObject() if DCSGroup then local DCSUnits = DCSGroup:getUnits() self:T3( DCSUnits ) return DCSUnits end return nil end --- Activates a GROUP. -- @param #GROUP self function GROUP:Activate() self:F2( { self.GroupName } ) trigger.action.activateGroup( self:GetDCSObject() ) return self:GetDCSObject() end --- Gets the type name of the group. -- @param #GROUP self -- @return #string The type name of the group. function GROUP:GetTypeName() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupTypeName = DCSGroup:getUnit(1):getTypeName() self:T3( GroupTypeName ) return( GroupTypeName ) end return nil end --- Gets the player name of the group. -- @param #GROUP self -- @return #string The player name of the group. function GROUP:GetPlayerName() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then local PlayerName = DCSGroup:getUnit(1):getPlayerName() self:T3( PlayerName ) return( PlayerName ) end return nil end --- Gets the CallSign of the first DCS Unit of the DCS Group. -- @param #GROUP self -- @return #string The CallSign of the first DCS Unit of the DCS Group. function GROUP:GetCallsign() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupCallSign = DCSGroup:getUnit(1):getCallsign() self:T3( GroupCallSign ) return GroupCallSign end return nil end --- Returns the current point (Vec2 vector) of the first DCS Unit in the DCS Group. -- @param #GROUP self -- @return Dcs.DCSTypes#Vec2 Current Vec2 point of the first DCS Unit of the DCS Group. function GROUP:GetVec2() self:F2( self.GroupName ) local UnitPoint = self:GetUnit(1) UnitPoint:GetVec2() local GroupPointVec2 = UnitPoint:GetVec2() self:T3( GroupPointVec2 ) return GroupPointVec2 end --- Returns the current Vec3 vector of the first DCS Unit in the GROUP. -- @param #GROUP self -- @return Dcs.DCSTypes#Vec3 Current Vec3 of the first DCS Unit of the GROUP. function GROUP:GetVec3() self:F2( self.GroupName ) local GroupVec3 = self:GetUnit(1):GetVec3() self:T3( GroupVec3 ) return GroupVec3 end --- Returns a POINT_VEC2 object indicating the point in 2D of the first UNIT of the GROUP within the mission. -- @param #GROUP self -- @return Core.Point#POINT_VEC2 The 2D point vector of the first DCS Unit of the GROUP. -- @return #nil The first UNIT is not existing or alive. function GROUP:GetPointVec2() self:F2(self.GroupName) local FirstUnit = self:GetUnit(1) if FirstUnit then local FirstUnitPointVec2 = FirstUnit:GetPointVec2() self:T3(FirstUnitPointVec2) return FirstUnitPointVec2 end return nil end --- Returns a COORDINATE object indicating the point of the first UNIT of the GROUP within the mission. -- @param Wrapper.Group#GROUP self -- @return Core.Point#COORDINATE The COORDINATE of the GROUP. function GROUP:GetCoordinate() self:F2( self.PositionableName ) local FirstUnit = self:GetUnit(1) if FirstUnit then local FirstUnitCoordinate = FirstUnit:GetCoordinate() self:T3(FirstUnitCoordinate) return FirstUnitCoordinate end return nil end --- Returns a random @{DCSTypes#Vec3} vector (point in 3D of the UNIT within the mission) within a range around the first UNIT of the GROUP. -- @param #GROUP self -- @param #number Radius -- @return Dcs.DCSTypes#Vec3 The random 3D point vector around the first UNIT of the GROUP. -- @return #nil The GROUP is invalid or empty -- @usage -- -- If Radius is ignored, returns the Dcs.DCSTypes#Vec3 of first UNIT of the GROUP function GROUP:GetRandomVec3(Radius) self:F2(self.GroupName) local FirstUnit = self:GetUnit(1) if FirstUnit then local FirstUnitRandomPointVec3 = FirstUnit:GetRandomVec3(Radius) self:T3(FirstUnitRandomPointVec3) return FirstUnitRandomPointVec3 end return nil end --- Returns the mean heading of every UNIT in the GROUP in degrees -- @param #GROUP self -- @return #number mean heading of the GROUP -- @return #nil The first UNIT is not existing or alive. function GROUP:GetHeading() self:F2(self.GroupName) local GroupSize = self:GetSize() local HeadingAccumulator = 0 if GroupSize then for i = 1, GroupSize do HeadingAccumulator = HeadingAccumulator + self:GetUnit(i):GetHeading() end return math.floor(HeadingAccumulator / GroupSize) end return nil end --- Returns relative amount of fuel (from 0.0 to 1.0) the group has in its internal tanks. If there are additional fuel tanks the value may be greater than 1.0. -- @param #GROUP self -- @return #number The relative amount of fuel (from 0.0 to 1.0). -- @return #nil The GROUP is not existing or alive. function GROUP:GetFuel() self:F( self.ControllableName ) local DCSControllable = self:GetDCSObject() if DCSControllable then local GroupSize = self:GetSize() local TotalFuel = 0 for UnitID, UnitData in pairs( self:GetUnits() ) do local Unit = UnitData -- Wrapper.Unit#UNIT local UnitFuel = Unit:GetFuel() self:F( { Fuel = UnitFuel } ) TotalFuel = TotalFuel + UnitFuel end local GroupFuel = TotalFuel / GroupSize return GroupFuel end return 0 end do -- Is Zone methods --- Returns true if all units of the group are within a @{Zone}. -- @param #GROUP self -- @param Core.Zone#ZONE_BASE Zone The zone to test. -- @return #boolean Returns true if the Group is completely within the @{Zone#ZONE_BASE} function GROUP:IsCompletelyInZone( Zone ) self:F2( { self.GroupName, Zone } ) if not self:IsAlive() then return false end for UnitID, UnitData in pairs( self:GetUnits() ) do local Unit = UnitData -- Wrapper.Unit#UNIT if Zone:IsVec3InZone( Unit:GetVec3() ) then else return false end end return true end --- Returns true if some units of the group are within a @{Zone}. -- @param #GROUP self -- @param Core.Zone#ZONE_BASE Zone The zone to test. -- @return #boolean Returns true if the Group is partially within the @{Zone#ZONE_BASE} function GROUP:IsPartlyInZone( Zone ) self:F2( { self.GroupName, Zone } ) local IsOneUnitInZone = false local IsOneUnitOutsideZone = false if not self:IsAlive() then return false end for UnitID, UnitData in pairs( self:GetUnits() ) do local Unit = UnitData -- Wrapper.Unit#UNIT if Zone:IsVec3InZone( Unit:GetVec3() ) then IsOneUnitInZone = true else IsOneUnitOutsideZone = true end end if IsOneUnitInZone and IsOneUnitOutsideZone then return true else return false end end --- Returns true if none of the group units of the group are within a @{Zone}. -- @param #GROUP self -- @param Core.Zone#ZONE_BASE Zone The zone to test. -- @return #boolean Returns true if the Group is not within the @{Zone#ZONE_BASE} function GROUP:IsNotInZone( Zone ) self:F2( { self.GroupName, Zone } ) if not self:IsAlive() then return true end for UnitID, UnitData in pairs( self:GetUnits() ) do local Unit = UnitData -- Wrapper.Unit#UNIT if Zone:IsVec3InZone( Unit:GetVec3() ) then return false end end return true end --- Returns the number of UNITs that are in the @{Zone} -- @param #GROUP self -- @param Core.Zone#ZONE_BASE Zone The zone to test. -- @return #number The number of UNITs that are in the @{Zone} function GROUP:CountInZone( Zone ) self:F2( {self.GroupName, Zone} ) local Count = 0 if not self:IsAlive() then return Count end for UnitID, UnitData in pairs( self:GetUnits() ) do local Unit = UnitData -- Wrapper.Unit#UNIT if Zone:IsVec3InZone( Unit:GetVec3() ) then Count = Count + 1 end end return Count end --- Returns if the group is of an air category. -- If the group is a helicopter or a plane, then this method will return true, otherwise false. -- @param #GROUP self -- @return #boolean Air category evaluation result. function GROUP:IsAir() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then local IsAirResult = DCSGroup:getCategory() == Group.Category.AIRPLANE or DCSGroup:getCategory() == Group.Category.HELICOPTER self:T3( IsAirResult ) return IsAirResult end return nil end --- Returns if the DCS Group contains Helicopters. -- @param #GROUP self -- @return #boolean true if DCS Group contains Helicopters. function GROUP:IsHelicopter() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupCategory = DCSGroup:getCategory() self:T2( GroupCategory ) return GroupCategory == Group.Category.HELICOPTER end return nil end --- Returns if the DCS Group contains AirPlanes. -- @param #GROUP self -- @return #boolean true if DCS Group contains AirPlanes. function GROUP:IsAirPlane() self:F2() local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupCategory = DCSGroup:getCategory() self:T2( GroupCategory ) return GroupCategory == Group.Category.AIRPLANE end return nil end --- Returns if the DCS Group contains Ground troops. -- @param #GROUP self -- @return #boolean true if DCS Group contains Ground troops. function GROUP:IsGround() self:F2() local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupCategory = DCSGroup:getCategory() self:T2( GroupCategory ) return GroupCategory == Group.Category.GROUND end return nil end --- Returns if the DCS Group contains Ships. -- @param #GROUP self -- @return #boolean true if DCS Group contains Ships. function GROUP:IsShip() self:F2() local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupCategory = DCSGroup:getCategory() self:T2( GroupCategory ) return GroupCategory == Group.Category.SHIP end return nil end --- Returns if all units of the group are on the ground or landed. -- If all units of this group are on the ground, this function will return true, otherwise false. -- @param #GROUP self -- @return #boolean All units on the ground result. function GROUP:AllOnGround() self:F2() local DCSGroup = self:GetDCSObject() if DCSGroup then local AllOnGroundResult = true for Index, UnitData in pairs( DCSGroup:getUnits() ) do if UnitData:inAir() then AllOnGroundResult = false end end self:T3( AllOnGroundResult ) return AllOnGroundResult end return nil end end do -- AI methods --- Turns the AI On or Off for the GROUP. -- @param #GROUP self -- @param #boolean AIOnOff The value true turns the AI On, the value false turns the AI Off. -- @return #GROUP The GROUP. function GROUP:SetAIOnOff( AIOnOff ) local DCSGroup = self:GetDCSObject() -- Dcs.DCSGroup#Group if DCSGroup then local DCSController = DCSGroup:getController() -- Dcs.DCSController#Controller if DCSController then DCSController:setOnOff( AIOnOff ) return self end end return nil end --- Turns the AI On for the GROUP. -- @param #GROUP self -- @return #GROUP The GROUP. function GROUP:SetAIOn() return self:SetAIOnOff( true ) end --- Turns the AI Off for the GROUP. -- @param #GROUP self -- @return #GROUP The GROUP. function GROUP:SetAIOff() return self:SetAIOnOff( false ) end end --- Returns the current maximum velocity of the group. -- Each unit within the group gets evaluated, and the maximum velocity (= the unit which is going the fastest) is returned. -- @param #GROUP self -- @return #number Maximum velocity found. function GROUP:GetMaxVelocity() self:F2() local DCSGroup = self:GetDCSObject() if DCSGroup then local GroupVelocityMax = 0 for Index, UnitData in pairs( DCSGroup:getUnits() ) do local UnitVelocityVec3 = UnitData:getVelocity() local UnitVelocity = math.abs( UnitVelocityVec3.x ) + math.abs( UnitVelocityVec3.y ) + math.abs( UnitVelocityVec3.z ) if UnitVelocity > GroupVelocityMax then GroupVelocityMax = UnitVelocity end end return GroupVelocityMax end return nil end --- Returns the current minimum height of the group. -- Each unit within the group gets evaluated, and the minimum height (= the unit which is the lowest elevated) is returned. -- @param #GROUP self -- @return #number Minimum height found. function GROUP:GetMinHeight() self:F2() end --- Returns the current maximum height of the group. -- Each unit within the group gets evaluated, and the maximum height (= the unit which is the highest elevated) is returned. -- @param #GROUP self -- @return #number Maximum height found. function GROUP:GetMaxHeight() self:F2() end -- SPAWNING --- Respawn the @{GROUP} using a (tweaked) template of the Group. -- The template must be retrieved with the @{Group#GROUP.GetTemplate}() function. -- The template contains all the definitions as declared within the mission file. -- To understand templates, do the following: -- -- * unpack your .miz file into a directory using 7-zip. -- * browse in the directory created to the file **mission**. -- * open the file and search for the country group definitions. -- -- Your group template will contain the fields as described within the mission file. -- -- This function will: -- -- * Get the current position and heading of the group. -- * When the group is alive, it will tweak the template x, y and heading coordinates of the group and the embedded units to the current units positions. -- * Then it will destroy the current alive group. -- * And it will respawn the group using your new template definition. -- @param Wrapper.Group#GROUP self -- @param #table Template The template of the Group retrieved with GROUP:GetTemplate() function GROUP:Respawn( Template ) if self:IsAlive() then local Vec3 = self:GetVec3() Template.x = Vec3.x Template.y = Vec3.z --Template.x = nil --Template.y = nil self:E( #Template.units ) for UnitID, UnitData in pairs( self:GetUnits() ) do local GroupUnit = UnitData -- Wrapper.Unit#UNIT self:E( GroupUnit:GetName() ) if GroupUnit:IsAlive() then local GroupUnitVec3 = GroupUnit:GetVec3() local GroupUnitHeading = GroupUnit:GetHeading() Template.units[UnitID].alt = GroupUnitVec3.y Template.units[UnitID].x = GroupUnitVec3.x Template.units[UnitID].y = GroupUnitVec3.z Template.units[UnitID].heading = GroupUnitHeading self:E( { UnitID, Template.units[UnitID], Template.units[UnitID] } ) end end end self:Destroy() _DATABASE:Spawn( Template ) self:ResetEvents() end --- Returns the group template from the @{DATABASE} (_DATABASE object). -- @param #GROUP self -- @return #table function GROUP:GetTemplate() local GroupName = self:GetName() return UTILS.DeepCopy( _DATABASE:GetGroupTemplate( GroupName ) ) end --- Returns the group template route.points[] (the waypoints) from the @{DATABASE} (_DATABASE object). -- @param #GROUP self -- @return #table function GROUP:GetTemplateRoutePoints() local GroupName = self:GetName() return UTILS.DeepCopy( _DATABASE:GetGroupTemplate( GroupName ).route.points ) end --- Sets the controlled status in a Template. -- @param #GROUP self -- @param #boolean Controlled true is controlled, false is uncontrolled. -- @return #table function GROUP:SetTemplateControlled( Template, Controlled ) Template.uncontrolled = not Controlled return Template end --- Sets the CountryID of the group in a Template. -- @param #GROUP self -- @param Dcs.DCScountry#country.id CountryID The country ID. -- @return #table function GROUP:SetTemplateCountry( Template, CountryID ) Template.CountryID = CountryID return Template end --- Sets the CoalitionID of the group in a Template. -- @param #GROUP self -- @param Dcs.DCSCoalitionWrapper.Object#coalition.side CoalitionID The coalition ID. -- @return #table function GROUP:SetTemplateCoalition( Template, CoalitionID ) Template.CoalitionID = CoalitionID return Template end --- Return the mission template of the group. -- @param #GROUP self -- @return #table The MissionTemplate function GROUP:GetTaskMission() self:F2( self.GroupName ) return routines.utils.deepCopy( _DATABASE.Templates.Groups[self.GroupName].Template ) end --- Return the mission route of the group. -- @param #GROUP self -- @return #table The mission route defined by points. function GROUP:GetTaskRoute() self:F2( self.GroupName ) return routines.utils.deepCopy( _DATABASE.Templates.Groups[self.GroupName].Template.route.points ) end --- Return the route of a group by using the @{Database#DATABASE} class. -- @param #GROUP self -- @param #number Begin The route point from where the copy will start. The base route point is 0. -- @param #number End The route point where the copy will end. The End point is the last point - the End point. The last point has base 0. -- @param #boolean Randomize Randomization of the route, when true. -- @param #number Radius When randomization is on, the randomization is within the radius. function GROUP:CopyRoute( Begin, End, Randomize, Radius ) self:F2( { Begin, End } ) local Points = {} -- Could be a Spawned Group local GroupName = string.match( self:GetName(), ".*#" ) if GroupName then GroupName = GroupName:sub( 1, -2 ) else GroupName = self:GetName() end self:T3( { GroupName } ) local Template = _DATABASE.Templates.Groups[GroupName].Template if Template then if not Begin then Begin = 0 end if not End then End = 0 end for TPointID = Begin + 1, #Template.route.points - End do if Template.route.points[TPointID] then Points[#Points+1] = routines.utils.deepCopy( Template.route.points[TPointID] ) if Randomize then if not Radius then Radius = 500 end Points[#Points].x = Points[#Points].x + math.random( Radius * -1, Radius ) Points[#Points].y = Points[#Points].y + math.random( Radius * -1, Radius ) end end end return Points else error( "Template not found for Group : " .. GroupName ) end return nil end --- Calculate the maxium A2G threat level of the Group. -- @param #GROUP self function GROUP:CalculateThreatLevelA2G() local MaxThreatLevelA2G = 0 for UnitName, UnitData in pairs( self:GetUnits() ) do local ThreatUnit = UnitData -- Wrapper.Unit#UNIT local ThreatLevelA2G = ThreatUnit:GetThreatLevel() if ThreatLevelA2G > MaxThreatLevelA2G then MaxThreatLevelA2G = ThreatLevelA2G end end self:T3( MaxThreatLevelA2G ) return MaxThreatLevelA2G end --- Returns true if the first unit of the GROUP is in the air. -- @param Wrapper.Group#GROUP self -- @return #boolean true if in the first unit of the group is in the air. -- @return #nil The GROUP is not existing or not alive. function GROUP:InAir() self:F2( self.GroupName ) local DCSGroup = self:GetDCSObject() if DCSGroup then local DCSUnit = DCSGroup:getUnit(1) if DCSUnit then local GroupInAir = DCSGroup:getUnit(1):inAir() self:T3( GroupInAir ) return GroupInAir end end return nil end do -- Route methods --- (AIR) Return the Group to an @{Airbase#AIRBASE}. -- The following things are to be taken into account: -- -- * The group is respawned to achieve the RTB, there may be side artefacts as a result of this. (Like weapons suddenly come back). -- * A group consisting out of more than one unit, may rejoin formation when respawned. -- * A speed can be given in km/h. If no speed is specified, the maximum speed of the first unit will be taken to return to base. -- * When there is no @{Airbase} object specified, the group will return to the home base if the route of the group is pinned at take-off or at landing to a base. -- * When there is no @{Airbase} object specified and the group route is not pinned to any airbase, it will return to the nearest airbase. -- -- @param #GROUP self -- @param Wrapper.Airbase#AIRBASE RTBAirbase (optional) The @{Airbase} to return to. If blank, the controllable will return to the nearest friendly airbase. -- @param #number Speed (optional) The Speed, if no Speed is given, the maximum Speed of the first unit is selected. -- @return #GROUP function GROUP:RouteRTB( RTBAirbase, Speed ) self:F2( { RTBAirbase, Speed } ) local DCSGroup = self:GetDCSObject() if DCSGroup then if RTBAirbase then local GroupPoint = self:GetVec2() local GroupVelocity = self:GetUnit(1):GetDesc().speedMax local PointFrom = {} PointFrom.x = GroupPoint.x PointFrom.y = GroupPoint.y PointFrom.type = "Turning Point" PointFrom.action = "Turning Point" PointFrom.speed = GroupVelocity local PointTo = {} local AirbasePointVec2 = RTBAirbase:GetPointVec2() local AirbaseAirPoint = AirbasePointVec2:WaypointAir( POINT_VEC3.RoutePointAltType.BARO, "Land", "Landing", Speed or self:GetUnit(1):GetDesc().speedMax ) AirbaseAirPoint["airdromeId"] = RTBAirbase:GetID() AirbaseAirPoint["speed_locked"] = true, self:E(AirbaseAirPoint ) local Points = { PointFrom, AirbaseAirPoint } self:T3( Points ) local Template = self:GetTemplate() Template.route.points = Points self:Respawn( Template ) self:Route( Points ) self:Respawn(Template) else self:ClearTasks() end end return self end end function GROUP:OnReSpawn( ReSpawnFunction ) self.ReSpawnFunction = ReSpawnFunction end do -- Event Handling --- Subscribe to a DCS Event. -- @param #GROUP self -- @param Core.Event#EVENTS Event -- @param #function EventFunction (optional) The function to be called when the event occurs for the GROUP. -- @return #GROUP function GROUP:HandleEvent( Event, EventFunction, ... ) self:EventDispatcher():OnEventForGroup( self:GetName(), EventFunction, self, Event, ... ) return self end --- UnSubscribe to a DCS event. -- @param #GROUP self -- @param Core.Event#EVENTS Event -- @return #GROUP function GROUP:UnHandleEvent( Event ) self:EventDispatcher():RemoveEvent( self, Event ) return self end --- Reset the subscriptions. -- @param #GROUP self -- @return #GROUP function GROUP:ResetEvents() self:EventDispatcher():Reset( self ) for UnitID, UnitData in pairs( self:GetUnits() ) do UnitData:ResetEvents() end return self end end do -- Players --- Get player names -- @param #GROUP self -- @return #table The group has players, an array of player names is returned. -- @return #nil The group has no players function GROUP:GetPlayerNames() local PlayerNames = {} local Units = self:GetUnits() for UnitID, UnitData in pairs( Units ) do local Unit = UnitData -- Wrapper.Unit#UNIT local PlayerName = Unit:GetPlayerName() if PlayerName and PlayerName ~= "" then PlayerNames = PlayerNames or {} table.insert( PlayerNames, PlayerName ) end end self:F2( PlayerNames ) return PlayerNames end end --do -- Smoke -- ----- Signal a flare at the position of the GROUP. ---- @param #GROUP self ---- @param Utilities.Utils#FLARECOLOR FlareColor --function GROUP:Flare( FlareColor ) -- self:F2() -- trigger.action.signalFlare( self:GetVec3(), FlareColor , 0 ) --end -- ----- Signal a white flare at the position of the GROUP. ---- @param #GROUP self --function GROUP:FlareWhite() -- self:F2() -- trigger.action.signalFlare( self:GetVec3(), trigger.flareColor.White , 0 ) --end -- ----- Signal a yellow flare at the position of the GROUP. ---- @param #GROUP self --function GROUP:FlareYellow() -- self:F2() -- trigger.action.signalFlare( self:GetVec3(), trigger.flareColor.Yellow , 0 ) --end -- ----- Signal a green flare at the position of the GROUP. ---- @param #GROUP self --function GROUP:FlareGreen() -- self:F2() -- trigger.action.signalFlare( self:GetVec3(), trigger.flareColor.Green , 0 ) --end -- ----- Signal a red flare at the position of the GROUP. ---- @param #GROUP self --function GROUP:FlareRed() -- self:F2() -- local Vec3 = self:GetVec3() -- if Vec3 then -- trigger.action.signalFlare( Vec3, trigger.flareColor.Red, 0 ) -- end --end -- ----- Smoke the GROUP. ---- @param #GROUP self --function GROUP:Smoke( SmokeColor, Range ) -- self:F2() -- if Range then -- trigger.action.smoke( self:GetRandomVec3( Range ), SmokeColor ) -- else -- trigger.action.smoke( self:GetVec3(), SmokeColor ) -- end -- --end -- ----- Smoke the GROUP Green. ---- @param #GROUP self --function GROUP:SmokeGreen() -- self:F2() -- trigger.action.smoke( self:GetVec3(), trigger.smokeColor.Green ) --end -- ----- Smoke the GROUP Red. ---- @param #GROUP self --function GROUP:SmokeRed() -- self:F2() -- trigger.action.smoke( self:GetVec3(), trigger.smokeColor.Red ) --end -- ----- Smoke the GROUP White. ---- @param #GROUP self --function GROUP:SmokeWhite() -- self:F2() -- trigger.action.smoke( self:GetVec3(), trigger.smokeColor.White ) --end -- ----- Smoke the GROUP Orange. ---- @param #GROUP self --function GROUP:SmokeOrange() -- self:F2() -- trigger.action.smoke( self:GetVec3(), trigger.smokeColor.Orange ) --end -- ----- Smoke the GROUP Blue. ---- @param #GROUP self --function GROUP:SmokeBlue() -- self:F2() -- trigger.action.smoke( self:GetVec3(), trigger.smokeColor.Blue ) --end -- -- -- --end--- **Wrapper** - UNIT is a wrapper class for the DCS Class Unit. -- -- === -- -- The @{#UNIT} class is a wrapper class to handle the DCS Unit objects: -- -- * Support all DCS Unit APIs. -- * Enhance with Unit specific APIs not in the DCS Unit API set. -- * Handle local Unit Controller. -- * Manage the "state" of the DCS Unit. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Unit --- @type UNIT -- @extends Wrapper.Controllable#CONTROLLABLE --- -- # UNIT class, extends @{Controllable#CONTROLLABLE} -- -- For each DCS Unit object alive within a running mission, a UNIT wrapper object (instance) will be created within the _@{DATABASE} object. -- This is done at the beginning of the mission (when the mission starts), and dynamically when new DCS Unit objects are spawned (using the @{SPAWN} class). -- -- The UNIT class **does not contain a :New()** method, rather it provides **:Find()** methods to retrieve the object reference -- using the DCS Unit or the DCS UnitName. -- -- Another thing to know is that UNIT objects do not "contain" the DCS Unit object. -- The UNIT methods will reference the DCS Unit object by name when it is needed during API execution. -- If the DCS Unit object does not exist or is nil, the UNIT methods will return nil and log an exception in the DCS.log file. -- -- The UNIT class provides the following functions to retrieve quickly the relevant UNIT instance: -- -- * @{#UNIT.Find}(): Find a UNIT instance from the _DATABASE object using a DCS Unit object. -- * @{#UNIT.FindByName}(): Find a UNIT instance from the _DATABASE object using a DCS Unit name. -- -- IMPORTANT: ONE SHOULD NEVER SANATIZE these UNIT OBJECT REFERENCES! (make the UNIT object references nil). -- -- ## DCS UNIT APIs -- -- The DCS Unit APIs are used extensively within MOOSE. The UNIT class has for each DCS Unit API a corresponding method. -- To be able to distinguish easily in your code the difference between a UNIT API call and a DCS Unit API call, -- the first letter of the method is also capitalized. So, by example, the DCS Unit method @{DCSWrapper.Unit#Unit.getName}() -- is implemented in the UNIT class as @{#UNIT.GetName}(). -- -- ## Smoke, Flare Units -- -- The UNIT class provides methods to smoke or flare units easily. -- The @{#UNIT.SmokeBlue}(), @{#UNIT.SmokeGreen}(),@{#UNIT.SmokeOrange}(), @{#UNIT.SmokeRed}(), @{#UNIT.SmokeRed}() methods -- will smoke the unit in the corresponding color. Note that smoking a unit is done at the current position of the DCS Unit. -- When the DCS Unit moves for whatever reason, the smoking will still continue! -- The @{#UNIT.FlareGreen}(), @{#UNIT.FlareRed}(), @{#UNIT.FlareWhite}(), @{#UNIT.FlareYellow}() -- methods will fire off a flare in the air with the corresponding color. Note that a flare is a one-off shot and its effect is of very short duration. -- -- ## Location Position, Point -- -- The UNIT class provides methods to obtain the current point or position of the DCS Unit. -- The @{#UNIT.GetPointVec2}(), @{#UNIT.GetVec3}() will obtain the current **location** of the DCS Unit in a Vec2 (2D) or a **point** in a Vec3 (3D) vector respectively. -- If you want to obtain the complete **3D position** including ori�ntation and direction vectors, consult the @{#UNIT.GetPositionVec3}() method respectively. -- -- ## Test if alive -- -- The @{#UNIT.IsAlive}(), @{#UNIT.IsActive}() methods determines if the DCS Unit is alive, meaning, it is existing and active. -- -- ## Test for proximity -- -- The UNIT class contains methods to test the location or proximity against zones or other objects. -- -- ### Zones range -- -- To test whether the Unit is within a **zone**, use the @{#UNIT.IsInZone}() or the @{#UNIT.IsNotInZone}() methods. Any zone can be tested on, but the zone must be derived from @{Zone#ZONE_BASE}. -- -- ### Unit range -- -- * Test if another DCS Unit is within a given radius of the current DCS Unit, use the @{#UNIT.OtherUnitInRadius}() method. -- -- ## Test Line of Sight -- -- * Use the @{#UNIT.IsLOS}() method to check if the given unit is within line of sight. -- -- -- @field #UNIT UNIT UNIT = { ClassName="UNIT", } --- Unit.SensorType -- @type Unit.SensorType -- @field OPTIC -- @field RADAR -- @field IRST -- @field RWR -- Registration. --- Create a new UNIT from DCSUnit. -- @param #UNIT self -- @param #string UnitName The name of the DCS unit. -- @return #UNIT function UNIT:Register( UnitName ) local self = BASE:Inherit( self, CONTROLLABLE:New( UnitName ) ) self.UnitName = UnitName self:SetEventPriority( 3 ) return self end -- Reference methods. --- Finds a UNIT from the _DATABASE using a DCSUnit object. -- @param #UNIT self -- @param Dcs.DCSWrapper.Unit#Unit DCSUnit An existing DCS Unit object reference. -- @return #UNIT self function UNIT:Find( DCSUnit ) local UnitName = DCSUnit:getName() local UnitFound = _DATABASE:FindUnit( UnitName ) return UnitFound end --- Find a UNIT in the _DATABASE using the name of an existing DCS Unit. -- @param #UNIT self -- @param #string UnitName The Unit Name. -- @return #UNIT self function UNIT:FindByName( UnitName ) local UnitFound = _DATABASE:FindUnit( UnitName ) return UnitFound end --- Return the name of the UNIT. -- @param #UNIT self -- @return #string The UNIT name. function UNIT:Name() return self.UnitName end --- @param #UNIT self -- @return Dcs.DCSWrapper.Unit#Unit function UNIT:GetDCSObject() local DCSUnit = Unit.getByName( self.UnitName ) if DCSUnit then return DCSUnit end return nil end --- Respawn the @{Unit} using a (tweaked) template of the parent Group. -- -- This function will: -- -- * Get the current position and heading of the group. -- * When the unit is alive, it will tweak the template x, y and heading coordinates of the group and the embedded units to the current units positions. -- * Then it will respawn the re-modelled group. -- -- @param #UNIT self -- @param Dcs.DCSTypes#Vec3 SpawnVec3 The position where to Spawn the new Unit at. -- @param #number Heading The heading of the unit respawn. function UNIT:ReSpawn( SpawnVec3, Heading ) local SpawnGroupTemplate = UTILS.DeepCopy( _DATABASE:GetGroupTemplateFromUnitName( self:Name() ) ) self:T( SpawnGroupTemplate ) local SpawnGroup = self:GetGroup() if SpawnGroup then local Vec3 = SpawnGroup:GetVec3() SpawnGroupTemplate.x = SpawnVec3.x SpawnGroupTemplate.y = SpawnVec3.z self:E( #SpawnGroupTemplate.units ) for UnitID, UnitData in pairs( SpawnGroup:GetUnits() ) do local GroupUnit = UnitData -- #UNIT self:E( GroupUnit:GetName() ) if GroupUnit:IsAlive() then local GroupUnitVec3 = GroupUnit:GetVec3() local GroupUnitHeading = GroupUnit:GetHeading() SpawnGroupTemplate.units[UnitID].alt = GroupUnitVec3.y SpawnGroupTemplate.units[UnitID].x = GroupUnitVec3.x SpawnGroupTemplate.units[UnitID].y = GroupUnitVec3.z SpawnGroupTemplate.units[UnitID].heading = GroupUnitHeading self:E( { UnitID, SpawnGroupTemplate.units[UnitID], SpawnGroupTemplate.units[UnitID] } ) end end end for UnitTemplateID, UnitTemplateData in pairs( SpawnGroupTemplate.units ) do self:T( UnitTemplateData.name ) if UnitTemplateData.name == self:Name() then self:T("Adjusting") SpawnGroupTemplate.units[UnitTemplateID].alt = SpawnVec3.y SpawnGroupTemplate.units[UnitTemplateID].x = SpawnVec3.x SpawnGroupTemplate.units[UnitTemplateID].y = SpawnVec3.z SpawnGroupTemplate.units[UnitTemplateID].heading = Heading self:E( { UnitTemplateID, SpawnGroupTemplate.units[UnitTemplateID], SpawnGroupTemplate.units[UnitTemplateID] } ) else self:E( SpawnGroupTemplate.units[UnitTemplateID].name ) local GroupUnit = UNIT:FindByName( SpawnGroupTemplate.units[UnitTemplateID].name ) -- #UNIT if GroupUnit and GroupUnit:IsAlive() then local GroupUnitVec3 = GroupUnit:GetVec3() local GroupUnitHeading = GroupUnit:GetHeading() UnitTemplateData.alt = GroupUnitVec3.y UnitTemplateData.x = GroupUnitVec3.x UnitTemplateData.y = GroupUnitVec3.z UnitTemplateData.heading = GroupUnitHeading else if SpawnGroupTemplate.units[UnitTemplateID].name ~= self:Name() then self:T("nilling") SpawnGroupTemplate.units[UnitTemplateID].delete = true end end end end -- Remove obscolete units from the group structure local i = 1 while i <= #SpawnGroupTemplate.units do local UnitTemplateData = SpawnGroupTemplate.units[i] self:T( UnitTemplateData.name ) if UnitTemplateData.delete then table.remove( SpawnGroupTemplate.units, i ) else i = i + 1 end end _DATABASE:Spawn( SpawnGroupTemplate ) end --- Returns if the unit is activated. -- @param #UNIT self -- @return #boolean true if Unit is activated. -- @return #nil The DCS Unit is not existing or alive. function UNIT:IsActive() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitIsActive = DCSUnit:isActive() return UnitIsActive end return nil end --- Returns if the Unit is alive. -- If the Unit is not alive, nil is returned. -- If the Unit is alive and active, true is returned. -- If the Unit is alive but not active, false is returned. -- @param #UNIT self -- @return #boolean true if Unit is alive and active. -- @return #boolean false if Unit is alive but not active. -- @return #nil if the Unit is not existing or is not alive. function UNIT:IsAlive() self:F3( self.UnitName ) local DCSUnit = self:GetDCSObject() -- Dcs.DCSUnit#Unit if DCSUnit then local UnitIsAlive = DCSUnit:isExist() and DCSUnit:isActive() return UnitIsAlive end return nil end --- Returns the Unit's callsign - the localized string. -- @param #UNIT self -- @return #string The Callsign of the Unit. -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetCallsign() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitCallSign = DCSUnit:getCallsign() return UnitCallSign end self:E( self.ClassName .. " " .. self.UnitName .. " not found!" ) return nil end --- Returns name of the player that control the unit or nil if the unit is controlled by A.I. -- @param #UNIT self -- @return #string Player Name -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetPlayerName() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local PlayerName = DCSUnit:getPlayerName() if PlayerName == nil then PlayerName = "" end return PlayerName end return nil end --- Returns the unit's number in the group. -- The number is the same number the unit has in ME. -- It may not be changed during the mission. -- If any unit in the group is destroyed, the numbers of another units will not be changed. -- @param #UNIT self -- @return #number The Unit number. -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetNumber() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitNumber = DCSUnit:getNumber() return UnitNumber end return nil end --- Returns the unit's group if it exist and nil otherwise. -- @param Wrapper.Unit#UNIT self -- @return Wrapper.Group#GROUP The Group of the Unit. -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetGroup() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitGroup = GROUP:Find( DCSUnit:getGroup() ) return UnitGroup end return nil end -- Need to add here functions to check if radar is on and which object etc. --- Returns the prefix name of the DCS Unit. A prefix name is a part of the name before a '#'-sign. -- DCS Units spawned with the @{SPAWN} class contain a '#'-sign to indicate the end of the (base) DCS Unit name. -- The spawn sequence number and unit number are contained within the name after the '#' sign. -- @param #UNIT self -- @return #string The name of the DCS Unit. -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetPrefix() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitPrefix = string.match( self.UnitName, ".*#" ):sub( 1, -2 ) self:T3( UnitPrefix ) return UnitPrefix end return nil end --- Returns the Unit's ammunition. -- @param #UNIT self -- @return Dcs.DCSWrapper.Unit#Unit.Ammo -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetAmmo() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitAmmo = DCSUnit:getAmmo() return UnitAmmo end return nil end --- Returns the unit sensors. -- @param #UNIT self -- @return Dcs.DCSWrapper.Unit#Unit.Sensors -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetSensors() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitSensors = DCSUnit:getSensors() return UnitSensors end return nil end -- Need to add here a function per sensortype -- unit:hasSensors(Unit.SensorType.RADAR, Unit.RadarType.AS) --- Returns if the unit has sensors of a certain type. -- @param #UNIT self -- @return #boolean returns true if the unit has specified types of sensors. This function is more preferable than Unit.getSensors() if you don't want to get information about all the unit's sensors, and just want to check if the unit has specified types of sensors. -- @return #nil The DCS Unit is not existing or alive. function UNIT:HasSensors( ... ) self:F2( arg ) local DCSUnit = self:GetDCSObject() if DCSUnit then local HasSensors = DCSUnit:hasSensors( unpack( arg ) ) return HasSensors end return nil end --- Returns if the unit is SEADable. -- @param #UNIT self -- @return #boolean returns true if the unit is SEADable. -- @return #nil The DCS Unit is not existing or alive. function UNIT:HasSEAD() self:F2() local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitSEADAttributes = DCSUnit:getDesc().attributes local HasSEAD = false if UnitSEADAttributes["RADAR_BAND1_FOR_ARM"] and UnitSEADAttributes["RADAR_BAND1_FOR_ARM"] == true or UnitSEADAttributes["RADAR_BAND2_FOR_ARM"] and UnitSEADAttributes["RADAR_BAND2_FOR_ARM"] == true then HasSEAD = true end return HasSEAD end return nil end --- Returns two values: -- -- * First value indicates if at least one of the unit's radar(s) is on. -- * Second value is the object of the radar's interest. Not nil only if at least one radar of the unit is tracking a target. -- @param #UNIT self -- @return #boolean Indicates if at least one of the unit's radar(s) is on. -- @return Dcs.DCSWrapper.Object#Object The object of the radar's interest. Not nil only if at least one radar of the unit is tracking a target. -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetRadar() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitRadarOn, UnitRadarObject = DCSUnit:getRadar() return UnitRadarOn, UnitRadarObject end return nil, nil end --- Returns relative amount of fuel (from 0.0 to 1.0) the UNIT has in its internal tanks. If there are additional fuel tanks the value may be greater than 1.0. -- @param #UNIT self -- @return #number The relative amount of fuel (from 0.0 to 1.0). -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetFuel() self:F( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitFuel = DCSUnit:getFuel() return UnitFuel end return nil end --- Returns the UNIT in a UNIT list of one element. -- @param #UNIT self -- @return #list The UNITs wrappers. function UNIT:GetUnits() self:F2( { self.UnitName } ) local DCSUnit = self:GetDCSObject() if DCSUnit then local DCSUnits = DCSUnit:getUnits() local Units = {} Units[1] = UNIT:Find( DCSUnit ) self:T3( Units ) return Units end return nil end --- Returns the unit's health. Dead units has health <= 1.0. -- @param #UNIT self -- @return #number The Unit's health value. -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetLife() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitLife = DCSUnit:getLife() return UnitLife end return -1 end --- Returns the Unit's initial health. -- @param #UNIT self -- @return #number The Unit's initial health value. -- @return #nil The DCS Unit is not existing or alive. function UNIT:GetLife0() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitLife0 = DCSUnit:getLife0() return UnitLife0 end return 0 end --- Returns the category name of the #UNIT. -- @param #UNIT self -- @return #string Category name = Helicopter, Airplane, Ground Unit, Ship function UNIT:GetCategoryName() self:F3( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local CategoryNames = { [Unit.Category.AIRPLANE] = "Airplane", [Unit.Category.HELICOPTER] = "Helicopter", [Unit.Category.GROUND_UNIT] = "Ground Unit", [Unit.Category.SHIP] = "Ship", [Unit.Category.STRUCTURE] = "Structure", } local UnitCategory = DCSUnit:getDesc().category self:T3( UnitCategory ) return CategoryNames[UnitCategory] end return nil end --- Returns the Unit's A2G threat level on a scale from 1 to 10 ... -- The following threat levels are foreseen: -- -- * Threat level 0: Unit is unarmed. -- * Threat level 1: Unit is infantry. -- * Threat level 2: Unit is an infantry vehicle. -- * Threat level 3: Unit is ground artillery. -- * Threat level 4: Unit is a tank. -- * Threat level 5: Unit is a modern tank or ifv with ATGM. -- * Threat level 6: Unit is a AAA. -- * Threat level 7: Unit is a SAM or manpad, IR guided. -- * Threat level 8: Unit is a Short Range SAM, radar guided. -- * Threat level 9: Unit is a Medium Range SAM, radar guided. -- * Threat level 10: Unit is a Long Range SAM, radar guided. -- @param #UNIT self function UNIT:GetThreatLevel() local ThreatLevel = 0 local ThreatText = "" local Descriptor = self:GetDesc() if Descriptor then local Attributes = Descriptor.attributes self:T( Attributes ) if self:IsGround() then self:T( "Ground" ) local ThreatLevels = { "Unarmed", "Infantry", "Old Tanks & APCs", "Tanks & IFVs without ATGM", "Tanks & IFV with ATGM", "Modern Tanks", "AAA", "IR Guided SAMs", "SR SAMs", "MR SAMs", "LR SAMs" } if Attributes["LR SAM"] then ThreatLevel = 10 elseif Attributes["MR SAM"] then ThreatLevel = 9 elseif Attributes["SR SAM"] and not Attributes["IR Guided SAM"] then ThreatLevel = 8 elseif ( Attributes["SR SAM"] or Attributes["MANPADS"] ) and Attributes["IR Guided SAM"] then ThreatLevel = 7 elseif Attributes["AAA"] then ThreatLevel = 6 elseif Attributes["Modern Tanks"] then ThreatLevel = 5 elseif ( Attributes["Tanks"] or Attributes["IFV"] ) and Attributes["ATGM"] then ThreatLevel = 4 elseif ( Attributes["Tanks"] or Attributes["IFV"] ) and not Attributes["ATGM"] then ThreatLevel = 3 elseif Attributes["Old Tanks"] or Attributes["APC"] or Attributes["Artillery"] then ThreatLevel = 2 elseif Attributes["Infantry"] then ThreatLevel = 1 end ThreatText = ThreatLevels[ThreatLevel+1] end if self:IsAir() then self:T( "Air" ) local ThreatLevels = { "Unarmed", "Tanker", "AWACS", "Transport Helicopter", "UAV", "Bomber", "Strategic Bomber", "Attack Helicopter", "Battleplane", "Multirole Fighter", "Fighter" } if Attributes["Fighters"] then ThreatLevel = 10 elseif Attributes["Multirole fighters"] then ThreatLevel = 9 elseif Attributes["Battleplanes"] then ThreatLevel = 8 elseif Attributes["Attack helicopters"] then ThreatLevel = 7 elseif Attributes["Strategic bombers"] then ThreatLevel = 6 elseif Attributes["Bombers"] then ThreatLevel = 5 elseif Attributes["UAVs"] then ThreatLevel = 4 elseif Attributes["Transport helicopters"] then ThreatLevel = 3 elseif Attributes["AWACS"] then ThreatLevel = 2 elseif Attributes["Tankers"] then ThreatLevel = 1 end ThreatText = ThreatLevels[ThreatLevel+1] end if self:IsShip() then self:T( "Ship" ) --["Aircraft Carriers"] = {"Heavy armed ships",}, --["Cruisers"] = {"Heavy armed ships",}, --["Destroyers"] = {"Heavy armed ships",}, --["Frigates"] = {"Heavy armed ships",}, --["Corvettes"] = {"Heavy armed ships",}, --["Heavy armed ships"] = {"Armed ships", "Armed Air Defence", "HeavyArmoredUnits",}, --["Light armed ships"] = {"Armed ships","NonArmoredUnits"}, --["Armed ships"] = {"Ships"}, --["Unarmed ships"] = {"Ships","HeavyArmoredUnits",}, local ThreatLevels = { "Unarmed ship", "Light armed ships", "Corvettes", "", "Frigates", "", "Cruiser", "", "Destroyer", "", "Aircraft Carrier" } if Attributes["Aircraft Carriers"] then ThreatLevel = 10 elseif Attributes["Destroyers"] then ThreatLevel = 8 elseif Attributes["Cruisers"] then ThreatLevel = 6 elseif Attributes["Frigates"] then ThreatLevel = 4 elseif Attributes["Corvettes"] then ThreatLevel = 2 elseif Attributes["Light armed ships"] then ThreatLevel = 1 end ThreatText = ThreatLevels[ThreatLevel+1] end end self:T2( ThreatLevel ) return ThreatLevel, ThreatText end -- Is functions --- Returns true if the unit is within a @{Zone}. -- @param #UNIT self -- @param Core.Zone#ZONE_BASE Zone The zone to test. -- @return #boolean Returns true if the unit is within the @{Zone#ZONE_BASE} function UNIT:IsInZone( Zone ) self:F2( { self.UnitName, Zone } ) if self:IsAlive() then local IsInZone = Zone:IsVec3InZone( self:GetVec3() ) self:T2( { IsInZone } ) return IsInZone end return false end --- Returns true if the unit is not within a @{Zone}. -- @param #UNIT self -- @param Core.Zone#ZONE_BASE Zone The zone to test. -- @return #boolean Returns true if the unit is not within the @{Zone#ZONE_BASE} function UNIT:IsNotInZone( Zone ) self:F2( { self.UnitName, Zone } ) if self:IsAlive() then local IsInZone = not Zone:IsVec3InZone( self:GetVec3() ) self:T( { IsInZone } ) return IsInZone else return false end end --- Returns true if there is an **other** DCS Unit within a radius of the current 2D point of the DCS Unit. -- @param #UNIT self -- @param #UNIT AwaitUnit The other UNIT wrapper object. -- @param Radius The radius in meters with the DCS Unit in the centre. -- @return true If the other DCS Unit is within the radius of the 2D point of the DCS Unit. -- @return #nil The DCS Unit is not existing or alive. function UNIT:OtherUnitInRadius( AwaitUnit, Radius ) self:F2( { self.UnitName, AwaitUnit.UnitName, Radius } ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitVec3 = self:GetVec3() local AwaitUnitVec3 = AwaitUnit:GetVec3() if (((UnitVec3.x - AwaitUnitVec3.x)^2 + (UnitVec3.z - AwaitUnitVec3.z)^2)^0.5 <= Radius) then self:T3( "true" ) return true else self:T3( "false" ) return false end end return nil end -- Is methods --- Returns if the unit is of an air category. -- If the unit is a helicopter or a plane, then this method will return true, otherwise false. -- @param #UNIT self -- @return #boolean Air category evaluation result. function UNIT:IsAir() self:F2() local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitDescriptor = DCSUnit:getDesc() self:T3( { UnitDescriptor.category, Unit.Category.AIRPLANE, Unit.Category.HELICOPTER } ) local IsAirResult = ( UnitDescriptor.category == Unit.Category.AIRPLANE ) or ( UnitDescriptor.category == Unit.Category.HELICOPTER ) self:T3( IsAirResult ) return IsAirResult end return nil end --- Returns if the unit is of an ground category. -- If the unit is a ground vehicle or infantry, this method will return true, otherwise false. -- @param #UNIT self -- @return #boolean Ground category evaluation result. function UNIT:IsGround() self:F2() local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitDescriptor = DCSUnit:getDesc() self:T3( { UnitDescriptor.category, Unit.Category.GROUND_UNIT } ) local IsGroundResult = ( UnitDescriptor.category == Unit.Category.GROUND_UNIT ) self:T3( IsGroundResult ) return IsGroundResult end return nil end --- Returns if the unit is a friendly unit. -- @param #UNIT self -- @return #boolean IsFriendly evaluation result. function UNIT:IsFriendly( FriendlyCoalition ) self:F2() local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitCoalition = DCSUnit:getCoalition() self:T3( { UnitCoalition, FriendlyCoalition } ) local IsFriendlyResult = ( UnitCoalition == FriendlyCoalition ) self:E( IsFriendlyResult ) return IsFriendlyResult end return nil end --- Returns if the unit is of a ship category. -- If the unit is a ship, this method will return true, otherwise false. -- @param #UNIT self -- @return #boolean Ship category evaluation result. function UNIT:IsShip() self:F2() local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitDescriptor = DCSUnit:getDesc() self:T3( { UnitDescriptor.category, Unit.Category.SHIP } ) local IsShipResult = ( UnitDescriptor.category == Unit.Category.SHIP ) self:T3( IsShipResult ) return IsShipResult end return nil end --- Returns true if the UNIT is in the air. -- @param Wrapper.Positionable#UNIT self -- @return #boolean true if in the air. -- @return #nil The UNIT is not existing or alive. function UNIT:InAir() self:F2( self.UnitName ) local DCSUnit = self:GetDCSObject() if DCSUnit then local UnitInAir = DCSUnit:inAir() self:T3( UnitInAir ) return UnitInAir end return nil end do -- Event Handling --- Subscribe to a DCS Event. -- @param #UNIT self -- @param Core.Event#EVENTS Event -- @param #function EventFunction (optional) The function to be called when the event occurs for the unit. -- @return #UNIT function UNIT:HandleEvent( Event, EventFunction ) self:EventDispatcher():OnEventForUnit( self:GetName(), EventFunction, self, Event ) return self end --- UnSubscribe to a DCS event. -- @param #UNIT self -- @param Core.Event#EVENTS Event -- @return #UNIT function UNIT:UnHandleEvent( Event ) self:EventDispatcher():RemoveForUnit( self:GetName(), self, Event ) return self end --- Reset the subscriptions. -- @param #UNIT self -- @return #UNIT function UNIT:ResetEvents() self:EventDispatcher():Reset( self ) return self end end do -- Detection --- Returns if a unit is detecting the TargetUnit. -- @param #UNIT self -- @param #UNIT TargetUnit -- @return #boolean true If the TargetUnit is detected by the unit, otherwise false. function UNIT:IsDetected( TargetUnit ) --R2.1 local TargetIsDetected, TargetIsVisible, TargetLastTime, TargetKnowType, TargetKnowDistance, TargetLastPos, TargetLastVelocity = self:IsTargetDetected( TargetUnit:GetDCSObject() ) return TargetIsDetected end --- Returns if a unit has Line of Sight (LOS) with the TargetUnit. -- @param #UNIT self -- @param #UNIT TargetUnit -- @return #boolean true If the TargetUnit has LOS with the unit, otherwise false. function UNIT:IsLOS( TargetUnit ) --R2.1 local IsLOS = self:GetPointVec3():IsLOS( TargetUnit:GetPointVec3() ) return IsLOS end end--- **Wrapper** -- CLIENT wraps DCS Unit objects acting as a __Client__ or __Player__ within a mission. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- === -- -- @module Client --- The CLIENT class -- @type CLIENT -- @extends Wrapper.Unit#UNIT --- # CLIENT class, extends @{Unit#UNIT} -- -- Clients are those **Units** defined within the Mission Editor that have the skillset defined as __Client__ or __Player__. -- Note that clients are NOT the same as Units, they are NOT necessarily alive. -- The CLIENT class is a wrapper class to handle the DCS Unit objects that have the skillset defined as __Client__ or __Player__: -- -- * Wraps the DCS Unit objects with skill level set to Player or Client. -- * Support all DCS Unit APIs. -- * Enhance with Unit specific APIs not in the DCS Group API set. -- * When player joins Unit, execute alive init logic. -- * Handles messages to players. -- * Manage the "state" of the DCS Unit. -- -- Clients are being used by the @{MISSION} class to follow players and register their successes. -- -- ## CLIENT reference methods -- -- For each DCS Unit having skill level Player or Client, a CLIENT wrapper object (instance) will be created within the _@{DATABASE} object. -- This is done at the beginning of the mission (when the mission starts). -- -- The CLIENT class does not contain a :New() method, rather it provides :Find() methods to retrieve the object reference -- using the DCS Unit or the DCS UnitName. -- -- Another thing to know is that CLIENT objects do not "contain" the DCS Unit object. -- The CLIENT methods will reference the DCS Unit object by name when it is needed during API execution. -- If the DCS Unit object does not exist or is nil, the CLIENT methods will return nil and log an exception in the DCS.log file. -- -- The CLIENT class provides the following functions to retrieve quickly the relevant CLIENT instance: -- -- * @{#CLIENT.Find}(): Find a CLIENT instance from the _DATABASE object using a DCS Unit object. -- * @{#CLIENT.FindByName}(): Find a CLIENT instance from the _DATABASE object using a DCS Unit name. -- -- **IMPORTANT: ONE SHOULD NEVER SANATIZE these CLIENT OBJECT REFERENCES! (make the CLIENT object references nil).** -- -- @field #CLIENT CLIENT = { ONBOARDSIDE = { NONE = 0, LEFT = 1, RIGHT = 2, BACK = 3, FRONT = 4 }, ClassName = "CLIENT", ClientName = nil, ClientAlive = false, ClientTransport = false, ClientBriefingShown = false, _Menus = {}, _Tasks = {}, Messages = { } } --- Finds a CLIENT from the _DATABASE using the relevant DCS Unit. -- @param #CLIENT self -- @param #string ClientName Name of the DCS **Unit** as defined within the Mission Editor. -- @param #string ClientBriefing Text that describes the briefing of the mission when a Player logs into the Client. -- @return #CLIENT -- @usage -- -- Create new Clients. -- local Mission = MISSIONSCHEDULER.AddMission( 'Russia Transport Troops SA-6', 'Operational', 'Transport troops from the control center to one of the SA-6 SAM sites to activate their operation.', 'Russia' ) -- Mission:AddGoal( DeploySA6TroopsGoal ) -- -- Mission:AddClient( CLIENT:FindByName( 'RU MI-8MTV2*HOT-Deploy Troops 1' ):Transport() ) -- Mission:AddClient( CLIENT:FindByName( 'RU MI-8MTV2*RAMP-Deploy Troops 3' ):Transport() ) -- Mission:AddClient( CLIENT:FindByName( 'RU MI-8MTV2*HOT-Deploy Troops 2' ):Transport() ) -- Mission:AddClient( CLIENT:FindByName( 'RU MI-8MTV2*RAMP-Deploy Troops 4' ):Transport() ) function CLIENT:Find( DCSUnit, Error ) local ClientName = DCSUnit:getName() local ClientFound = _DATABASE:FindClient( ClientName ) if ClientFound then ClientFound:F( ClientName ) return ClientFound end if not Error then error( "CLIENT not found for: " .. ClientName ) end end --- Finds a CLIENT from the _DATABASE using the relevant Client Unit Name. -- As an optional parameter, a briefing text can be given also. -- @param #CLIENT self -- @param #string ClientName Name of the DCS **Unit** as defined within the Mission Editor. -- @param #string ClientBriefing Text that describes the briefing of the mission when a Player logs into the Client. -- @param #boolean Error A flag that indicates whether an error should be raised if the CLIENT cannot be found. By default an error will be raised. -- @return #CLIENT -- @usage -- -- Create new Clients. -- local Mission = MISSIONSCHEDULER.AddMission( 'Russia Transport Troops SA-6', 'Operational', 'Transport troops from the control center to one of the SA-6 SAM sites to activate their operation.', 'Russia' ) -- Mission:AddGoal( DeploySA6TroopsGoal ) -- -- Mission:AddClient( CLIENT:FindByName( 'RU MI-8MTV2*HOT-Deploy Troops 1' ):Transport() ) -- Mission:AddClient( CLIENT:FindByName( 'RU MI-8MTV2*RAMP-Deploy Troops 3' ):Transport() ) -- Mission:AddClient( CLIENT:FindByName( 'RU MI-8MTV2*HOT-Deploy Troops 2' ):Transport() ) -- Mission:AddClient( CLIENT:FindByName( 'RU MI-8MTV2*RAMP-Deploy Troops 4' ):Transport() ) function CLIENT:FindByName( ClientName, ClientBriefing, Error ) local ClientFound = _DATABASE:FindClient( ClientName ) if ClientFound then ClientFound:F( { ClientName, ClientBriefing } ) ClientFound:AddBriefing( ClientBriefing ) ClientFound.MessageSwitch = true return ClientFound end if not Error then error( "CLIENT not found for: " .. ClientName ) end end function CLIENT:Register( ClientName ) local self = BASE:Inherit( self, UNIT:Register( ClientName ) ) self:F( ClientName ) self.ClientName = ClientName self.MessageSwitch = true self.ClientAlive2 = false --self.AliveCheckScheduler = routines.scheduleFunction( self._AliveCheckScheduler, { self }, timer.getTime() + 1, 5 ) self.AliveCheckScheduler = SCHEDULER:New( self, self._AliveCheckScheduler, { "Client Alive " .. ClientName }, 1, 5 ) self:E( self ) return self end --- Transport defines that the Client is a Transport. Transports show cargo. -- @param #CLIENT self -- @return #CLIENT function CLIENT:Transport() self:F() self.ClientTransport = true return self end --- AddBriefing adds a briefing to a CLIENT when a player joins a mission. -- @param #CLIENT self -- @param #string ClientBriefing is the text defining the Mission briefing. -- @return #CLIENT self function CLIENT:AddBriefing( ClientBriefing ) self:F( ClientBriefing ) self.ClientBriefing = ClientBriefing self.ClientBriefingShown = false return self end --- Show the briefing of a CLIENT. -- @param #CLIENT self -- @return #CLIENT self function CLIENT:ShowBriefing() self:F( { self.ClientName, self.ClientBriefingShown } ) if not self.ClientBriefingShown then self.ClientBriefingShown = true local Briefing = "" if self.ClientBriefing then Briefing = Briefing .. self.ClientBriefing end Briefing = Briefing .. " Press [LEFT ALT]+[B] to view the complete mission briefing." self:Message( Briefing, 60, "Briefing" ) end return self end --- Show the mission briefing of a MISSION to the CLIENT. -- @param #CLIENT self -- @param #string MissionBriefing -- @return #CLIENT self function CLIENT:ShowMissionBriefing( MissionBriefing ) self:F( { self.ClientName } ) if MissionBriefing then self:Message( MissionBriefing, 60, "Mission Briefing" ) end return self end --- Resets a CLIENT. -- @param #CLIENT self -- @param #string ClientName Name of the Group as defined within the Mission Editor. The Group must have a Unit with the type Client. function CLIENT:Reset( ClientName ) self:F() self._Menus = {} end -- Is Functions --- Checks if the CLIENT is a multi-seated UNIT. -- @param #CLIENT self -- @return #boolean true if multi-seated. function CLIENT:IsMultiSeated() self:F( self.ClientName ) local ClientMultiSeatedTypes = { ["Mi-8MT"] = "Mi-8MT", ["UH-1H"] = "UH-1H", ["P-51B"] = "P-51B" } if self:IsAlive() then local ClientTypeName = self:GetClientGroupUnit():GetTypeName() if ClientMultiSeatedTypes[ClientTypeName] then return true end end return false end --- Checks for a client alive event and calls a function on a continuous basis. -- @param #CLIENT self -- @param #function CallBackFunction Create a function that will be called when a player joins the slot. -- @return #CLIENT function CLIENT:Alive( CallBackFunction, ... ) self:F() self.ClientCallBack = CallBackFunction self.ClientParameters = arg return self end --- @param #CLIENT self function CLIENT:_AliveCheckScheduler( SchedulerName ) self:F3( { SchedulerName, self.ClientName, self.ClientAlive2, self.ClientBriefingShown, self.ClientCallBack } ) if self:IsAlive() then if self.ClientAlive2 == false then self:ShowBriefing() if self.ClientCallBack then self:T("Calling Callback function") self.ClientCallBack( self, unpack( self.ClientParameters ) ) end self.ClientAlive2 = true end else if self.ClientAlive2 == true then self.ClientAlive2 = false end end return true end --- Return the DCSGroup of a Client. -- This function is modified to deal with a couple of bugs in DCS 1.5.3 -- @param #CLIENT self -- @return Dcs.DCSWrapper.Group#Group function CLIENT:GetDCSGroup() self:F3() -- local ClientData = Group.getByName( self.ClientName ) -- if ClientData and ClientData:isExist() then -- self:T( self.ClientName .. " : group found!" ) -- return ClientData -- else -- return nil -- end local ClientUnit = Unit.getByName( self.ClientName ) local CoalitionsData = { AlivePlayersRed = coalition.getPlayers( coalition.side.RED ), AlivePlayersBlue = coalition.getPlayers( coalition.side.BLUE ) } for CoalitionId, CoalitionData in pairs( CoalitionsData ) do self:T3( { "CoalitionData:", CoalitionData } ) for UnitId, UnitData in pairs( CoalitionData ) do self:T3( { "UnitData:", UnitData } ) if UnitData and UnitData:isExist() then --self:E(self.ClientName) if ClientUnit then local ClientGroup = ClientUnit:getGroup() if ClientGroup then self:T3( "ClientGroup = " .. self.ClientName ) if ClientGroup:isExist() and UnitData:getGroup():isExist() then if ClientGroup:getID() == UnitData:getGroup():getID() then self:T3( "Normal logic" ) self:T3( self.ClientName .. " : group found!" ) self.ClientGroupID = ClientGroup:getID() self.ClientGroupName = ClientGroup:getName() return ClientGroup end else -- Now we need to resolve the bugs in DCS 1.5 ... -- Consult the database for the units of the Client Group. (ClientGroup:getUnits() returns nil) self:T3( "Bug 1.5 logic" ) local ClientGroupTemplate = _DATABASE.Templates.Units[self.ClientName].GroupTemplate self.ClientGroupID = ClientGroupTemplate.groupId self.ClientGroupName = _DATABASE.Templates.Units[self.ClientName].GroupName self:T3( self.ClientName .. " : group found in bug 1.5 resolvement logic!" ) return ClientGroup end -- else -- error( "Client " .. self.ClientName .. " not found!" ) end else --self:E( { "Client not found!", self.ClientName } ) end end end end -- For non player clients if ClientUnit then local ClientGroup = ClientUnit:getGroup() if ClientGroup then self:T3( "ClientGroup = " .. self.ClientName ) if ClientGroup:isExist() then self:T3( "Normal logic" ) self:T3( self.ClientName .. " : group found!" ) return ClientGroup end end end self.ClientGroupID = nil self.ClientGroupUnit = nil return nil end -- TODO: Check Dcs.DCSTypes#Group.ID --- Get the group ID of the client. -- @param #CLIENT self -- @return Dcs.DCSTypes#Group.ID function CLIENT:GetClientGroupID() local ClientGroup = self:GetDCSGroup() --self:E( self.ClientGroupID ) -- Determined in GetDCSGroup() return self.ClientGroupID end --- Get the name of the group of the client. -- @param #CLIENT self -- @return #string function CLIENT:GetClientGroupName() local ClientGroup = self:GetDCSGroup() self:T( self.ClientGroupName ) -- Determined in GetDCSGroup() return self.ClientGroupName end --- Returns the UNIT of the CLIENT. -- @param #CLIENT self -- @return Wrapper.Unit#UNIT function CLIENT:GetClientGroupUnit() self:F2() local ClientDCSUnit = Unit.getByName( self.ClientName ) self:T( self.ClientDCSUnit ) if ClientDCSUnit and ClientDCSUnit:isExist() then local ClientUnit = _DATABASE:FindUnit( self.ClientName ) self:T2( ClientUnit ) return ClientUnit end end --- Returns the DCSUnit of the CLIENT. -- @param #CLIENT self -- @return Dcs.DCSTypes#Unit function CLIENT:GetClientGroupDCSUnit() self:F2() local ClientDCSUnit = Unit.getByName( self.ClientName ) if ClientDCSUnit and ClientDCSUnit:isExist() then self:T2( ClientDCSUnit ) return ClientDCSUnit end end --- Evaluates if the CLIENT is a transport. -- @param #CLIENT self -- @return #boolean true is a transport. function CLIENT:IsTransport() self:F() return self.ClientTransport end --- Shows the @{AI_Cargo#CARGO} contained within the CLIENT to the player as a message. -- The @{AI_Cargo#CARGO} is shown using the @{Message#MESSAGE} distribution system. -- @param #CLIENT self function CLIENT:ShowCargo() self:F() local CargoMsg = "" for CargoName, Cargo in pairs( CARGOS ) do if self == Cargo:IsLoadedInClient() then CargoMsg = CargoMsg .. Cargo.CargoName .. " Type:" .. Cargo.CargoType .. " Weight: " .. Cargo.CargoWeight .. "\n" end end if CargoMsg == "" then CargoMsg = "empty" end self:Message( CargoMsg, 15, "Co-Pilot: Cargo Status", 30 ) end -- TODO (1) I urgently need to revise this. --- A local function called by the DCS World Menu system to switch off messages. function CLIENT.SwitchMessages( PrmTable ) PrmTable[1].MessageSwitch = PrmTable[2] end --- The main message driver for the CLIENT. -- This function displays various messages to the Player logged into the CLIENT through the DCS World Messaging system. -- @param #CLIENT self -- @param #string Message is the text describing the message. -- @param #number MessageDuration is the duration in seconds that the Message should be displayed. -- @param #string MessageCategory is the category of the message (the title). -- @param #number MessageInterval is the interval in seconds between the display of the @{Message#MESSAGE} when the CLIENT is in the air. -- @param #string MessageID is the identifier of the message when displayed with intervals. function CLIENT:Message( Message, MessageDuration, MessageCategory, MessageInterval, MessageID ) self:F( { Message, MessageDuration, MessageCategory, MessageInterval } ) if self.MessageSwitch == true then if MessageCategory == nil then MessageCategory = "Messages" end if MessageID ~= nil then if self.Messages[MessageID] == nil then self.Messages[MessageID] = {} self.Messages[MessageID].MessageId = MessageID self.Messages[MessageID].MessageTime = timer.getTime() self.Messages[MessageID].MessageDuration = MessageDuration if MessageInterval == nil then self.Messages[MessageID].MessageInterval = 600 else self.Messages[MessageID].MessageInterval = MessageInterval end MESSAGE:New( Message, MessageDuration, MessageCategory ):ToClient( self ) else if self:GetClientGroupDCSUnit() and not self:GetClientGroupDCSUnit():inAir() then if timer.getTime() - self.Messages[MessageID].MessageTime >= self.Messages[MessageID].MessageDuration + 10 then MESSAGE:New( Message, MessageDuration , MessageCategory):ToClient( self ) self.Messages[MessageID].MessageTime = timer.getTime() end else if timer.getTime() - self.Messages[MessageID].MessageTime >= self.Messages[MessageID].MessageDuration + self.Messages[MessageID].MessageInterval then MESSAGE:New( Message, MessageDuration, MessageCategory ):ToClient( self ) self.Messages[MessageID].MessageTime = timer.getTime() end end end else MESSAGE:New( Message, MessageDuration, MessageCategory ):ToClient( self ) end end end --- **Wrapper** -- STATIC wraps the DCS StaticObject class. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Static --- @type STATIC -- @extends Wrapper.Positionable#POSITIONABLE --- # STATIC class, extends @{Positionable#POSITIONABLE} -- -- Statics are **Static Units** defined within the Mission Editor. -- Note that Statics are almost the same as Units, but they don't have a controller. -- The @{Static#STATIC} class is a wrapper class to handle the DCS Static objects: -- -- * Wraps the DCS Static objects. -- * Support all DCS Static APIs. -- * Enhance with Static specific APIs not in the DCS API set. -- -- ## STATIC reference methods -- -- For each DCS Static will have a STATIC wrapper object (instance) within the _@{DATABASE} object. -- This is done at the beginning of the mission (when the mission starts). -- -- The STATIC class does not contain a :New() method, rather it provides :Find() methods to retrieve the object reference -- using the Static Name. -- -- Another thing to know is that STATIC objects do not "contain" the DCS Static object. -- The STATIc methods will reference the DCS Static object by name when it is needed during API execution. -- If the DCS Static object does not exist or is nil, the STATIC methods will return nil and log an exception in the DCS.log file. -- -- The STATIc class provides the following functions to retrieve quickly the relevant STATIC instance: -- -- * @{#STATIC.FindByName}(): Find a STATIC instance from the _DATABASE object using a DCS Static name. -- -- IMPORTANT: ONE SHOULD NEVER SANATIZE these STATIC OBJECT REFERENCES! (make the STATIC object references nil). -- -- @field #STATIC STATIC = { ClassName = "STATIC", } --- Finds a STATIC from the _DATABASE using the relevant Static Name. -- As an optional parameter, a briefing text can be given also. -- @param #STATIC self -- @param #string StaticName Name of the DCS **Static** as defined within the Mission Editor. -- @param #boolean RaiseError Raise an error if not found. -- @return #STATIC function STATIC:FindByName( StaticName, RaiseError ) local StaticFound = _DATABASE:FindStatic( StaticName ) self.StaticName = StaticName if StaticFound then StaticFound:F3( { StaticName } ) return StaticFound end if RaiseError == nil or RaiseError == true then error( "STATIC not found for: " .. StaticName ) end return nil end function STATIC:Register( StaticName ) local self = BASE:Inherit( self, POSITIONABLE:New( StaticName ) ) self.StaticName = StaticName return self end function STATIC:GetDCSObject() local DCSStatic = StaticObject.getByName( self.StaticName ) if DCSStatic then return DCSStatic end return nil end function STATIC:GetThreatLevel() return 1, "Static" end--- **Wrapper** -- AIRBASE is a wrapper class to handle the DCS Airbase objects. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- === -- -- @module Airbase --- @type AIRBASE -- @extends Wrapper.Positionable#POSITIONABLE --- # AIRBASE class, extends @{Positionable#POSITIONABLE} -- -- AIRBASE is a wrapper class to handle the DCS Airbase objects: -- -- * Support all DCS Airbase APIs. -- * Enhance with Airbase specific APIs not in the DCS Airbase API set. -- -- ## AIRBASE reference methods -- -- For each DCS Airbase object alive within a running mission, a AIRBASE wrapper object (instance) will be created within the _@{DATABASE} object. -- This is done at the beginning of the mission (when the mission starts). -- -- The AIRBASE class **does not contain a :New()** method, rather it provides **:Find()** methods to retrieve the object reference -- using the DCS Airbase or the DCS AirbaseName. -- -- Another thing to know is that AIRBASE objects do not "contain" the DCS Airbase object. -- The AIRBASE methods will reference the DCS Airbase object by name when it is needed during API execution. -- If the DCS Airbase object does not exist or is nil, the AIRBASE methods will return nil and log an exception in the DCS.log file. -- -- The AIRBASE class provides the following functions to retrieve quickly the relevant AIRBASE instance: -- -- * @{#AIRBASE.Find}(): Find a AIRBASE instance from the _DATABASE object using a DCS Airbase object. -- * @{#AIRBASE.FindByName}(): Find a AIRBASE instance from the _DATABASE object using a DCS Airbase name. -- -- IMPORTANT: ONE SHOULD NEVER SANATIZE these AIRBASE OBJECT REFERENCES! (make the AIRBASE object references nil). -- -- ## DCS Airbase APIs -- -- The DCS Airbase APIs are used extensively within MOOSE. The AIRBASE class has for each DCS Airbase API a corresponding method. -- To be able to distinguish easily in your code the difference between a AIRBASE API call and a DCS Airbase API call, -- the first letter of the method is also capitalized. So, by example, the DCS Airbase method @{DCSWrapper.Airbase#Airbase.getName}() -- is implemented in the AIRBASE class as @{#AIRBASE.GetName}(). -- -- @field #AIRBASE AIRBASE AIRBASE = { ClassName="AIRBASE", CategoryName = { [Airbase.Category.AIRDROME] = "Airdrome", [Airbase.Category.HELIPAD] = "Helipad", [Airbase.Category.SHIP] = "Ship", }, } --- @field Caucasus AIRBASE.Caucasus = { ["Gelendzhik"] = "Gelendzhik", ["Krasnodar_Pashkovsky"] = "Krasnodar-Pashkovsky", ["Sukhumi_Babushara"] = "Sukhumi-Babushara", ["Gudauta"] = "Gudauta", ["Batumi"] = "Batumi", ["Senaki_Kolkhi"] = "Senaki-Kolkhi", ["Kobuleti"] = "Kobuleti", ["Kutaisi"] = "Kutaisi", ["Tbilisi_Lochini"] = "Tbilisi-Lochini", ["Soganlug"] = "Soganlug", ["Vaziani"] = "Vaziani", ["Anapa_Vityazevo"] = "Anapa-Vityazevo", ["Krasnodar_Center"] = "Krasnodar-Center", ["Novorossiysk"] = "Novorossiysk", ["Krymsk"] = "Krymsk", ["Maykop_Khanskaya"] = "Maykop-Khanskaya", ["Sochi_Adler"] = "Sochi-Adler", ["Mineralnye_Vody"] = "Mineralnye Vody", ["Nalchik"] = "Nalchik", ["Mozdok"] = "Mozdok", ["Beslan"] = "Beslan", } --- @field Nevada AIRBASE.Nevada = { ["Creech_AFB"] = "Creech AFB", ["Groom_Lake_AFB"] = "Groom Lake AFB", ["McCarran_International_Airport"] = "McCarran International Airport", ["Nellis_AFB"] = "Nellis AFB", ["Beatty_Airport"] = "Beatty Airport", ["Boulder_City_Airport"] = "Boulder City Airport", ["Echo_Bay"] = "Echo Bay", ["Henderson_Executive_Airport"] = "Henderson Executive Airport", ["Jean_Airport"] = "Jean Airport", ["Laughlin_Airport"] = "Laughlin Airport", ["Lincoln_County"] = "Lincoln County", ["Mellan_Airstrip"] = "Mellan Airstrip", ["Mesquite"] = "Mesquite", ["Mina_Airport_3Q0"] = "Mina Airport 3Q0", ["North_Las_Vegas"] = "North Las Vegas", ["Pahute_Mesa_Airstrip"] = "Pahute Mesa Airstrip", ["Tonopah_Airport"] = "Tonopah Airport", ["Tonopah_Test_Range_Airfield"] = "Tonopah Test Range Airfield", } --- @field Normandy AIRBASE.Normandy = { ["Saint_Pierre_du_Mont"] = "Saint Pierre du Mont", ["Lignerolles"] = "Lignerolles", ["Cretteville"] = "Cretteville", ["Maupertus"] = "Maupertus", ["Brucheville"] = "Brucheville", ["Meautis"] = "Meautis", ["Cricqueville_en_Bessin"] = "Cricqueville-en-Bessin", ["Lessay"] = "Lessay", ["Sainte_Laurent_sur_Mer"] = "Sainte-Laurent-sur-Mer", ["Biniville"] = "Biniville", ["Cardonville"] = "Cardonville", ["Deux_Jumeaux"] = "Deux Jumeaux", ["Chippelle"] = "Chippelle", ["Beuzeville"] = "Beuzeville", ["Azeville"] = "Azeville", ["Picauville"] = "Picauville", ["Le_Molay"] = "Le Molay", ["Longues_sur_Mer"] = "Longues-sur-Mer", ["Carpiquet"] = "Carpiquet", ["Bazenville"] = "Bazenville", ["Sainte_Croix_sur_Mer"] = "Sainte-Croix-sur-Mer", ["Beny_sur_Mer"] = "Beny-sur-Mer", ["Rucqueville"] = "Rucqueville", ["Sommervieu"] = "Sommervieu", ["Lantheuil"] = "Lantheuil", ["Evreux"] = "Evreux", ["Chailey"] = "Chailey", ["Needs_Oar_Point"] = "Needs Oar Point", ["Funtington"] = "Funtington", ["Tangmere"] = "Tangmere", ["Ford"] = "Ford", } -- Registration. --- Create a new AIRBASE from DCSAirbase. -- @param #AIRBASE self -- @param #string AirbaseName The name of the airbase. -- @return Wrapper.Airbase#AIRBASE function AIRBASE:Register( AirbaseName ) local self = BASE:Inherit( self, POSITIONABLE:New( AirbaseName ) ) self.AirbaseName = AirbaseName self.AirbaseZone = ZONE_RADIUS:New( AirbaseName, self:GetVec2(), 8000 ) return self end -- Reference methods. --- Finds a AIRBASE from the _DATABASE using a DCSAirbase object. -- @param #AIRBASE self -- @param Dcs.DCSWrapper.Airbase#Airbase DCSAirbase An existing DCS Airbase object reference. -- @return Wrapper.Airbase#AIRBASE self function AIRBASE:Find( DCSAirbase ) local AirbaseName = DCSAirbase:getName() local AirbaseFound = _DATABASE:FindAirbase( AirbaseName ) return AirbaseFound end --- Find a AIRBASE in the _DATABASE using the name of an existing DCS Airbase. -- @param #AIRBASE self -- @param #string AirbaseName The Airbase Name. -- @return Wrapper.Airbase#AIRBASE self function AIRBASE:FindByName( AirbaseName ) local AirbaseFound = _DATABASE:FindAirbase( AirbaseName ) return AirbaseFound end function AIRBASE:GetDCSObject() local DCSAirbase = Airbase.getByName( self.AirbaseName ) if DCSAirbase then return DCSAirbase end return nil end --- Get the airbase zone. -- @param #AIRBASE self -- @return Core.Zone#ZONE_RADIUS The zone radius of the airbase. function AIRBASE:GetZone() return self.AirbaseZone end --- **Wrapper** -- SCENERY models scenery within the DCS simulator. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Scenery --- @type SCENERY -- @extends Wrapper.Positionable#POSITIONABLE --- # SCENERY class, extends @{Positionable#POSITIONABLE} -- -- Scenery objects are defined on the map. -- The @{Scenery#SCENERY} class is a wrapper class to handle the DCS Scenery objects: -- -- * Wraps the DCS Scenery objects. -- * Support all DCS Scenery APIs. -- * Enhance with Scenery specific APIs not in the DCS API set. -- -- @field #SCENERY SCENERY = { ClassName = "SCENERY", } function SCENERY:Register( SceneryName, SceneryObject ) local self = BASE:Inherit( self, POSITIONABLE:New( SceneryName ) ) self.SceneryName = SceneryName self.SceneryObject = SceneryObject return self end function SCENERY:GetDCSObject() return self.SceneryObject end function SCENERY:GetThreatLevel() return 0, "Scenery" end --- **Functional** -- **Administer the SCORING of player achievements, -- and create a CSV file logging the scoring events for use at team or squadron websites.** -- -- ![Banner Image](..\Presentations\SCORING\Dia1.JPG) -- -- === -- -- The @{#SCORING} class administers the scoring of player achievements, -- and creates a CSV file logging the scoring events and results for use at team or squadron websites. -- -- SCORING automatically calculates the threat level of the objects hit and destroyed by players, -- which can be @{Unit}, @{Static) and @{Scenery} objects. -- -- Positive score points are granted when enemy or neutral targets are destroyed. -- Negative score points or penalties are given when a friendly target is hit or destroyed. -- This brings a lot of dynamism in the scoring, where players need to take care to inflict damage on the right target. -- By default, penalties weight heavier in the scoring, to ensure that players don't commit fratricide. -- The total score of the player is calculated by **adding the scores minus the penalties**. -- -- ![Banner Image](..\Presentations\SCORING\Dia4.JPG) -- -- The score value is calculated based on the **threat level of the player** and the **threat level of the target**. -- A calculated score takes the threat level of the target divided by a balanced threat level of the player unit. -- As such, if the threat level of the target is high, and the player threat level is low, a higher score will be given than -- if the threat level of the player would be high too. -- -- ![Banner Image](..\Presentations\SCORING\Dia5.JPG) -- -- When multiple players hit the same target, and finally succeed in destroying the target, then each player who contributed to the target -- destruction, will receive a score. This is important for targets that require significant damage before it can be destroyed, like -- ships or heavy planes. -- -- ![Banner Image](..\Presentations\SCORING\Dia13.JPG) -- -- Optionally, the score values can be **scaled** by a **scale**. Specific scales can be set for positive cores or negative penalties. -- The default range of the scores granted is a value between 0 and 10. The default range of penalties given is a value between 0 and 30. -- -- ![Banner Image](..\Presentations\SCORING\Dia7.JPG) -- -- **Additional scores** can be granted to **specific objects**, when the player(s) destroy these objects. -- -- ![Banner Image](..\Presentations\SCORING\Dia9.JPG) -- -- Various @{Zone}s can be defined for which scores are also granted when objects in that @{Zone} are destroyed. -- This is **specifically useful** to designate **scenery targets on the map** that will generate points when destroyed. -- -- With a small change in MissionScripting.lua, the scoring results can also be logged in a **CSV file**. -- These CSV files can be used to: -- -- * Upload scoring to a database or a BI tool to publish the scoring results to the player community. -- * Upload scoring in an (online) Excel like tool, using pivot tables and pivot charts to show mission results. -- * Share scoring amoung players after the mission to discuss mission results. -- -- Scores can be **reported**. **Menu options** are automatically added to **each player group** when a player joins a client slot or a CA unit. -- Use the radio menu F10 to consult the scores while running the mission. -- Scores can be reported for your user, or an overall score can be reported of all players currently active in the mission. -- -- # 1) @{Scoring#SCORING} class, extends @{Base#BASE} -- -- ## 1.1) Set the destroy score or penalty scale -- -- Score scales can be set for scores granted when enemies or friendlies are destroyed. -- Use the method @{#SCORING.SetScaleDestroyScore}() to set the scale of enemy destroys (positive destroys). -- Use the method @{#SCORING.SetScaleDestroyPenalty}() to set the scale of friendly destroys (negative destroys). -- -- local Scoring = SCORING:New( "Scoring File" ) -- Scoring:SetScaleDestroyScore( 10 ) -- Scoring:SetScaleDestroyPenalty( 40 ) -- -- The above sets the scale for valid scores to 10. So scores will be given in a scale from 0 to 10. -- The penalties will be given in a scale from 0 to 40. -- -- ## 1.2) Define special targets that will give extra scores. -- -- Special targets can be set that will give extra scores to the players when these are destroyed. -- Use the methods @{#SCORING.AddUnitScore}() and @{#SCORING.RemoveUnitScore}() to specify a special additional score for a specific @{Unit}s. -- Use the methods @{#SCORING.AddStaticScore}() and @{#SCORING.RemoveStaticScore}() to specify a special additional score for a specific @{Static}s. -- Use the method @{#SCORING.SetGroupGroup}() to specify a special additional score for a specific @{Group}s. -- -- local Scoring = SCORING:New( "Scoring File" ) -- Scoring:AddUnitScore( UNIT:FindByName( "Unit #001" ), 200 ) -- Scoring:AddStaticScore( STATIC:FindByName( "Static #1" ), 100 ) -- -- The above grants an additional score of 200 points for Unit #001 and an additional 100 points of Static #1 if these are destroyed. -- Note that later in the mission, one can remove these scores set, for example, when the a goal achievement time limit is over. -- For example, this can be done as follows: -- -- Scoring:RemoveUnitScore( UNIT:FindByName( "Unit #001" ) ) -- -- ## 1.3) Define destruction zones that will give extra scores. -- -- Define zones of destruction. Any object destroyed within the zone of the given category will give extra points. -- Use the method @{#SCORING.AddZoneScore}() to add a @{Zone} for additional scoring. -- Use the method @{#SCORING.RemoveZoneScore}() to remove a @{Zone} for additional scoring. -- There are interesting variations that can be achieved with this functionality. For example, if the @{Zone} is a @{Zone#ZONE_UNIT}, -- then the zone is a moving zone, and anything destroyed within that @{Zone} will generate points. -- The other implementation could be to designate a scenery target (a building) in the mission editor surrounded by a @{Zone}, -- just large enough around that building. -- -- ## 1.4) Add extra Goal scores upon an event or a condition. -- -- A mission has goals and achievements. The scoring system provides an API to set additional scores when a goal or achievement event happens. -- Use the method @{#SCORING.AddGoalScore}() to add a score for a Player at any time in your mission. -- -- ## 1.5) (Decommissioned) Configure fratricide level. -- -- **This functionality is decomissioned until the DCS bug concerning Unit:destroy() not being functional in multi player for player units has been fixed by ED**. -- -- When a player commits too much damage to friendlies, his penalty score will reach a certain level. -- Use the method @{#SCORING.SetFratricide}() to define the level when a player gets kicked. -- By default, the fratricide level is the default penalty mutiplier * 2 for the penalty score. -- -- ## 1.6) Penalty score when a player changes the coalition. -- -- When a player changes the coalition, he can receive a penalty score. -- Use the method @{#SCORING.SetCoalitionChangePenalty}() to define the penalty when a player changes coalition. -- By default, the penalty for changing coalition is the default penalty scale. -- -- ## 1.8) Define output CSV files. -- -- The CSV file is given the name of the string given in the @{#SCORING.New}{} constructor, followed by the .csv extension. -- The file is incrementally saved in the **\\Saved Games\\DCS\\Logs** folder, and has a time stamp indicating each mission run. -- See the following example: -- -- local ScoringFirstMission = SCORING:New( "FirstMission" ) -- local ScoringSecondMission = SCORING:New( "SecondMission" ) -- -- The above documents that 2 Scoring objects are created, ScoringFirstMission and ScoringSecondMission. -- -- ### **IMPORTANT!!!* -- In order to allow DCS world to write CSV files, you need to adapt a configuration file in your DCS world installation **on the server**. -- For this, browse to the **missionscripting.lua** file in your DCS world installation folder. -- For me, this installation folder is in _D:\\Program Files\\Eagle Dynamics\\DCS World\Scripts_. -- -- Edit a few code lines in the MissionScripting.lua file. Comment out the lines **os**, **io** and **lfs**: -- -- do -- --sanitizeModule('os') -- --sanitizeModule('io') -- --sanitizeModule('lfs') -- require = nil -- loadlib = nil -- end -- -- When these lines are not sanitized, functions become available to check the time, and to write files to your system at the above specified location. -- Note that the MissionScripting.lua file provides a warning. So please beware of this warning as outlined by Eagle Dynamics! -- -- --Sanitize Mission Scripting environment -- --This makes unavailable some unsecure functions. -- --Mission downloaded from server to client may contain potentialy harmful lua code that may use these functions. -- --You can remove the code below and make availble these functions at your own risk. -- -- The MOOSE designer cannot take any responsibility of any damage inflicted as a result of the de-sanitization. -- That being said, I hope that the SCORING class provides you with a great add-on to score your squad mates achievements. -- -- ## 1.9) Configure messages. -- -- When players hit or destroy targets, messages are sent. -- Various methods exist to configure: -- -- * Which messages are sent upon the event. -- * Which audience receives the message. -- -- ### 1.9.1) Configure the messages sent upon the event. -- -- Use the following methods to configure when to send messages. By default, all messages are sent. -- -- * @{#SCORING.SetMessagesHit}(): Configure to send messages after a target has been hit. -- * @{#SCORING.SetMessagesDestroy}(): Configure to send messages after a target has been destroyed. -- * @{#SCORING.SetMessagesAddon}(): Configure to send messages for additional score, after a target has been destroyed. -- * @{#SCORING.SetMessagesZone}(): Configure to send messages for additional score, after a target has been destroyed within a given zone. -- -- ### 1.9.2) Configure the audience of the messages. -- -- Use the following methods to configure the audience of the messages. By default, the messages are sent to all players in the mission. -- -- * @{#SCORING.SetMessagesToAll}(): Configure to send messages to all players. -- * @{#SCORING.SetMessagesToCoalition}(): Configure to send messages to only those players within the same coalition as the player. -- -- -- ==== -- -- # **API CHANGE HISTORY** -- -- The underlying change log documents the API changes. Please read this carefully. The following notation is used: -- -- * **Added** parts are expressed in bold type face. -- * _Removed_ parts are expressed in italic type face. -- -- Hereby the change log: -- -- 2017-02-26: Initial class and API. -- -- === -- -- # **AUTHORS and CONTRIBUTIONS** -- -- ### Contributions: -- -- * **Wingthor (TAW)**: Testing & Advice. -- * **Dutch-Baron (TAW)**: Testing & Advice. -- * **[Whisper](http://forums.eagle.ru/member.php?u=3829): Testing and Advice. -- -- ### Authors: -- -- * **FlightControl**: Concept, Design & Programming. -- -- @module Scoring --- The Scoring class -- @type SCORING -- @field Players A collection of the current players that have joined the game. -- @extends Core.Base#BASE SCORING = { ClassName = "SCORING", ClassID = 0, Players = {}, } local _SCORINGCoalition = { [1] = "Red", [2] = "Blue", } local _SCORINGCategory = { [Unit.Category.AIRPLANE] = "Plane", [Unit.Category.HELICOPTER] = "Helicopter", [Unit.Category.GROUND_UNIT] = "Vehicle", [Unit.Category.SHIP] = "Ship", [Unit.Category.STRUCTURE] = "Structure", } --- Creates a new SCORING object to administer the scoring achieved by players. -- @param #SCORING self -- @param #string GameName The name of the game. This name is also logged in the CSV score file. -- @return #SCORING self -- @usage -- -- Define a new scoring object for the mission Gori Valley. -- ScoringObject = SCORING:New( "Gori Valley" ) function SCORING:New( GameName ) -- Inherits from BASE local self = BASE:Inherit( self, BASE:New() ) -- #SCORING if GameName then self.GameName = GameName else error( "A game name must be given to register the scoring results" ) end -- Additional Object scores self.ScoringObjects = {} -- Additional Zone scores. self.ScoringZones = {} -- Configure Messages self:SetMessagesToAll() self:SetMessagesHit( false ) self:SetMessagesDestroy( true ) self:SetMessagesScore( true ) self:SetMessagesZone( true ) -- Scales self:SetScaleDestroyScore( 10 ) self:SetScaleDestroyPenalty( 30 ) -- Default fratricide penalty level (maximum penalty that can be assigned to a player before he gets kicked). self:SetFratricide( self.ScaleDestroyPenalty * 3 ) -- Default penalty when a player changes coalition. self:SetCoalitionChangePenalty( self.ScaleDestroyPenalty ) self:SetDisplayMessagePrefix() -- Event handlers self:HandleEvent( EVENTS.Dead, self._EventOnDeadOrCrash ) self:HandleEvent( EVENTS.Crash, self._EventOnDeadOrCrash ) self:HandleEvent( EVENTS.Hit, self._EventOnHit ) self:HandleEvent( EVENTS.PlayerEnterUnit ) self:HandleEvent( EVENTS.PlayerLeaveUnit ) -- Create the CSV file. self:OpenCSV( GameName ) return self end --- Set a prefix string that will be displayed at each scoring message sent. -- @param #SCORING self -- @param #string DisplayMessagePrefix (Default="Scoring: ") The scoring prefix string. -- @return #SCORING function SCORING:SetDisplayMessagePrefix( DisplayMessagePrefix ) self.DisplayMessagePrefix = DisplayMessagePrefix or "" return self end --- Set the scale for scoring valid destroys (enemy destroys). -- A default calculated score is a value between 1 and 10. -- The scale magnifies the scores given to the players. -- @param #SCORING self -- @param #number Scale The scale of the score given. function SCORING:SetScaleDestroyScore( Scale ) self.ScaleDestroyScore = Scale return self end --- Set the scale for scoring penalty destroys (friendly destroys). -- A default calculated penalty is a value between 1 and 10. -- The scale magnifies the scores given to the players. -- @param #SCORING self -- @param #number Scale The scale of the score given. -- @return #SCORING function SCORING:SetScaleDestroyPenalty( Scale ) self.ScaleDestroyPenalty = Scale return self end --- Add a @{Unit} for additional scoring when the @{Unit} is destroyed. -- Note that if there was already a @{Unit} declared within the scoring with the same name, -- then the old @{Unit} will be replaced with the new @{Unit}. -- @param #SCORING self -- @param Wrapper.Unit#UNIT ScoreUnit The @{Unit} for which the Score needs to be given. -- @param #number Score The Score value. -- @return #SCORING function SCORING:AddUnitScore( ScoreUnit, Score ) local UnitName = ScoreUnit:GetName() self.ScoringObjects[UnitName] = Score return self end --- Removes a @{Unit} for additional scoring when the @{Unit} is destroyed. -- @param #SCORING self -- @param Wrapper.Unit#UNIT ScoreUnit The @{Unit} for which the Score needs to be given. -- @return #SCORING function SCORING:RemoveUnitScore( ScoreUnit ) local UnitName = ScoreUnit:GetName() self.ScoringObjects[UnitName] = nil return self end --- Add a @{Static} for additional scoring when the @{Static} is destroyed. -- Note that if there was already a @{Static} declared within the scoring with the same name, -- then the old @{Static} will be replaced with the new @{Static}. -- @param #SCORING self -- @param Wrapper.Static#UNIT ScoreStatic The @{Static} for which the Score needs to be given. -- @param #number Score The Score value. -- @return #SCORING function SCORING:AddStaticScore( ScoreStatic, Score ) local StaticName = ScoreStatic:GetName() self.ScoringObjects[StaticName] = Score return self end --- Removes a @{Static} for additional scoring when the @{Static} is destroyed. -- @param #SCORING self -- @param Wrapper.Static#UNIT ScoreStatic The @{Static} for which the Score needs to be given. -- @return #SCORING function SCORING:RemoveStaticScore( ScoreStatic ) local StaticName = ScoreStatic:GetName() self.ScoringObjects[StaticName] = nil return self end --- Specify a special additional score for a @{Group}. -- @param #SCORING self -- @param Wrapper.Group#GROUP ScoreGroup The @{Group} for which each @{Unit} a Score is given. -- @param #number Score The Score value. -- @return #SCORING function SCORING:AddScoreGroup( ScoreGroup, Score ) local ScoreUnits = ScoreGroup:GetUnits() for ScoreUnitID, ScoreUnit in pairs( ScoreUnits ) do local UnitName = ScoreUnit:GetName() self.ScoringObjects[UnitName] = Score end return self end --- Add a @{Zone} to define additional scoring when any object is destroyed in that zone. -- Note that if a @{Zone} with the same name is already within the scoring added, the @{Zone} (type) and Score will be replaced! -- This allows for a dynamic destruction zone evolution within your mission. -- @param #SCORING self -- @param Core.Zone#ZONE_BASE ScoreZone The @{Zone} which defines the destruction score perimeters. -- Note that a zone can be a polygon or a moving zone. -- @param #number Score The Score value. -- @return #SCORING function SCORING:AddZoneScore( ScoreZone, Score ) local ZoneName = ScoreZone:GetName() self.ScoringZones[ZoneName] = {} self.ScoringZones[ZoneName].ScoreZone = ScoreZone self.ScoringZones[ZoneName].Score = Score return self end --- Remove a @{Zone} for additional scoring. -- The scoring will search if any @{Zone} is added with the given name, and will remove that zone from the scoring. -- This allows for a dynamic destruction zone evolution within your mission. -- @param #SCORING self -- @param Core.Zone#ZONE_BASE ScoreZone The @{Zone} which defines the destruction score perimeters. -- Note that a zone can be a polygon or a moving zone. -- @return #SCORING function SCORING:RemoveZoneScore( ScoreZone ) local ZoneName = ScoreZone:GetName() self.ScoringZones[ZoneName] = nil return self end --- Configure to send messages after a target has been hit. -- @param #SCORING self -- @param #boolean OnOff If true is given, the messages are sent. -- @return #SCORING function SCORING:SetMessagesHit( OnOff ) self.MessagesHit = OnOff return self end --- If to send messages after a target has been hit. -- @param #SCORING self -- @return #boolean function SCORING:IfMessagesHit() return self.MessagesHit end --- Configure to send messages after a target has been destroyed. -- @param #SCORING self -- @param #boolean OnOff If true is given, the messages are sent. -- @return #SCORING function SCORING:SetMessagesDestroy( OnOff ) self.MessagesDestroy = OnOff return self end --- If to send messages after a target has been destroyed. -- @param #SCORING self -- @return #boolean function SCORING:IfMessagesDestroy() return self.MessagesDestroy end --- Configure to send messages after a target has been destroyed and receives additional scores. -- @param #SCORING self -- @param #boolean OnOff If true is given, the messages are sent. -- @return #SCORING function SCORING:SetMessagesScore( OnOff ) self.MessagesScore = OnOff return self end --- If to send messages after a target has been destroyed and receives additional scores. -- @param #SCORING self -- @return #boolean function SCORING:IfMessagesScore() return self.MessagesScore end --- Configure to send messages after a target has been hit in a zone, and additional score is received. -- @param #SCORING self -- @param #boolean OnOff If true is given, the messages are sent. -- @return #SCORING function SCORING:SetMessagesZone( OnOff ) self.MessagesZone = OnOff return self end --- If to send messages after a target has been hit in a zone, and additional score is received. -- @param #SCORING self -- @return #boolean function SCORING:IfMessagesZone() return self.MessagesZone end --- Configure to send messages to all players. -- @param #SCORING self -- @return #SCORING function SCORING:SetMessagesToAll() self.MessagesAudience = 1 return self end --- If to send messages to all players. -- @param #SCORING self -- @return #boolean function SCORING:IfMessagesToAll() return self.MessagesAudience == 1 end --- Configure to send messages to only those players within the same coalition as the player. -- @param #SCORING self -- @return #SCORING function SCORING:SetMessagesToCoalition() self.MessagesAudience = 2 return self end --- If to send messages to only those players within the same coalition as the player. -- @param #SCORING self -- @return #boolean function SCORING:IfMessagesToCoalition() return self.MessagesAudience == 2 end --- When a player commits too much damage to friendlies, his penalty score will reach a certain level. -- Use this method to define the level when a player gets kicked. -- By default, the fratricide level is the default penalty mutiplier * 2 for the penalty score. -- @param #SCORING self -- @param #number Fratricide The amount of maximum penalty that may be inflicted by a friendly player before he gets kicked. -- @return #SCORING function SCORING:SetFratricide( Fratricide ) self.Fratricide = Fratricide return self end --- When a player changes the coalition, he can receive a penalty score. -- Use the method @{#SCORING.SetCoalitionChangePenalty}() to define the penalty when a player changes coalition. -- By default, the penalty for changing coalition is the default penalty scale. -- @param #SCORING self -- @param #number CoalitionChangePenalty The amount of penalty that is given. -- @return #SCORING function SCORING:SetCoalitionChangePenalty( CoalitionChangePenalty ) self.CoalitionChangePenalty = CoalitionChangePenalty return self end --- Add a new player entering a Unit. -- @param #SCORING self -- @param Wrapper.Unit#UNIT UnitData function SCORING:_AddPlayerFromUnit( UnitData ) self:F( UnitData ) if UnitData:IsAlive() then local UnitName = UnitData:GetName() local PlayerName = UnitData:GetPlayerName() local UnitDesc = UnitData:GetDesc() local UnitCategory = UnitDesc.category local UnitCoalition = UnitData:GetCoalition() local UnitTypeName = UnitData:GetTypeName() local UnitThreatLevel, UnitThreatType = UnitData:GetThreatLevel() self:T( { PlayerName, UnitName, UnitCategory, UnitCoalition, UnitTypeName } ) if self.Players[PlayerName] == nil then -- I believe this is the place where a Player gets a life in a mission when he enters a unit ... self.Players[PlayerName] = {} self.Players[PlayerName].Hit = {} self.Players[PlayerName].Destroy = {} self.Players[PlayerName].Goals = {} self.Players[PlayerName].Mission = {} -- for CategoryID, CategoryName in pairs( SCORINGCategory ) do -- self.Players[PlayerName].Hit[CategoryID] = {} -- self.Players[PlayerName].Destroy[CategoryID] = {} -- end self.Players[PlayerName].HitPlayers = {} self.Players[PlayerName].Score = 0 self.Players[PlayerName].Penalty = 0 self.Players[PlayerName].PenaltyCoalition = 0 self.Players[PlayerName].PenaltyWarning = 0 end if not self.Players[PlayerName].UnitCoalition then self.Players[PlayerName].UnitCoalition = UnitCoalition else if self.Players[PlayerName].UnitCoalition ~= UnitCoalition then self.Players[PlayerName].Penalty = self.Players[PlayerName].Penalty + 50 self.Players[PlayerName].PenaltyCoalition = self.Players[PlayerName].PenaltyCoalition + 1 MESSAGE:NewType( self.DisplayMessagePrefix .. "Player '" .. PlayerName .. "' changed coalition from " .. _SCORINGCoalition[self.Players[PlayerName].UnitCoalition] .. " to " .. _SCORINGCoalition[UnitCoalition] .. "(changed " .. self.Players[PlayerName].PenaltyCoalition .. " times the coalition). 50 Penalty points added.", MESSAGE.Type.Information ):ToAll() self:ScoreCSV( PlayerName, "", "COALITION_PENALTY", 1, -50, self.Players[PlayerName].UnitName, _SCORINGCoalition[self.Players[PlayerName].UnitCoalition], _SCORINGCategory[self.Players[PlayerName].UnitCategory], self.Players[PlayerName].UnitType, UnitName, _SCORINGCoalition[UnitCoalition], _SCORINGCategory[UnitCategory], UnitData:GetTypeName() ) end end self.Players[PlayerName].UnitName = UnitName self.Players[PlayerName].UnitCoalition = UnitCoalition self.Players[PlayerName].UnitCategory = UnitCategory self.Players[PlayerName].UnitType = UnitTypeName self.Players[PlayerName].UNIT = UnitData self.Players[PlayerName].ThreatLevel = UnitThreatLevel self.Players[PlayerName].ThreatType = UnitThreatType -- TODO: DCS bug concerning Units with skill level client don't get destroyed in multi player. This logic is deactivated until this bug gets fixed. --[[ if self.Players[PlayerName].Penalty > self.Fratricide * 0.50 then if self.Players[PlayerName].PenaltyWarning < 1 then MESSAGE:NewType( self.DisplayMessagePrefix .. "Player '" .. PlayerName .. "': WARNING! If you continue to commit FRATRICIDE and have a PENALTY score higher than " .. self.Fratricide .. ", you will be COURT MARTIALED and DISMISSED from this mission! \nYour total penalty is: " .. self.Players[PlayerName].Penalty, MESSAGE.Type.Information ):ToAll() self.Players[PlayerName].PenaltyWarning = self.Players[PlayerName].PenaltyWarning + 1 end end if self.Players[PlayerName].Penalty > self.Fratricide then MESSAGE:NewType( self.DisplayMessagePrefix .. "Player '" .. PlayerName .. "' committed FRATRICIDE, he will be COURT MARTIALED and is DISMISSED from this mission!", MESSAGE.Type.Information ):ToAll() UnitData:GetGroup():Destroy() end --]] end end --- Add a goal score for a player. -- The method takes the PlayerUnit for which the Goal score needs to be set. -- The GoalTag is a string or identifier that is taken into the CSV file scoring log to identify the goal. -- A free text can be given that is shown to the players. -- The Score can be both positive and negative. -- @param #SCORING self -- @param Wrapper.Unit#UNIT PlayerUnit The @{Unit} of the Player. Other Properties for the scoring are taken from this PlayerUnit, like coalition, type etc. -- @param #string GoalTag The string or identifier that is used in the CSV file to identify the goal (sort or group later in Excel). -- @param #string Text A free text that is shown to the players. -- @param #number Score The score can be both positive or negative ( Penalty ). function SCORING:AddGoalScore( PlayerUnit, GoalTag, Text, Score ) local PlayerName = PlayerUnit:GetPlayerName() self:E( { PlayerUnit.UnitName, PlayerName, GoalTag, Text, Score } ) -- PlayerName can be nil, if the Unit with the player crashed or due to another reason. if PlayerName then local PlayerData = self.Players[PlayerName] PlayerData.Goals[GoalTag] = PlayerData.Goals[GoalTag] or { Score = 0 } PlayerData.Goals[GoalTag].Score = PlayerData.Goals[GoalTag].Score + Score PlayerData.Score = PlayerData.Score + Score MESSAGE:NewType( self.DisplayMessagePrefix .. Text, MESSAGE.Type.Information ):ToAll() self:ScoreCSV( PlayerName, "", "GOAL_" .. string.upper( GoalTag ), 1, Score, PlayerUnit:GetName() ) end end --- Registers Scores the players completing a Mission Task. -- @param #SCORING self -- @param Tasking.Mission#MISSION Mission -- @param Wrapper.Unit#UNIT PlayerUnit -- @param #string Text -- @param #number Score function SCORING:_AddMissionTaskScore( Mission, PlayerUnit, Text, Score ) local PlayerName = PlayerUnit:GetPlayerName() local MissionName = Mission:GetName() self:E( { Mission:GetName(), PlayerUnit.UnitName, PlayerName, Text, Score } ) -- PlayerName can be nil, if the Unit with the player crashed or due to another reason. if PlayerName then local PlayerData = self.Players[PlayerName] if not PlayerData.Mission[MissionName] then PlayerData.Mission[MissionName] = {} PlayerData.Mission[MissionName].ScoreTask = 0 PlayerData.Mission[MissionName].ScoreMission = 0 end self:T( PlayerName ) self:T( PlayerData.Mission[MissionName] ) PlayerData.Score = self.Players[PlayerName].Score + Score PlayerData.Mission[MissionName].ScoreTask = self.Players[PlayerName].Mission[MissionName].ScoreTask + Score MESSAGE:NewType( self.DisplayMessagePrefix .. MissionName .. " : " .. Text .. " Score: " .. Score, MESSAGE.Type.Information ):ToAll() self:ScoreCSV( PlayerName, "", "TASK_" .. MissionName:gsub( ' ', '_' ), 1, Score, PlayerUnit:GetName() ) end end --- Registers Mission Scores for possible multiple players that contributed in the Mission. -- @param #SCORING self -- @param Tasking.Mission#MISSION Mission -- @param Wrapper.Unit#UNIT PlayerUnit -- @param #string Text -- @param #number Score function SCORING:_AddMissionScore( Mission, Text, Score ) local MissionName = Mission:GetName() self:E( { Mission, Text, Score } ) self:E( self.Players ) for PlayerName, PlayerData in pairs( self.Players ) do self:E( PlayerData ) if PlayerData.Mission[MissionName] then PlayerData.Score = PlayerData.Score + Score PlayerData.Mission[MissionName].ScoreMission = PlayerData.Mission[MissionName].ScoreMission + Score MESSAGE:NewType( self.DisplayMessagePrefix .. "Player '" .. PlayerName .. "' has " .. Text .. " in Mission '" .. MissionName .. "'. " .. Score .. " mission score!", MESSAGE.Type.Information ):ToAll() self:ScoreCSV( PlayerName, "", "MISSION_" .. MissionName:gsub( ' ', '_' ), 1, Score ) end end end --- Handles the OnPlayerEnterUnit event for the scoring. -- @param #SCORING self -- @param Core.Event#EVENTDATA Event function SCORING:OnEventPlayerEnterUnit( Event ) if Event.IniUnit then self:_AddPlayerFromUnit( Event.IniUnit ) local Menu = MENU_GROUP:New( Event.IniGroup, 'Scoring' ) local ReportGroupSummary = MENU_GROUP_COMMAND:New( Event.IniGroup, 'Summary report players in group', Menu, SCORING.ReportScoreGroupSummary, self, Event.IniGroup ) local ReportGroupDetailed = MENU_GROUP_COMMAND:New( Event.IniGroup, 'Detailed report players in group', Menu, SCORING.ReportScoreGroupDetailed, self, Event.IniGroup ) local ReportToAllSummary = MENU_GROUP_COMMAND:New( Event.IniGroup, 'Summary report all players', Menu, SCORING.ReportScoreAllSummary, self, Event.IniGroup ) self:SetState( Event.IniUnit, "ScoringMenu", Menu ) end end --- Handles the OnPlayerLeaveUnit event for the scoring. -- @param #SCORING self -- @param Core.Event#EVENTDATA Event function SCORING:OnEventPlayerLeaveUnit( Event ) if Event.IniUnit then local Menu = self:GetState( Event.IniUnit, "ScoringMenu" ) -- Core.Menu#MENU_GROUP if Menu then -- TODO: Check if this fixes #281. --Menu:Remove() end end end --- Handles the OnHit event for the scoring. -- @param #SCORING self -- @param Core.Event#EVENTDATA Event function SCORING:_EventOnHit( Event ) self:F( { Event } ) local InitUnit = nil local InitUNIT = nil local InitUnitName = "" local InitGroup = nil local InitGroupName = "" local InitPlayerName = nil local InitCoalition = nil local InitCategory = nil local InitType = nil local InitUnitCoalition = nil local InitUnitCategory = nil local InitUnitType = nil local TargetUnit = nil local TargetUNIT = nil local TargetUnitName = "" local TargetGroup = nil local TargetGroupName = "" local TargetPlayerName = nil local TargetCoalition = nil local TargetCategory = nil local TargetType = nil local TargetUnitCoalition = nil local TargetUnitCategory = nil local TargetUnitType = nil if Event.IniDCSUnit then InitUnit = Event.IniDCSUnit InitUNIT = Event.IniUnit InitUnitName = Event.IniDCSUnitName InitGroup = Event.IniDCSGroup InitGroupName = Event.IniDCSGroupName InitPlayerName = Event.IniPlayerName InitCoalition = Event.IniCoalition --TODO: Workaround Client DCS Bug --InitCategory = InitUnit:getCategory() --InitCategory = InitUnit:getDesc().category InitCategory = Event.IniCategory InitType = Event.IniTypeName InitUnitCoalition = _SCORINGCoalition[InitCoalition] InitUnitCategory = _SCORINGCategory[InitCategory] InitUnitType = InitType self:T( { InitUnitName, InitGroupName, InitPlayerName, InitCoalition, InitCategory, InitType , InitUnitCoalition, InitUnitCategory, InitUnitType } ) end if Event.TgtDCSUnit then TargetUnit = Event.TgtDCSUnit TargetUNIT = Event.TgtUnit TargetUnitName = Event.TgtDCSUnitName TargetGroup = Event.TgtDCSGroup TargetGroupName = Event.TgtDCSGroupName TargetPlayerName = Event.TgtPlayerName TargetCoalition = Event.TgtCoalition --TODO: Workaround Client DCS Bug --TargetCategory = TargetUnit:getCategory() --TargetCategory = TargetUnit:getDesc().category TargetCategory = Event.TgtCategory TargetType = Event.TgtTypeName TargetUnitCoalition = _SCORINGCoalition[TargetCoalition] TargetUnitCategory = _SCORINGCategory[TargetCategory] TargetUnitType = TargetType self:T( { TargetUnitName, TargetGroupName, TargetPlayerName, TargetCoalition, TargetCategory, TargetType, TargetUnitCoalition, TargetUnitCategory, TargetUnitType } ) end if InitPlayerName ~= nil then -- It is a player that is hitting something self:_AddPlayerFromUnit( InitUNIT ) if self.Players[InitPlayerName] then -- This should normally not happen, but i'll test it anyway. if TargetPlayerName ~= nil then -- It is a player hitting another player ... self:_AddPlayerFromUnit( TargetUNIT ) end self:T( "Hitting Something" ) -- What is he hitting? if TargetCategory then -- A target got hit, score it. -- Player contains the score data from self.Players[InitPlayerName] local Player = self.Players[InitPlayerName] -- Ensure there is a hit table per TargetCategory and TargetUnitName. Player.Hit[TargetCategory] = Player.Hit[TargetCategory] or {} Player.Hit[TargetCategory][TargetUnitName] = Player.Hit[TargetCategory][TargetUnitName] or {} -- PlayerHit contains the score counters and data per unit that was hit. local PlayerHit = Player.Hit[TargetCategory][TargetUnitName] PlayerHit.Score = PlayerHit.Score or 0 PlayerHit.Penalty = PlayerHit.Penalty or 0 PlayerHit.ScoreHit = PlayerHit.ScoreHit or 0 PlayerHit.PenaltyHit = PlayerHit.PenaltyHit or 0 PlayerHit.TimeStamp = PlayerHit.TimeStamp or 0 PlayerHit.UNIT = PlayerHit.UNIT or TargetUNIT PlayerHit.ThreatLevel, PlayerHit.ThreatType = PlayerHit.UNIT:GetThreatLevel() -- Only grant hit scores if there was more than one second between the last hit. if timer.getTime() - PlayerHit.TimeStamp > 1 then PlayerHit.TimeStamp = timer.getTime() if TargetPlayerName ~= nil then -- It is a player hitting another player ... -- Ensure there is a Player to Player hit reference table. Player.HitPlayers[TargetPlayerName] = true end local Score = 0 if InitCoalition then -- A coalition object was hit. if InitCoalition == TargetCoalition then Player.Penalty = Player.Penalty + 10 PlayerHit.Penalty = PlayerHit.Penalty + 10 PlayerHit.PenaltyHit = PlayerHit.PenaltyHit + 1 if TargetPlayerName ~= nil then -- It is a player hitting another player ... MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. InitPlayerName .. "' hit friendly player '" .. TargetPlayerName .. "' " .. TargetUnitCategory .. " ( " .. TargetType .. " ) " .. PlayerHit.PenaltyHit .. " times. " .. "Penalty: -" .. PlayerHit.Penalty .. ". Score Total:" .. Player.Score - Player.Penalty, MESSAGE.Type.Update ) :ToAllIf( self:IfMessagesHit() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesHit() and self:IfMessagesToCoalition() ) else MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. InitPlayerName .. "' hit friendly target " .. TargetUnitCategory .. " ( " .. TargetType .. " ) " .. PlayerHit.PenaltyHit .. " times. " .. "Penalty: -" .. PlayerHit.Penalty .. ". Score Total:" .. Player.Score - Player.Penalty, MESSAGE.Type.Update ) :ToAllIf( self:IfMessagesHit() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesHit() and self:IfMessagesToCoalition() ) end self:ScoreCSV( InitPlayerName, TargetPlayerName, "HIT_PENALTY", 1, -10, InitUnitName, InitUnitCoalition, InitUnitCategory, InitUnitType, TargetUnitName, TargetUnitCoalition, TargetUnitCategory, TargetUnitType ) else Player.Score = Player.Score + 1 PlayerHit.Score = PlayerHit.Score + 1 PlayerHit.ScoreHit = PlayerHit.ScoreHit + 1 if TargetPlayerName ~= nil then -- It is a player hitting another player ... MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. InitPlayerName .. "' hit enemy player '" .. TargetPlayerName .. "' " .. TargetUnitCategory .. " ( " .. TargetType .. " ) " .. PlayerHit.ScoreHit .. " times. " .. "Score: " .. PlayerHit.Score .. ". Score Total:" .. Player.Score - Player.Penalty, MESSAGE.Type.Update ) :ToAllIf( self:IfMessagesHit() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesHit() and self:IfMessagesToCoalition() ) else MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. InitPlayerName .. "' hit enemy target " .. TargetUnitCategory .. " ( " .. TargetType .. " ) " .. PlayerHit.ScoreHit .. " times. " .. "Score: " .. PlayerHit.Score .. ". Score Total:" .. Player.Score - Player.Penalty, MESSAGE.Type.Update ) :ToAllIf( self:IfMessagesHit() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesHit() and self:IfMessagesToCoalition() ) end self:ScoreCSV( InitPlayerName, TargetPlayerName, "HIT_SCORE", 1, 1, InitUnitName, InitUnitCoalition, InitUnitCategory, InitUnitType, TargetUnitName, TargetUnitCoalition, TargetUnitCategory, TargetUnitType ) end else -- A scenery object was hit. MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. InitPlayerName .. "' hit scenery object.", MESSAGE.Type.Update ) :ToAllIf( self:IfMessagesHit() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesHit() and self:IfMessagesToCoalition() ) self:ScoreCSV( InitPlayerName, "", "HIT_SCORE", 1, 0, InitUnitName, InitUnitCoalition, InitUnitCategory, InitUnitType, TargetUnitName, "", "Scenery", TargetUnitType ) end end end end elseif InitPlayerName == nil then -- It is an AI hitting a player??? end -- It is a weapon initiated by a player, that is hitting something -- This seems to occur only with scenery and static objects. if Event.WeaponPlayerName ~= nil then self:_AddPlayerFromUnit( Event.WeaponUNIT ) if self.Players[Event.WeaponPlayerName] then -- This should normally not happen, but i'll test it anyway. if TargetPlayerName ~= nil then -- It is a player hitting another player ... self:_AddPlayerFromUnit( TargetUNIT ) end self:T( "Hitting Scenery" ) -- What is he hitting? if TargetCategory then -- A scenery or static got hit, score it. -- Player contains the score data from self.Players[WeaponPlayerName] local Player = self.Players[Event.WeaponPlayerName] -- Ensure there is a hit table per TargetCategory and TargetUnitName. Player.Hit[TargetCategory] = Player.Hit[TargetCategory] or {} Player.Hit[TargetCategory][TargetUnitName] = Player.Hit[TargetCategory][TargetUnitName] or {} -- PlayerHit contains the score counters and data per unit that was hit. local PlayerHit = Player.Hit[TargetCategory][TargetUnitName] PlayerHit.Score = PlayerHit.Score or 0 PlayerHit.Penalty = PlayerHit.Penalty or 0 PlayerHit.ScoreHit = PlayerHit.ScoreHit or 0 PlayerHit.PenaltyHit = PlayerHit.PenaltyHit or 0 PlayerHit.TimeStamp = PlayerHit.TimeStamp or 0 PlayerHit.UNIT = PlayerHit.UNIT or TargetUNIT PlayerHit.ThreatLevel, PlayerHit.ThreatType = PlayerHit.UNIT:GetThreatLevel() -- Only grant hit scores if there was more than one second between the last hit. if timer.getTime() - PlayerHit.TimeStamp > 1 then PlayerHit.TimeStamp = timer.getTime() local Score = 0 if InitCoalition then -- A coalition object was hit, probably a static. if InitCoalition == TargetCoalition then -- TODO: Penalty according scale Player.Penalty = Player.Penalty + 10 PlayerHit.Penalty = PlayerHit.Penalty + 10 PlayerHit.PenaltyHit = PlayerHit.PenaltyHit + 1 MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. Event.WeaponPlayerName .. "' hit friendly target " .. TargetUnitCategory .. " ( " .. TargetType .. " ) " .. "Penalty: -" .. PlayerHit.Penalty .. " = " .. Player.Score - Player.Penalty, MESSAGE.Type.Update ) :ToAllIf( self:IfMessagesHit() and self:IfMessagesToAll() ) :ToCoalitionIf( Event.WeaponCoalition, self:IfMessagesHit() and self:IfMessagesToCoalition() ) self:ScoreCSV( Event.WeaponPlayerName, TargetPlayerName, "HIT_PENALTY", 1, -10, Event.WeaponName, Event.WeaponCoalition, Event.WeaponCategory, Event.WeaponTypeName, TargetUnitName, TargetUnitCoalition, TargetUnitCategory, TargetUnitType ) else Player.Score = Player.Score + 1 PlayerHit.Score = PlayerHit.Score + 1 PlayerHit.ScoreHit = PlayerHit.ScoreHit + 1 MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. Event.WeaponPlayerName .. "' hit enemy target " .. TargetUnitCategory .. " ( " .. TargetType .. " ) " .. "Score: +" .. PlayerHit.Score .. " = " .. Player.Score - Player.Penalty, MESSAGE.Type.Update ) :ToAllIf( self:IfMessagesHit() and self:IfMessagesToAll() ) :ToCoalitionIf( Event.WeaponCoalition, self:IfMessagesHit() and self:IfMessagesToCoalition() ) self:ScoreCSV( Event.WeaponPlayerName, TargetPlayerName, "HIT_SCORE", 1, 1, Event.WeaponName, Event.WeaponCoalition, Event.WeaponCategory, Event.WeaponTypeName, TargetUnitName, TargetUnitCoalition, TargetUnitCategory, TargetUnitType ) end else -- A scenery object was hit. MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. Event.WeaponPlayerName .. "' hit scenery object.", MESSAGE.Type.Update ) :ToAllIf( self:IfMessagesHit() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesHit() and self:IfMessagesToCoalition() ) self:ScoreCSV( Event.WeaponPlayerName, "", "HIT_SCORE", 1, 0, Event.WeaponName, Event.WeaponCoalition, Event.WeaponCategory, Event.WeaponTypeName, TargetUnitName, "", "Scenery", TargetUnitType ) end end end end end end --- Track DEAD or CRASH events for the scoring. -- @param #SCORING self -- @param Core.Event#EVENTDATA Event function SCORING:_EventOnDeadOrCrash( Event ) self:F( { Event } ) local TargetUnit = nil local TargetGroup = nil local TargetUnitName = "" local TargetGroupName = "" local TargetPlayerName = "" local TargetCoalition = nil local TargetCategory = nil local TargetType = nil local TargetUnitCoalition = nil local TargetUnitCategory = nil local TargetUnitType = nil if Event.IniDCSUnit then TargetUnit = Event.IniUnit TargetUnitName = Event.IniDCSUnitName TargetGroup = Event.IniDCSGroup TargetGroupName = Event.IniDCSGroupName TargetPlayerName = Event.IniPlayerName TargetCoalition = Event.IniCoalition --TargetCategory = TargetUnit:getCategory() --TargetCategory = TargetUnit:getDesc().category -- Workaround TargetCategory = Event.IniCategory TargetType = Event.IniTypeName TargetUnitCoalition = _SCORINGCoalition[TargetCoalition] TargetUnitCategory = _SCORINGCategory[TargetCategory] TargetUnitType = TargetType self:T( { TargetUnitName, TargetGroupName, TargetPlayerName, TargetCoalition, TargetCategory, TargetType } ) end -- Player contains the score and reference data for the player. for PlayerName, Player in pairs( self.Players ) do if Player then -- This should normally not happen, but i'll test it anyway. self:T( "Something got destroyed" ) -- Some variables local InitUnitName = Player.UnitName local InitUnitType = Player.UnitType local InitCoalition = Player.UnitCoalition local InitCategory = Player.UnitCategory local InitUnitCoalition = _SCORINGCoalition[InitCoalition] local InitUnitCategory = _SCORINGCategory[InitCategory] self:T( { InitUnitName, InitUnitType, InitUnitCoalition, InitCoalition, InitUnitCategory, InitCategory } ) local Destroyed = false -- What is the player destroying? if Player and Player.Hit and Player.Hit[TargetCategory] and Player.Hit[TargetCategory][TargetUnitName] and Player.Hit[TargetCategory][TargetUnitName].TimeStamp ~= 0 then -- Was there a hit for this unit for this player before registered??? local TargetThreatLevel = Player.Hit[TargetCategory][TargetUnitName].ThreatLevel local TargetThreatType = Player.Hit[TargetCategory][TargetUnitName].ThreatType Player.Destroy[TargetCategory] = Player.Destroy[TargetCategory] or {} Player.Destroy[TargetCategory][TargetType] = Player.Destroy[TargetCategory][TargetType] or {} -- PlayerDestroy contains the destroy score data per category and target type of the player. local TargetDestroy = Player.Destroy[TargetCategory][TargetType] TargetDestroy.Score = TargetDestroy.Score or 0 TargetDestroy.ScoreDestroy = TargetDestroy.ScoreDestroy or 0 TargetDestroy.Penalty = TargetDestroy.Penalty or 0 TargetDestroy.PenaltyDestroy = TargetDestroy.PenaltyDestroy or 0 if TargetCoalition then if InitCoalition == TargetCoalition then local ThreatLevelTarget = TargetThreatLevel local ThreatTypeTarget = TargetThreatType local ThreatLevelPlayer = Player.ThreatLevel / 10 + 1 local ThreatPenalty = math.ceil( ( ThreatLevelTarget / ThreatLevelPlayer ) * self.ScaleDestroyPenalty / 10 ) self:E( { ThreatLevel = ThreatPenalty, ThreatLevelTarget = ThreatLevelTarget, ThreatTypeTarget = ThreatTypeTarget, ThreatLevelPlayer = ThreatLevelPlayer } ) Player.Penalty = Player.Penalty + ThreatPenalty TargetDestroy.Penalty = TargetDestroy.Penalty + ThreatPenalty TargetDestroy.PenaltyDestroy = TargetDestroy.PenaltyDestroy + 1 if Player.HitPlayers[TargetPlayerName] then -- A player destroyed another player MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. PlayerName .. "' destroyed friendly player '" .. TargetPlayerName .. "' " .. TargetUnitCategory .. " ( " .. ThreatTypeTarget .. " ) " .. "Penalty: -" .. TargetDestroy.Penalty .. " = " .. Player.Score - Player.Penalty, MESSAGE.Type.Information ) :ToAllIf( self:IfMessagesDestroy() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesDestroy() and self:IfMessagesToCoalition() ) else MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. PlayerName .. "' destroyed friendly target " .. TargetUnitCategory .. " ( " .. ThreatTypeTarget .. " ) " .. "Penalty: -" .. TargetDestroy.Penalty .. " = " .. Player.Score - Player.Penalty, MESSAGE.Type.Information ) :ToAllIf( self:IfMessagesDestroy() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesDestroy() and self:IfMessagesToCoalition() ) end Destroyed = true self:ScoreCSV( PlayerName, TargetPlayerName, "DESTROY_PENALTY", 1, ThreatPenalty, InitUnitName, InitUnitCoalition, InitUnitCategory, InitUnitType, TargetUnitName, TargetUnitCoalition, TargetUnitCategory, TargetUnitType ) else local ThreatLevelTarget = TargetThreatLevel local ThreatTypeTarget = TargetThreatType local ThreatLevelPlayer = Player.ThreatLevel / 10 + 1 local ThreatScore = math.ceil( ( ThreatLevelTarget / ThreatLevelPlayer ) * self.ScaleDestroyScore / 10 ) self:E( { ThreatLevel = ThreatScore, ThreatLevelTarget = ThreatLevelTarget, ThreatTypeTarget = ThreatTypeTarget, ThreatLevelPlayer = ThreatLevelPlayer } ) Player.Score = Player.Score + ThreatScore TargetDestroy.Score = TargetDestroy.Score + ThreatScore TargetDestroy.ScoreDestroy = TargetDestroy.ScoreDestroy + 1 if Player.HitPlayers[TargetPlayerName] then -- A player destroyed another player MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. PlayerName .. "' destroyed enemy player '" .. TargetPlayerName .. "' " .. TargetUnitCategory .. " ( " .. ThreatTypeTarget .. " ) " .. "Score: +" .. TargetDestroy.Score .. " = " .. Player.Score - Player.Penalty, MESSAGE.Type.Information ) :ToAllIf( self:IfMessagesDestroy() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesDestroy() and self:IfMessagesToCoalition() ) else MESSAGE :NewType( self.DisplayMessagePrefix .. "Player '" .. PlayerName .. "' destroyed enemy " .. TargetUnitCategory .. " ( " .. ThreatTypeTarget .. " ) " .. "Score: +" .. TargetDestroy.Score .. " = " .. Player.Score - Player.Penalty, MESSAGE.Type.Information ) :ToAllIf( self:IfMessagesDestroy() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesDestroy() and self:IfMessagesToCoalition() ) end Destroyed = true self:ScoreCSV( PlayerName, TargetPlayerName, "DESTROY_SCORE", 1, ThreatScore, InitUnitName, InitUnitCoalition, InitUnitCategory, InitUnitType, TargetUnitName, TargetUnitCoalition, TargetUnitCategory, TargetUnitType ) local UnitName = TargetUnit:GetName() local Score = self.ScoringObjects[UnitName] if Score then Player.Score = Player.Score + Score TargetDestroy.Score = TargetDestroy.Score + Score MESSAGE :NewType( self.DisplayMessagePrefix .. "Special target '" .. TargetUnitCategory .. " ( " .. ThreatTypeTarget .. " ) " .. " destroyed! " .. "Player '" .. PlayerName .. "' receives an extra " .. Score .. " points! Total: " .. Player.Score - Player.Penalty, MESSAGE.Type.Information ) :ToAllIf( self:IfMessagesScore() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesScore() and self:IfMessagesToCoalition() ) self:ScoreCSV( PlayerName, TargetPlayerName, "DESTROY_SCORE", 1, Score, InitUnitName, InitUnitCoalition, InitUnitCategory, InitUnitType, TargetUnitName, TargetUnitCoalition, TargetUnitCategory, TargetUnitType ) Destroyed = true end -- Check if there are Zones where the destruction happened. for ZoneName, ScoreZoneData in pairs( self.ScoringZones ) do self:E( { ScoringZone = ScoreZoneData } ) local ScoreZone = ScoreZoneData.ScoreZone -- Core.Zone#ZONE_BASE local Score = ScoreZoneData.Score if ScoreZone:IsVec2InZone( TargetUnit:GetVec2() ) then Player.Score = Player.Score + Score TargetDestroy.Score = TargetDestroy.Score + Score MESSAGE :NewType( self.DisplayMessagePrefix .. "Target destroyed in zone '" .. ScoreZone:GetName() .. "'." .. "Player '" .. PlayerName .. "' receives an extra " .. Score .. " points! " .. "Total: " .. Player.Score - Player.Penalty, MESSAGE.Type.Information ) :ToAllIf( self:IfMessagesZone() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesZone() and self:IfMessagesToCoalition() ) self:ScoreCSV( PlayerName, TargetPlayerName, "DESTROY_SCORE", 1, Score, InitUnitName, InitUnitCoalition, InitUnitCategory, InitUnitType, TargetUnitName, TargetUnitCoalition, TargetUnitCategory, TargetUnitType ) Destroyed = true end end end else -- Check if there are Zones where the destruction happened. for ZoneName, ScoreZoneData in pairs( self.ScoringZones ) do self:E( { ScoringZone = ScoreZoneData } ) local ScoreZone = ScoreZoneData.ScoreZone -- Core.Zone#ZONE_BASE local Score = ScoreZoneData.Score if ScoreZone:IsVec2InZone( TargetUnit:GetVec2() ) then Player.Score = Player.Score + Score TargetDestroy.Score = TargetDestroy.Score + Score MESSAGE :NewType( self.DisplayMessagePrefix .. "Scenery destroyed in zone '" .. ScoreZone:GetName() .. "'." .. "Player '" .. PlayerName .. "' receives an extra " .. Score .. " points! " .. "Total: " .. Player.Score - Player.Penalty, MESSAGE.Type.Information ) :ToAllIf( self:IfMessagesZone() and self:IfMessagesToAll() ) :ToCoalitionIf( InitCoalition, self:IfMessagesZone() and self:IfMessagesToCoalition() ) Destroyed = true self:ScoreCSV( PlayerName, "", "DESTROY_SCORE", 1, Score, InitUnitName, InitUnitCoalition, InitUnitCategory, InitUnitType, TargetUnitName, "", "Scenery", TargetUnitType ) end end end -- Delete now the hit cache if the target was destroyed. -- Otherwise points will be granted every time a target gets killed by the players that hit that target. -- This is only relevant for player to player destroys. if Destroyed then Player.Hit[TargetCategory][TargetUnitName].TimeStamp = 0 end end end end end --- Produce detailed report of player hit scores. -- @param #SCORING self -- @param #string PlayerName The name of the player. -- @return #string The report. function SCORING:ReportDetailedPlayerHits( PlayerName ) local ScoreMessage = "" local PlayerScore = 0 local PlayerPenalty = 0 local PlayerData = self.Players[PlayerName] if PlayerData then -- This should normally not happen, but i'll test it anyway. self:T( "Score Player: " .. PlayerName ) -- Some variables local InitUnitCoalition = _SCORINGCoalition[PlayerData.UnitCoalition] local InitUnitCategory = _SCORINGCategory[PlayerData.UnitCategory] local InitUnitType = PlayerData.UnitType local InitUnitName = PlayerData.UnitName local ScoreMessageHits = "" for CategoryID, CategoryName in pairs( _SCORINGCategory ) do self:T( CategoryName ) if PlayerData.Hit[CategoryID] then self:T( "Hit scores exist for player " .. PlayerName ) local Score = 0 local ScoreHit = 0 local Penalty = 0 local PenaltyHit = 0 for UnitName, UnitData in pairs( PlayerData.Hit[CategoryID] ) do Score = Score + UnitData.Score ScoreHit = ScoreHit + UnitData.ScoreHit Penalty = Penalty + UnitData.Penalty PenaltyHit = UnitData.PenaltyHit end local ScoreMessageHit = string.format( "%s:%d ", CategoryName, Score - Penalty ) self:T( ScoreMessageHit ) ScoreMessageHits = ScoreMessageHits .. ScoreMessageHit PlayerScore = PlayerScore + Score PlayerPenalty = PlayerPenalty + Penalty else --ScoreMessageHits = ScoreMessageHits .. string.format( "%s:%d ", string.format(CategoryName, 1, 1), 0 ) end end if ScoreMessageHits ~= "" then ScoreMessage = "Hits: " .. ScoreMessageHits end end return ScoreMessage, PlayerScore, PlayerPenalty end --- Produce detailed report of player destroy scores. -- @param #SCORING self -- @param #string PlayerName The name of the player. -- @return #string The report. function SCORING:ReportDetailedPlayerDestroys( PlayerName ) local ScoreMessage = "" local PlayerScore = 0 local PlayerPenalty = 0 local PlayerData = self.Players[PlayerName] if PlayerData then -- This should normally not happen, but i'll test it anyway. self:T( "Score Player: " .. PlayerName ) -- Some variables local InitUnitCoalition = _SCORINGCoalition[PlayerData.UnitCoalition] local InitUnitCategory = _SCORINGCategory[PlayerData.UnitCategory] local InitUnitType = PlayerData.UnitType local InitUnitName = PlayerData.UnitName local ScoreMessageDestroys = "" for CategoryID, CategoryName in pairs( _SCORINGCategory ) do if PlayerData.Destroy[CategoryID] then self:T( "Destroy scores exist for player " .. PlayerName ) local Score = 0 local ScoreDestroy = 0 local Penalty = 0 local PenaltyDestroy = 0 for UnitName, UnitData in pairs( PlayerData.Destroy[CategoryID] ) do self:E( { UnitData = UnitData } ) if UnitData ~= {} then Score = Score + UnitData.Score ScoreDestroy = ScoreDestroy + UnitData.ScoreDestroy Penalty = Penalty + UnitData.Penalty PenaltyDestroy = PenaltyDestroy + UnitData.PenaltyDestroy end end local ScoreMessageDestroy = string.format( " %s:%d ", CategoryName, Score - Penalty ) self:T( ScoreMessageDestroy ) ScoreMessageDestroys = ScoreMessageDestroys .. ScoreMessageDestroy PlayerScore = PlayerScore + Score PlayerPenalty = PlayerPenalty + Penalty else --ScoreMessageDestroys = ScoreMessageDestroys .. string.format( "%s:%d ", string.format(CategoryName, 1, 1), 0 ) end end if ScoreMessageDestroys ~= "" then ScoreMessage = "Destroys: " .. ScoreMessageDestroys end end return ScoreMessage, PlayerScore, PlayerPenalty end --- Produce detailed report of player penalty scores because of changing the coalition. -- @param #SCORING self -- @param #string PlayerName The name of the player. -- @return #string The report. function SCORING:ReportDetailedPlayerCoalitionChanges( PlayerName ) local ScoreMessage = "" local PlayerScore = 0 local PlayerPenalty = 0 local PlayerData = self.Players[PlayerName] if PlayerData then -- This should normally not happen, but i'll test it anyway. self:T( "Score Player: " .. PlayerName ) -- Some variables local InitUnitCoalition = _SCORINGCoalition[PlayerData.UnitCoalition] local InitUnitCategory = _SCORINGCategory[PlayerData.UnitCategory] local InitUnitType = PlayerData.UnitType local InitUnitName = PlayerData.UnitName local ScoreMessageCoalitionChangePenalties = "" if PlayerData.PenaltyCoalition ~= 0 then ScoreMessageCoalitionChangePenalties = ScoreMessageCoalitionChangePenalties .. string.format( " -%d (%d changed)", PlayerData.Penalty, PlayerData.PenaltyCoalition ) PlayerPenalty = PlayerPenalty + PlayerData.Penalty end if ScoreMessageCoalitionChangePenalties ~= "" then ScoreMessage = ScoreMessage .. "Coalition Penalties: " .. ScoreMessageCoalitionChangePenalties end end return ScoreMessage, PlayerScore, PlayerPenalty end --- Produce detailed report of player goal scores. -- @param #SCORING self -- @param #string PlayerName The name of the player. -- @return #string The report. function SCORING:ReportDetailedPlayerGoals( PlayerName ) local ScoreMessage = "" local PlayerScore = 0 local PlayerPenalty = 0 local PlayerData = self.Players[PlayerName] if PlayerData then -- This should normally not happen, but i'll test it anyway. self:T( "Score Player: " .. PlayerName ) -- Some variables local InitUnitCoalition = _SCORINGCoalition[PlayerData.UnitCoalition] local InitUnitCategory = _SCORINGCategory[PlayerData.UnitCategory] local InitUnitType = PlayerData.UnitType local InitUnitName = PlayerData.UnitName local ScoreMessageGoal = "" local ScoreGoal = 0 local ScoreTask = 0 for GoalName, GoalData in pairs( PlayerData.Goals ) do ScoreGoal = ScoreGoal + GoalData.Score ScoreMessageGoal = ScoreMessageGoal .. "'" .. GoalName .. "':" .. GoalData.Score .. "; " end PlayerScore = PlayerScore + ScoreGoal if ScoreMessageGoal ~= "" then ScoreMessage = "Goals: " .. ScoreMessageGoal end end return ScoreMessage, PlayerScore, PlayerPenalty end --- Produce detailed report of player penalty scores because of changing the coalition. -- @param #SCORING self -- @param #string PlayerName The name of the player. -- @return #string The report. function SCORING:ReportDetailedPlayerMissions( PlayerName ) local ScoreMessage = "" local PlayerScore = 0 local PlayerPenalty = 0 local PlayerData = self.Players[PlayerName] if PlayerData then -- This should normally not happen, but i'll test it anyway. self:T( "Score Player: " .. PlayerName ) -- Some variables local InitUnitCoalition = _SCORINGCoalition[PlayerData.UnitCoalition] local InitUnitCategory = _SCORINGCategory[PlayerData.UnitCategory] local InitUnitType = PlayerData.UnitType local InitUnitName = PlayerData.UnitName local ScoreMessageMission = "" local ScoreMission = 0 local ScoreTask = 0 for MissionName, MissionData in pairs( PlayerData.Mission ) do ScoreMission = ScoreMission + MissionData.ScoreMission ScoreTask = ScoreTask + MissionData.ScoreTask ScoreMessageMission = ScoreMessageMission .. "'" .. MissionName .. "'; " end PlayerScore = PlayerScore + ScoreMission + ScoreTask if ScoreMessageMission ~= "" then ScoreMessage = "Tasks: " .. ScoreTask .. " Mission: " .. ScoreMission .. " ( " .. ScoreMessageMission .. ")" end end return ScoreMessage, PlayerScore, PlayerPenalty end --- Report Group Score Summary -- @param #SCORING self -- @param Wrapper.Group#GROUP PlayerGroup The player group. function SCORING:ReportScoreGroupSummary( PlayerGroup ) local PlayerMessage = "" self:T( "Report Score Group Summary" ) local PlayerUnits = PlayerGroup:GetUnits() for UnitID, PlayerUnit in pairs( PlayerUnits ) do local PlayerUnit = PlayerUnit -- Wrapper.Unit#UNIT local PlayerName = PlayerUnit:GetPlayerName() if PlayerName then local ReportHits, ScoreHits, PenaltyHits = self:ReportDetailedPlayerHits( PlayerName ) ReportHits = ReportHits ~= "" and "\n- " .. ReportHits or ReportHits self:E( { ReportHits, ScoreHits, PenaltyHits } ) local ReportDestroys, ScoreDestroys, PenaltyDestroys = self:ReportDetailedPlayerDestroys( PlayerName ) ReportDestroys = ReportDestroys ~= "" and "\n- " .. ReportDestroys or ReportDestroys self:E( { ReportDestroys, ScoreDestroys, PenaltyDestroys } ) local ReportCoalitionChanges, ScoreCoalitionChanges, PenaltyCoalitionChanges = self:ReportDetailedPlayerCoalitionChanges( PlayerName ) ReportCoalitionChanges = ReportCoalitionChanges ~= "" and "\n- " .. ReportCoalitionChanges or ReportCoalitionChanges self:E( { ReportCoalitionChanges, ScoreCoalitionChanges, PenaltyCoalitionChanges } ) local ReportGoals, ScoreGoals, PenaltyGoals = self:ReportDetailedPlayerGoals( PlayerName ) ReportGoals = ReportGoals ~= "" and "\n- " .. ReportGoals or ReportGoals self:E( { ReportGoals, ScoreGoals, PenaltyGoals } ) local ReportMissions, ScoreMissions, PenaltyMissions = self:ReportDetailedPlayerMissions( PlayerName ) ReportMissions = ReportMissions ~= "" and "\n- " .. ReportMissions or ReportMissions self:E( { ReportMissions, ScoreMissions, PenaltyMissions } ) local PlayerScore = ScoreHits + ScoreDestroys + ScoreCoalitionChanges + ScoreGoals + ScoreMissions local PlayerPenalty = PenaltyHits + PenaltyDestroys + PenaltyCoalitionChanges + ScoreGoals + PenaltyMissions PlayerMessage = string.format( "Player '%s' Score = %d ( %d Score, -%d Penalties )", PlayerName, PlayerScore - PlayerPenalty, PlayerScore, PlayerPenalty ) MESSAGE:NewType( PlayerMessage, MESSAGE.Type.Detailed ):ToGroup( PlayerGroup ) end end end --- Report Group Score Detailed -- @param #SCORING self -- @param Wrapper.Group#GROUP PlayerGroup The player group. function SCORING:ReportScoreGroupDetailed( PlayerGroup ) local PlayerMessage = "" self:T( "Report Score Group Detailed" ) local PlayerUnits = PlayerGroup:GetUnits() for UnitID, PlayerUnit in pairs( PlayerUnits ) do local PlayerUnit = PlayerUnit -- Wrapper.Unit#UNIT local PlayerName = PlayerUnit:GetPlayerName() if PlayerName then local ReportHits, ScoreHits, PenaltyHits = self:ReportDetailedPlayerHits( PlayerName ) ReportHits = ReportHits ~= "" and "\n- " .. ReportHits or ReportHits self:E( { ReportHits, ScoreHits, PenaltyHits } ) local ReportDestroys, ScoreDestroys, PenaltyDestroys = self:ReportDetailedPlayerDestroys( PlayerName ) ReportDestroys = ReportDestroys ~= "" and "\n- " .. ReportDestroys or ReportDestroys self:E( { ReportDestroys, ScoreDestroys, PenaltyDestroys } ) local ReportCoalitionChanges, ScoreCoalitionChanges, PenaltyCoalitionChanges = self:ReportDetailedPlayerCoalitionChanges( PlayerName ) ReportCoalitionChanges = ReportCoalitionChanges ~= "" and "\n- " .. ReportCoalitionChanges or ReportCoalitionChanges self:E( { ReportCoalitionChanges, ScoreCoalitionChanges, PenaltyCoalitionChanges } ) local ReportGoals, ScoreGoals, PenaltyGoals = self:ReportDetailedPlayerGoals( PlayerName ) ReportGoals = ReportGoals ~= "" and "\n- " .. ReportGoals or ReportGoals self:E( { ReportGoals, ScoreGoals, PenaltyGoals } ) local ReportMissions, ScoreMissions, PenaltyMissions = self:ReportDetailedPlayerMissions( PlayerName ) ReportMissions = ReportMissions ~= "" and "\n- " .. ReportMissions or ReportMissions self:E( { ReportMissions, ScoreMissions, PenaltyMissions } ) local PlayerScore = ScoreHits + ScoreDestroys + ScoreCoalitionChanges + ScoreGoals + ScoreMissions local PlayerPenalty = PenaltyHits + PenaltyDestroys + PenaltyCoalitionChanges + ScoreGoals + PenaltyMissions PlayerMessage = string.format( "Player '%s' Score = %d ( %d Score, -%d Penalties )%s%s%s%s%s", PlayerName, PlayerScore - PlayerPenalty, PlayerScore, PlayerPenalty, ReportHits, ReportDestroys, ReportCoalitionChanges, ReportGoals, ReportMissions ) MESSAGE:NewType( PlayerMessage, MESSAGE.Type.Detailed ):ToGroup( PlayerGroup ) end end end --- Report all players score -- @param #SCORING self -- @param Wrapper.Group#GROUP PlayerGroup The player group. function SCORING:ReportScoreAllSummary( PlayerGroup ) local PlayerMessage = "" self:T( "Report Score All Players" ) for PlayerName, PlayerData in pairs( self.Players ) do if PlayerName then local ReportHits, ScoreHits, PenaltyHits = self:ReportDetailedPlayerHits( PlayerName ) ReportHits = ReportHits ~= "" and "\n- " .. ReportHits or ReportHits self:E( { ReportHits, ScoreHits, PenaltyHits } ) local ReportDestroys, ScoreDestroys, PenaltyDestroys = self:ReportDetailedPlayerDestroys( PlayerName ) ReportDestroys = ReportDestroys ~= "" and "\n- " .. ReportDestroys or ReportDestroys self:E( { ReportDestroys, ScoreDestroys, PenaltyDestroys } ) local ReportCoalitionChanges, ScoreCoalitionChanges, PenaltyCoalitionChanges = self:ReportDetailedPlayerCoalitionChanges( PlayerName ) ReportCoalitionChanges = ReportCoalitionChanges ~= "" and "\n- " .. ReportCoalitionChanges or ReportCoalitionChanges self:E( { ReportCoalitionChanges, ScoreCoalitionChanges, PenaltyCoalitionChanges } ) local ReportGoals, ScoreGoals, PenaltyGoals = self:ReportDetailedPlayerGoals( PlayerName ) ReportGoals = ReportGoals ~= "" and "\n- " .. ReportGoals or ReportGoals self:E( { ReportGoals, ScoreGoals, PenaltyGoals } ) local ReportMissions, ScoreMissions, PenaltyMissions = self:ReportDetailedPlayerMissions( PlayerName ) ReportMissions = ReportMissions ~= "" and "\n- " .. ReportMissions or ReportMissions self:E( { ReportMissions, ScoreMissions, PenaltyMissions } ) local PlayerScore = ScoreHits + ScoreDestroys + ScoreCoalitionChanges + ScoreGoals + ScoreMissions local PlayerPenalty = PenaltyHits + PenaltyDestroys + PenaltyCoalitionChanges + ScoreGoals + PenaltyMissions PlayerMessage = string.format( "Player '%s' Score = %d ( %d Score, -%d Penalties )", PlayerName, PlayerScore - PlayerPenalty, PlayerScore, PlayerPenalty ) MESSAGE:NewType( PlayerMessage, MESSAGE.Type.Overview ):ToGroup( PlayerGroup ) end end end function SCORING:SecondsToClock(sSeconds) local nSeconds = sSeconds if nSeconds == 0 then --return nil; return "00:00:00"; else nHours = string.format("%02.f", math.floor(nSeconds/3600)); nMins = string.format("%02.f", math.floor(nSeconds/60 - (nHours*60))); nSecs = string.format("%02.f", math.floor(nSeconds - nHours*3600 - nMins *60)); return nHours..":"..nMins..":"..nSecs end end --- Opens a score CSV file to log the scores. -- @param #SCORING self -- @param #string ScoringCSV -- @return #SCORING self -- @usage -- -- Open a new CSV file to log the scores of the game Gori Valley. Let the name of the CSV file begin with "Player Scores". -- ScoringObject = SCORING:New( "Gori Valley" ) -- ScoringObject:OpenCSV( "Player Scores" ) function SCORING:OpenCSV( ScoringCSV ) self:F( ScoringCSV ) if lfs and io and os then if ScoringCSV then self.ScoringCSV = ScoringCSV local fdir = lfs.writedir() .. [[Logs\]] .. self.ScoringCSV .. " " .. os.date( "%Y-%m-%d %H-%M-%S" ) .. ".csv" self.CSVFile, self.err = io.open( fdir, "w+" ) if not self.CSVFile then error( "Error: Cannot open CSV file in " .. lfs.writedir() ) end self.CSVFile:write( '"GameName","RunTime","Time","PlayerName","TargetPlayerName","ScoreType","PlayerUnitCoaltion","PlayerUnitCategory","PlayerUnitType","PlayerUnitName","TargetUnitCoalition","TargetUnitCategory","TargetUnitType","TargetUnitName","Times","Score"\n' ) self.RunTime = os.date("%y-%m-%d_%H-%M-%S") else error( "A string containing the CSV file name must be given." ) end else self:E( "The MissionScripting.lua file has not been changed to allow lfs, io and os modules to be used..." ) end return self end --- Registers a score for a player. -- @param #SCORING self -- @param #string PlayerName The name of the player. -- @param #string TargetPlayerName The name of the target player. -- @param #string ScoreType The type of the score. -- @param #string ScoreTimes The amount of scores achieved. -- @param #string ScoreAmount The score given. -- @param #string PlayerUnitName The unit name of the player. -- @param #string PlayerUnitCoalition The coalition of the player unit. -- @param #string PlayerUnitCategory The category of the player unit. -- @param #string PlayerUnitType The type of the player unit. -- @param #string TargetUnitName The name of the target unit. -- @param #string TargetUnitCoalition The coalition of the target unit. -- @param #string TargetUnitCategory The category of the target unit. -- @param #string TargetUnitType The type of the target unit. -- @return #SCORING self function SCORING:ScoreCSV( PlayerName, TargetPlayerName, ScoreType, ScoreTimes, ScoreAmount, PlayerUnitName, PlayerUnitCoalition, PlayerUnitCategory, PlayerUnitType, TargetUnitName, TargetUnitCoalition, TargetUnitCategory, TargetUnitType ) --write statistic information to file local ScoreTime = self:SecondsToClock( timer.getTime() ) PlayerName = PlayerName:gsub( '"', '_' ) TargetPlayerName = TargetPlayerName or "" TargetPlayerName = TargetPlayerName:gsub( '"', '_' ) if PlayerUnitName and PlayerUnitName ~= '' then local PlayerUnit = Unit.getByName( PlayerUnitName ) if PlayerUnit then if not PlayerUnitCategory then --PlayerUnitCategory = SCORINGCategory[PlayerUnit:getCategory()] PlayerUnitCategory = _SCORINGCategory[PlayerUnit:getDesc().category] end if not PlayerUnitCoalition then PlayerUnitCoalition = _SCORINGCoalition[PlayerUnit:getCoalition()] end if not PlayerUnitType then PlayerUnitType = PlayerUnit:getTypeName() end else PlayerUnitName = '' PlayerUnitCategory = '' PlayerUnitCoalition = '' PlayerUnitType = '' end else PlayerUnitName = '' PlayerUnitCategory = '' PlayerUnitCoalition = '' PlayerUnitType = '' end TargetUnitCoalition = TargetUnitCoalition or "" TargetUnitCategory = TargetUnitCategory or "" TargetUnitType = TargetUnitType or "" TargetUnitName = TargetUnitName or "" if lfs and io and os then self.CSVFile:write( '"' .. self.GameName .. '"' .. ',' .. '"' .. self.RunTime .. '"' .. ',' .. '' .. ScoreTime .. '' .. ',' .. '"' .. PlayerName .. '"' .. ',' .. '"' .. TargetPlayerName .. '"' .. ',' .. '"' .. ScoreType .. '"' .. ',' .. '"' .. PlayerUnitCoalition .. '"' .. ',' .. '"' .. PlayerUnitCategory .. '"' .. ',' .. '"' .. PlayerUnitType .. '"' .. ',' .. '"' .. PlayerUnitName .. '"' .. ',' .. '"' .. TargetUnitCoalition .. '"' .. ',' .. '"' .. TargetUnitCategory .. '"' .. ',' .. '"' .. TargetUnitType .. '"' .. ',' .. '"' .. TargetUnitName .. '"' .. ',' .. '' .. ScoreTimes .. '' .. ',' .. '' .. ScoreAmount ) self.CSVFile:write( "\n" ) end end function SCORING:CloseCSV() if lfs and io and os then self.CSVFile:close() end end --- **Functional** -- The CLEANUP_AIRBASE class keeps an area clean of crashing or colliding airplanes. It also prevents airplanes from firing within this area. -- -- === -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- ==== -- -- @module CleanUp --- @type CLEANUP_AIRBASE.__ Methods which are not intended for mission designers, but which are used interally by the moose designer :-) -- @field #map<#string,Wrapper.Airbase#AIRBASE> Airbases Map of Airbases. -- @extends Core.Base#BASE --- @type CLEANUP_AIRBASE -- @extends #CLEANUP_AIRBASE.__ --- # CLEANUP_AIRBASE, extends @{Base#BASE} -- -- ![Banner Image](..\Presentations\CLEANUP_AIRBASE\Dia1.JPG) -- -- The CLEANUP_AIRBASE class keeps airbases clean, and tries to guarantee continuous airbase operations, even under combat. -- Specific airbases need to be provided that need to be guarded. Each airbase registered, will be guarded within a zone of 8 km around the airbase. -- Any unit that fires a missile, or shoots within the zone of an airbase, will be monitored by CLEANUP_AIRBASE. -- Within the 8km zone, units cannot fire any missile, which prevents the airbase runway to receive missile or bomb hits. -- Any airborne or ground unit that is on the runway below 30 meters (default value) will be automatically removed if it is damaged. -- -- This is not a full 100% secure implementation. It is still possible that CLEANUP_AIRBASE cannot prevent (in-time) to keep the airbase clean. -- The following situations may happen that will still stop the runway of an airbase: -- -- * A damaged unit is not removed on time when above the runway, and crashes on the runway. -- * A bomb or missile is still able to dropped on the runway. -- * Units collide on the airbase, and could not be removed on time. -- -- When a unit is within the airbase zone and needs to be monitored, -- its status will be checked every 0.25 seconds! This is required to ensure that the airbase is kept clean. -- But as a result, there is more CPU overload. -- -- So as an advise, I suggest you use the CLEANUP_AIRBASE class with care: -- -- * Only monitor airbases that really need to be monitored! -- * Try not to monitor airbases that are likely to be invaded by enemy troops. -- For these airbases, there is little use to keep them clean, as they will be invaded anyway... -- -- By following the above guidelines, you can add airbase cleanup with acceptable CPU overhead. -- -- ## 1. CLEANUP_AIRBASE Constructor -- -- Creates the main object which is preventing the airbase to get polluted with debris on the runway, which halts the airbase. -- -- -- Clean these Zones. -- CleanUpAirports = CLEANUP_AIRBASE:New( { AIRBASE.Caucasus.Tbilisi, AIRBASE.Caucasus.Kutaisi ) -- -- -- or -- CleanUpTbilisi = CLEANUP_AIRBASE:New( AIRBASE.Caucasus.Tbilisi ) -- CleanUpKutaisi = CLEANUP_AIRBASE:New( AIRBASE.Caucasus.Kutaisi ) -- -- ## 2. Add or Remove airbases -- -- The method @{#CLEANUP_AIRBASE.AddAirbase}() to add an airbase to the cleanup validation process. -- The method @{#CLEANUP_AIRBASE.RemoveAirbase}() removes an airbase from the cleanup validation process. -- -- ## 3. Clean missiles and bombs within the airbase zone. -- -- When missiles or bombs hit the runway, the airbase operations stop. -- Use the method @{#CLEANUP_AIRBASE.SetCleanMissiles}() to control the cleaning of missiles, which will prevent airbases to stop. -- Note that this method will not allow anymore airbases to be attacked, so there is a trade-off here to do. -- -- @field #CLEANUP_AIRBASE CLEANUP_AIRBASE = { ClassName = "CLEANUP_AIRBASE", TimeInterval = 0.2, CleanUpList = {}, } -- @field #CLEANUP_AIRBASE.__ CLEANUP_AIRBASE.__ = {} --- @field #CLEANUP_AIRBASE.__.Airbases CLEANUP_AIRBASE.__.Airbases = {} --- Creates the main object which is handling the cleaning of the debris within the given Zone Names. -- @param #CLEANUP_AIRBASE self -- @param #list<#string> AirbaseNames Is a table of airbase names where the debris should be cleaned. Also a single string can be passed with one airbase name. -- @return #CLEANUP_AIRBASE -- @usage -- -- Clean these Zones. -- CleanUpAirports = CLEANUP_AIRBASE:New( { AIRBASE.Caucasus.Tbilisi, AIRBASE.Caucasus.Kutaisi ) -- or -- CleanUpTbilisi = CLEANUP_AIRBASE:New( AIRBASE.Caucasus.Tbilisi ) -- CleanUpKutaisi = CLEANUP_AIRBASE:New( AIRBASE.Caucasus.Kutaisi ) function CLEANUP_AIRBASE:New( AirbaseNames ) local self = BASE:Inherit( self, BASE:New() ) -- #CLEANUP_AIRBASE self:F( { AirbaseNames } ) if type( AirbaseNames ) == 'table' then for AirbaseID, AirbaseName in pairs( AirbaseNames ) do self:AddAirbase( AirbaseName ) end else local AirbaseName = AirbaseNames self:AddAirbase( AirbaseName ) end self:HandleEvent( EVENTS.Birth, self.__.OnEventBirth ) self.__.CleanUpScheduler = SCHEDULER:New( self, self.__.CleanUpSchedule, {}, 1, self.TimeInterval ) self:HandleEvent( EVENTS.EngineShutdown , self.__.EventAddForCleanUp ) self:HandleEvent( EVENTS.EngineStartup, self.__.EventAddForCleanUp ) self:HandleEvent( EVENTS.Hit, self.__.EventAddForCleanUp ) self:HandleEvent( EVENTS.PilotDead, self.__.OnEventCrash ) self:HandleEvent( EVENTS.Dead, self.__.OnEventCrash ) self:HandleEvent( EVENTS.Crash, self.__.OnEventCrash ) return self end --- Adds an airbase to the airbase validation list. -- @param #CLEANUP_AIRBASE self -- @param #string AirbaseName -- @return #CLEANUP_AIRBASE function CLEANUP_AIRBASE:AddAirbase( AirbaseName ) self.__.Airbases[AirbaseName] = AIRBASE:FindByName( AirbaseName ) self:F({"Airbase:", AirbaseName, self.__.Airbases[AirbaseName]:GetDesc()}) return self end --- Removes an airbase from the airbase validation list. -- @param #CLEANUP_AIRBASE self -- @param #string AirbaseName -- @return #CLEANUP_AIRBASE function CLEANUP_AIRBASE:RemoveAirbase( AirbaseName ) self.__.Airbases[AirbaseName] = nil return self end --- Enables or disables the cleaning of missiles within the airbase zones. -- Airbase operations stop when a missile or bomb is dropped at a runway. -- Note that when this method is used, the airbase operations won't stop if -- the missile or bomb was cleaned within the airbase zone, which is 8km from the center of the airbase. -- However, there is a trade-off to make. Attacks on airbases won't be possible anymore if this method is used. -- Note, one can also use the method @{#CLEANUP_AIRBASE.RemoveAirbase}() to remove the airbase from the control process as a whole, -- when an enemy unit is near. That is also an option... -- @param #CLEANUP_AIRBASE self -- @param #string CleanMissiles (Default=true) If true, missiles fired are immediately destroyed. If false missiles are not controlled. -- @return #CLEANUP_AIRBASE function CLEANUP_AIRBASE:SetCleanMissiles( CleanMissiles ) if CleanMissiles then self:HandleEvent( EVENTS.Shot, self.__.OnEventShot ) else self:UnHandleEvent( EVENTS.Shot ) end end function CLEANUP_AIRBASE.__:IsInAirbase( Vec2 ) local InAirbase = false for AirbaseName, Airbase in pairs( self.__.Airbases ) do local Airbase = Airbase -- Wrapper.Airbase#AIRBASE if Airbase:GetZone():IsVec2InZone( Vec2 ) then InAirbase = true break; end end return InAirbase end --- Destroys a @{Unit} from the simulator, but checks first if it is still existing! -- @param #CLEANUP_AIRBASE self -- @param Wrapper.Unit#UNIT CleanUpUnit The object to be destroyed. function CLEANUP_AIRBASE.__:DestroyUnit( CleanUpUnit ) self:F( { CleanUpUnit } ) if CleanUpUnit then local CleanUpUnitName = CleanUpUnit:GetName() local CleanUpGroup = CleanUpUnit:GetGroup() -- TODO Client bug in 1.5.3 if CleanUpGroup:IsAlive() then local CleanUpGroupUnits = CleanUpGroup:GetUnits() if #CleanUpGroupUnits == 1 then local CleanUpGroupName = CleanUpGroup:GetName() CleanUpGroup:Destroy() else CleanUpUnit:Destroy() end self.CleanUpList[CleanUpUnitName] = nil end end end --- Destroys a missile from the simulator, but checks first if it is still existing! -- @param #CLEANUP_AIRBASE self -- @param Dcs.DCSTypes#Weapon MissileObject function CLEANUP_AIRBASE.__:DestroyMissile( MissileObject ) self:F( { MissileObject } ) if MissileObject and MissileObject:isExist() then MissileObject:destroy() self:T( "MissileObject Destroyed") end end --- @param #CLEANUP_AIRBASE self -- @param Core.Event#EVENTDATA EventData function CLEANUP_AIRBASE.__:OnEventBirth( EventData ) self:F( { EventData } ) self.CleanUpList[EventData.IniDCSUnitName] = {} self.CleanUpList[EventData.IniDCSUnitName].CleanUpUnit = EventData.IniUnit self.CleanUpList[EventData.IniDCSUnitName].CleanUpGroup = EventData.IniGroup self.CleanUpList[EventData.IniDCSUnitName].CleanUpGroupName = EventData.IniDCSGroupName self.CleanUpList[EventData.IniDCSUnitName].CleanUpUnitName = EventData.IniDCSUnitName end --- Detects if a crash event occurs. -- Crashed units go into a CleanUpList for removal. -- @param #CLEANUP_AIRBASE self -- @param Core.Event#EVENTDATA Event function CLEANUP_AIRBASE.__:OnEventCrash( Event ) self:F( { Event } ) --TODO: This stuff is not working due to a DCS bug. Burning units cannot be destroyed. -- self:T("before getGroup") -- local _grp = Unit.getGroup(event.initiator)-- Identify the group that fired -- self:T("after getGroup") -- _grp:destroy() -- self:T("after deactivateGroup") -- event.initiator:destroy() if Event.IniDCSUnitName and Event.IniCategory == Object.Category.UNIT then self.CleanUpList[Event.IniDCSUnitName] = {} self.CleanUpList[Event.IniDCSUnitName].CleanUpUnit = Event.IniUnit self.CleanUpList[Event.IniDCSUnitName].CleanUpGroup = Event.IniGroup self.CleanUpList[Event.IniDCSUnitName].CleanUpGroupName = Event.IniDCSGroupName self.CleanUpList[Event.IniDCSUnitName].CleanUpUnitName = Event.IniDCSUnitName end end --- Detects if a unit shoots a missile. -- If this occurs within one of the airbases, then the weapon used must be destroyed. -- @param #CLEANUP_AIRBASE self -- @param Core.Event#EVENTDATA Event function CLEANUP_AIRBASE.__:OnEventShot( Event ) self:F( { Event } ) -- Test if the missile was fired within one of the CLEANUP_AIRBASE.AirbaseNames. if self:IsInAirbase( Event.IniUnit:GetVec2() ) then -- Okay, the missile was fired within the CLEANUP_AIRBASE.AirbaseNames, destroy the fired weapon. self:DestroyMissile( Event.Weapon ) end end --- Detects if the Unit has an S_EVENT_HIT within the given AirbaseNames. If this is the case, destroy the unit. -- @param #CLEANUP_AIRBASE self -- @param Core.Event#EVENTDATA Event function CLEANUP_AIRBASE.__:OnEventHit( Event ) self:F( { Event } ) if Event.IniUnit then if self:IsInAirbase( Event.IniUnit:GetVec2() ) then self:T( { "Life: ", Event.IniDCSUnitName, ' = ', Event.IniUnit:GetLife(), "/", Event.IniUnit:GetLife0() } ) if Event.IniUnit:GetLife() < Event.IniUnit:GetLife0() then self:T( "CleanUp: Destroy: " .. Event.IniDCSUnitName ) CLEANUP_AIRBASE.__:DestroyUnit( Event.IniUnit ) end end end if Event.TgtUnit then if self:IsInAirbase( Event.TgtUnit:GetVec2() ) then self:T( { "Life: ", Event.TgtDCSUnitName, ' = ', Event.TgtUnit:GetLife(), "/", Event.TgtUnit:GetLife0() } ) if Event.TgtUnit:GetLife() < Event.TgtUnit:GetLife0() then self:T( "CleanUp: Destroy: " .. Event.TgtDCSUnitName ) CLEANUP_AIRBASE.__:DestroyUnit( Event.TgtUnit ) end end end end --- Add the @{DCSWrapper.Unit#Unit} to the CleanUpList for CleanUp. -- @param #CLEANUP_AIRBASE self -- @param Wrapper.Unit#UNIT CleanUpUnit -- @oaram #string CleanUpUnitName function CLEANUP_AIRBASE.__:AddForCleanUp( CleanUpUnit, CleanUpUnitName ) self:F( { CleanUpUnit, CleanUpUnitName } ) self.CleanUpList[CleanUpUnitName] = {} self.CleanUpList[CleanUpUnitName].CleanUpUnit = CleanUpUnit self.CleanUpList[CleanUpUnitName].CleanUpUnitName = CleanUpUnitName local CleanUpGroup = CleanUpUnit:GetGroup() self.CleanUpList[CleanUpUnitName].CleanUpGroup = CleanUpGroup self.CleanUpList[CleanUpUnitName].CleanUpGroupName = CleanUpGroup:GetName() self.CleanUpList[CleanUpUnitName].CleanUpTime = timer.getTime() self.CleanUpList[CleanUpUnitName].CleanUpMoved = false self:T( { "CleanUp: Add to CleanUpList: ", CleanUpGroup:GetName(), CleanUpUnitName } ) end --- Detects if the Unit has an S_EVENT_ENGINE_SHUTDOWN or an S_EVENT_HIT within the given AirbaseNames. If this is the case, add the Group to the CLEANUP_AIRBASE List. -- @param #CLEANUP_AIRBASE.__ self -- @param Core.Event#EVENTDATA Event function CLEANUP_AIRBASE.__:EventAddForCleanUp( Event ) self:F({Event}) if Event.IniDCSUnit and Event.IniCategory == Object.Category.UNIT then if self.CleanUpList[Event.IniDCSUnitName] == nil then if self:IsInAirbase( Event.IniUnit:GetVec2() ) then self:AddForCleanUp( Event.IniUnit, Event.IniDCSUnitName ) end end end if Event.TgtDCSUnit and Event.TgtCategory == Object.Category.UNIT then if self.CleanUpList[Event.TgtDCSUnitName] == nil then if self:IsInAirbase( Event.TgtUnit:GetVec2() ) then self:AddForCleanUp( Event.TgtUnit, Event.TgtDCSUnitName ) end end end end --- At the defined time interval, CleanUp the Groups within the CleanUpList. -- @param #CLEANUP_AIRBASE self function CLEANUP_AIRBASE.__:CleanUpSchedule() local CleanUpCount = 0 for CleanUpUnitName, CleanUpListData in pairs( self.CleanUpList ) do CleanUpCount = CleanUpCount + 1 local CleanUpUnit = CleanUpListData.CleanUpUnit -- Wrapper.Unit#UNIT local CleanUpGroupName = CleanUpListData.CleanUpGroupName if CleanUpUnit:IsAlive() ~= nil then if _DATABASE:GetStatusGroup( CleanUpGroupName ) ~= "ReSpawn" then local CleanUpCoordinate = CleanUpUnit:GetCoordinate() self:T( { "CleanUp Scheduler", CleanUpUnitName } ) if CleanUpUnit:GetLife() <= CleanUpUnit:GetLife0() * 0.95 then if CleanUpUnit:IsAboveRunway() then if CleanUpUnit:InAir() then local CleanUpLandHeight = CleanUpCoordinate:GetLandHeight() local CleanUpUnitHeight = CleanUpCoordinate.y - CleanUpLandHeight if CleanUpUnitHeight < 100 then self:T( { "CleanUp Scheduler", "Destroy " .. CleanUpUnitName .. " because below safe height and damaged." } ) self:DestroyUnit( CleanUpUnit ) end else self:T( { "CleanUp Scheduler", "Destroy " .. CleanUpUnitName .. " because on runway and damaged." } ) self:DestroyUnit( CleanUpUnit ) end end end -- Clean Units which are waiting for a very long time in the CleanUpZone. if CleanUpUnit then local CleanUpUnitVelocity = CleanUpUnit:GetVelocityKMH() if CleanUpUnitVelocity < 1 then if CleanUpListData.CleanUpMoved then if CleanUpListData.CleanUpTime + 180 <= timer.getTime() then self:T( { "CleanUp Scheduler", "Destroy due to not moving anymore " .. CleanUpUnitName } ) self:DestroyUnit( CleanUpUnit ) end end else CleanUpListData.CleanUpTime = timer.getTime() CleanUpListData.CleanUpMoved = true end end else -- Do nothing ... self.CleanUpList[CleanUpUnitName] = nil end else self:T( "CleanUp: Group " .. CleanUpUnitName .. " cannot be found in DCS RTE, removing ..." ) self.CleanUpList[CleanUpUnitName] = nil end end self:T(CleanUpCount) return true end --- **Functional** -- Spawn dynamically new GROUPs in your missions. -- -- ![Banner Image](..\Presentations\SPAWN\SPAWN.JPG) -- -- ==== -- -- The documentation of the SPAWN class can be found further in this document. -- -- ==== -- -- # Demo Missions -- -- ### [SPAWN Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/SPA%20-%20Spawning) -- -- ### [SPAWN Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/SPA%20-%20Spawning) -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [SPAWN YouTube Channel](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl1jirWIo4t4YxqN-HxjqRkL) -- -- === -- -- # **AUTHORS and CONTRIBUTIONS** -- -- ### Contributions: -- -- * **Aaron**: Posed the idea for Group position randomization at SpawnInZone and make the Unit randomization separate from the Group randomization. -- * [**Entropy**](https://forums.eagle.ru/member.php?u=111471), **Afinegan**: Came up with the requirement for AIOnOff(). -- -- ### Authors: -- -- * **FlightControl**: Design & Programming -- -- @module Spawn ----BASE:TraceClass("SPAWN") --- SPAWN Class -- @type SPAWN -- @field ClassName -- @field #string SpawnTemplatePrefix -- @field #string SpawnAliasPrefix -- @field #number AliveUnits -- @field #number MaxAliveUnits -- @field #number SpawnIndex -- @field #number MaxAliveGroups -- @field #SPAWN.SpawnZoneTable SpawnZoneTable -- @extends Core.Base#BASE --- # SPAWN class, extends @{Base#BASE} -- -- The SPAWN class allows to spawn dynamically new groups. -- Each SPAWN object needs to be have a related **template group** setup in the Mission Editor (ME), -- which is a normal group with the **Late Activation** flag set. -- This template group will never be activated in your mission. -- SPAWN uses that **template group** to reference to all the characteristics -- (air, ground, livery, unit composition, formation, skill level etc) of each new group to be spawned. -- -- Therefore, when creating a SPAWN object, the @{#SPAWN.New} and @{#SPAWN.NewWithAlias} require -- **the name of the template group** to be given as a string to those constructor methods. -- -- Initialization settings can be applied on the SPAWN object, -- which modify the behaviour or the way groups are spawned. -- These initialization methods have the prefix **Init**. -- There are also spawn methods with the prefix **Spawn** and will spawn new groups in various ways. -- -- ### IMPORTANT! The methods with prefix **Init** must be used before any methods with prefix **Spawn** method are used, or unexpected results may appear!!! -- -- Because SPAWN can spawn multiple groups of a template group, -- SPAWN has an **internal index** that keeps track -- which was the latest group that was spawned. -- -- **Limits** can be set on how many groups can be spawn in each SPAWN object, -- using the method @{#SPAWN.InitLimit}. SPAWN has 2 kind of limits: -- -- * The maximum amount of @{Unit}s that can be **alive** at the same time... -- * The maximum amount of @{Group}s that can be **spawned**... This is more of a **resource**-type of limit. -- -- When new groups get spawned using the **Spawn** methods, -- it will be evaluated whether any limits have been reached. -- When no spawn limit is reached, a new group will be created by the spawning methods, -- and the internal index will be increased with 1. -- -- These limits ensure that your mission does not accidentally get flooded with spawned groups. -- Additionally, it also guarantees that independent of the group composition, -- at any time, the most optimal amount of groups are alive in your mission. -- For example, if your template group has a group composition of 10 units, and you specify a limit of 100 units alive at the same time, -- with unlimited resources = :InitLimit( 100, 0 ) and 10 groups are alive, but two groups have only one unit alive in the group, -- then a sequent Spawn(Scheduled) will allow a new group to be spawned!!! -- -- ### IMPORTANT!! If a limit has been reached, it is possible that a **Spawn** method returns **nil**, meaning, no @{Group} had been spawned!!! -- -- Spawned groups get **the same name** as the name of the template group. -- Spawned units in those groups keep _by default_ **the same name** as the name of the template group. -- However, because multiple groups and units are created from the template group, -- a suffix is added to each spawned group and unit. -- -- Newly spawned groups will get the following naming structure at run-time: -- -- 1. Spawned groups will have the name _GroupName_#_nnn_, where _GroupName_ is the name of the **template group**, -- and _nnn_ is a **counter from 0 to 999**. -- 2. Spawned units will have the name _GroupName_#_nnn_-_uu_, -- where _uu_ is a **counter from 0 to 99** for each new spawned unit belonging to the group. -- -- That being said, there is a way to keep the same unit names! -- The method @{#SPAWN.InitKeepUnitNames}() will keep the same unit names as defined within the template group, thus: -- -- 3. Spawned units will have the name _UnitName_#_nnn_-_uu_, -- where _UnitName_ is the **unit name as defined in the template group*, -- and _uu_ is a **counter from 0 to 99** for each new spawned unit belonging to the group. -- -- Some **additional notes that need to be considered!!**: -- -- * templates are actually groups defined within the mission editor, with the flag "Late Activation" set. -- As such, these groups are never used within the mission, but are used by the @{#SPAWN} module. -- * It is important to defined BEFORE you spawn new groups, -- a proper initialization of the SPAWN instance is done with the options you want to use. -- * When designing a mission, NEVER name groups using a "#" within the name of the group Spawn template(s), -- or the SPAWN module logic won't work anymore. -- -- ## SPAWN construction methods -- -- Create a new SPAWN object with the @{#SPAWN.New}() or the @{#SPAWN.NewWithAlias}() methods: -- -- * @{#SPAWN.New}(): Creates a new SPAWN object taking the name of the group that represents the GROUP template (definition). -- * @{#SPAWN.NewWithAlias}(): Creates a new SPAWN object taking the name of the group that represents the GROUP template (definition), and gives each spawned @{Group} an different name. -- -- It is important to understand how the SPAWN class works internally. The SPAWN object created will contain internally a list of groups that will be spawned and that are already spawned. -- The initialization methods will modify this list of groups so that when a group gets spawned, ALL information is already prepared when spawning. This is done for performance reasons. -- So in principle, the group list will contain all parameters and configurations after initialization, and when groups get actually spawned, this spawning can be done quickly and efficient. -- -- ## SPAWN **Init**ialization methods -- -- A spawn object will behave differently based on the usage of **initialization** methods, which all start with the **Init** prefix: -- -- ### Unit Names -- -- * @{#SPAWN.InitKeepUnitNames}(): Keeps the unit names as defined within the mission editor, but note that anything after a # mark is ignored, and any spaces before and after the resulting name are removed. IMPORTANT! This method MUST be the first used after :New !!! -- -- ### Route randomization -- -- * @{#SPAWN.InitRandomizeRoute}(): Randomize the routes of spawned groups, and for air groups also optionally the height. -- -- ### Group composition randomization -- -- * @{#SPAWN.InitRandomizeTemplate}(): Randomize the group templates so that when a new group is spawned, a random group template is selected from one of the templates defined. -- -- ### Uncontrolled -- -- * @{#SPAWN.InitUnControlled}(): Spawn plane groups uncontrolled. -- -- ### Array formation -- -- * @{#SPAWN.InitArray}(): Make groups visible before they are actually activated, and order these groups like a batallion in an array. -- -- ### Position randomization -- -- * @{#SPAWN.InitRandomizePosition}(): Randomizes the position of @{Group}s that are spawned within a **radius band**, given an Outer and Inner radius, from the point that the spawn happens. -- * @{#SPAWN.InitRandomizeUnits}(): Randomizes the @{Unit}s in the @{Group} that is spawned within a **radius band**, given an Outer and Inner radius. -- * @{#SPAWN.InitRandomizeZones}(): Randomizes the spawning between a predefined list of @{Zone}s that are declared using this function. Each zone can be given a probability factor. -- -- ### Enable / Disable AI when spawning a new @{Group} -- -- * @{#SPAWN.InitAIOn}(): Turns the AI On when spawning the new @{Group} object. -- * @{#SPAWN.InitAIOff}(): Turns the AI Off when spawning the new @{Group} object. -- * @{#SPAWN.InitAIOnOff}(): Turns the AI On or Off when spawning the new @{Group} object. -- -- ### Limit scheduled spawning -- -- * @{#SPAWN.InitLimit}(): Limits the amount of groups that can be alive at the same time and that can be dynamically spawned. -- -- ### Delay initial scheduled spawn -- -- * @{#SPAWN.InitDelayOnOff}(): Turns the inital delay On/Off when scheduled spawning the first @{Group} object. -- * @{#SPAWN.InitDelayOn}(): Turns the inital delay On when scheduled spawning the first @{Group} object. -- * @{#SPAWN.InitDelayOff}(): Turns the inital delay Off when scheduled spawning the first @{Group} object. -- -- ### Repeat spawned @{Group}s upon landing -- -- * @{#SPAWN.InitRepeat}() or @{#SPAWN.InitRepeatOnLanding}(): This method is used to re-spawn automatically the same group after it has landed. -- * @{#SPAWN.InitRepeatOnEngineShutDown}(): This method is used to re-spawn automatically the same group after it has landed and it shuts down the engines at the ramp. -- -- -- ## SPAWN **Spawn** methods -- -- Groups can be spawned at different times and methods: -- -- ### **Single** spawning methods -- -- * @{#SPAWN.Spawn}(): Spawn one new group based on the last spawned index. -- * @{#SPAWN.ReSpawn}(): Re-spawn a group based on a given index. -- * @{#SPAWN.SpawnFromVec3}(): Spawn a new group from a Vec3 coordinate. (The group will can be spawned at a point in the air). -- * @{#SPAWN.SpawnFromVec2}(): Spawn a new group from a Vec2 coordinate. (The group will be spawned at land height ). -- * @{#SPAWN.SpawnFromStatic}(): Spawn a new group from a structure, taking the position of a @{Static}. -- * @{#SPAWN.SpawnFromUnit}(): Spawn a new group taking the position of a @{Unit}. -- * @{#SPAWN.SpawnInZone}(): Spawn a new group in a @{Zone}. -- * @{#SPAWN.SpawnAtAirbase}(): Spawn a new group at an @{Airbase}, which can be an airdrome, ship or helipad. -- -- Note that @{#SPAWN.Spawn} and @{#SPAWN.ReSpawn} return a @{GROUP#GROUP.New} object, that contains a reference to the DCSGroup object. -- You can use the @{GROUP} object to do further actions with the DCSGroup. -- -- ### **Scheduled** spawning methods -- -- * @{#SPAWN.SpawnScheduled}(): Spawn groups at scheduled but randomized intervals. -- * @{#SPAWN.SpawnScheduledStart}(): Start or continue to spawn groups at scheduled time intervals. -- * @{#SPAWN.SpawnScheduledStop}(): Stop the spawning of groups at scheduled time intervals. -- -- -- -- ## Retrieve alive GROUPs spawned by the SPAWN object -- -- The SPAWN class administers which GROUPS it has reserved (in stock) or has created during mission execution. -- Every time a SPAWN object spawns a new GROUP object, a reference to the GROUP object is added to an internal table of GROUPS. -- SPAWN provides methods to iterate through that internal GROUP object reference table: -- -- * @{#SPAWN.GetFirstAliveGroup}(): Will find the first alive GROUP it has spawned, and return the alive GROUP object and the first Index where the first alive GROUP object has been found. -- * @{#SPAWN.GetNextAliveGroup}(): Will find the next alive GROUP object from a given Index, and return a reference to the alive GROUP object and the next Index where the alive GROUP has been found. -- * @{#SPAWN.GetLastAliveGroup}(): Will find the last alive GROUP object, and will return a reference to the last live GROUP object and the last Index where the last alive GROUP object has been found. -- -- You can use the methods @{#SPAWN.GetFirstAliveGroup}() and sequently @{#SPAWN.GetNextAliveGroup}() to iterate through the alive GROUPS within the SPAWN object, and to actions... See the respective methods for an example. -- The method @{#SPAWN.GetGroupFromIndex}() will return the GROUP object reference from the given Index, dead or alive... -- -- ## Spawned cleaning of inactive groups -- -- Sometimes, it will occur during a mission run-time, that ground or especially air objects get damaged, and will while being damged stop their activities, while remaining alive. -- In such cases, the SPAWN object will just sit there and wait until that group gets destroyed, but most of the time it won't, -- and it may occur that no new groups are or can be spawned as limits are reached. -- To prevent this, a @{#SPAWN.InitCleanUp}() initialization method has been defined that will silently monitor the status of each spawned group. -- Once a group has a velocity = 0, and has been waiting for a defined interval, that group will be cleaned or removed from run-time. -- There is a catch however :-) If a damaged group has returned to an airbase within the coalition, that group will not be considered as "lost"... -- In such a case, when the inactive group is cleaned, a new group will Re-spawned automatically. -- This models AI that has succesfully returned to their airbase, to restart their combat activities. -- Check the @{#SPAWN.InitCleanUp}() for further info. -- -- ## Catch the @{Group} Spawn Event in a callback function! -- -- When using the @{#SPAWN.SpawnScheduled)() method, new @{Group}s are created following the spawn time interval parameters. -- When a new @{Group} is spawned, you maybe want to execute actions with that group spawned at the spawn event. -- The SPAWN class supports this functionality through the method @{#SPAWN.OnSpawnGroup}( **function( SpawnedGroup ) end ** ), -- which takes a function as a parameter that you can define locally. -- Whenever a new @{Group} is spawned, the given function is called, and the @{Group} that was just spawned, is given as a parameter. -- As a result, your spawn event handling function requires one parameter to be declared, which will contain the spawned @{Group} object. -- A coding example is provided at the description of the @{#SPAWN.OnSpawnGroup}( **function( SpawnedGroup ) end ** ) method. -- -- ## Delay the initial spawning -- -- When using the @{#SPAWN.SpawnScheduled)() method, the default behaviour of this method will be that it will spawn the initial (first) @{Group} -- immediately when :SpawnScheduled() is initiated. The methods @{#SPAWN.InitDelayOnOff}() and @{#SPAWN.InitDelayOn}() can be used to -- activate a delay before the first @{Group} is spawned. For completeness, a method @{#SPAWN.InitDelayOff}() is also available, that -- can be used to switch off the initial delay. Because there is no delay by default, this method would only be used when a -- @{#SPAWN.SpawnScheduledStop}() ; @{#SPAWN.SpawnScheduledStart}() sequence would have been used. -- -- -- @field #SPAWN SPAWN -- SPAWN = { ClassName = "SPAWN", SpawnTemplatePrefix = nil, SpawnAliasPrefix = nil, } --- Enumerator for spawns at airbases -- @type SPAWN.Takeoff -- @extends Wrapper.Group#GROUP.Takeoff --- @field #SPAWN.Takeoff Takeoff SPAWN.Takeoff = GROUP.Takeoff --- @type SPAWN.SpawnZoneTable -- @list SpawnZone --- Creates the main object to spawn a @{Group} defined in the DCS ME. -- @param #SPAWN self -- @param #string SpawnTemplatePrefix is the name of the Group in the ME that defines the Template. Each new group will have the name starting with SpawnTemplatePrefix. -- @return #SPAWN -- @usage -- -- NATO helicopters engaging in the battle field. -- Spawn_BE_KA50 = SPAWN:New( 'BE KA-50@RAMP-Ground Defense' ) -- @usage local Plane = SPAWN:New( "Plane" ) -- Creates a new local variable that can initiate new planes with the name "Plane#ddd" using the template "Plane" as defined within the ME. function SPAWN:New( SpawnTemplatePrefix ) local self = BASE:Inherit( self, BASE:New() ) -- #SPAWN self:F( { SpawnTemplatePrefix } ) local TemplateGroup = Group.getByName( SpawnTemplatePrefix ) if TemplateGroup then self.SpawnTemplatePrefix = SpawnTemplatePrefix self.SpawnIndex = 0 self.SpawnCount = 0 -- The internal counter of the amount of spawning the has happened since SpawnStart. self.AliveUnits = 0 -- Contains the counter how many units are currently alive self.SpawnIsScheduled = false -- Reflects if the spawning for this SpawnTemplatePrefix is going to be scheduled or not. self.SpawnTemplate = self._GetTemplate( self, SpawnTemplatePrefix ) -- Contains the template structure for a Group Spawn from the Mission Editor. Note that this group must have lateActivation always on!!! self.Repeat = false -- Don't repeat the group from Take-Off till Landing and back Take-Off by ReSpawning. self.UnControlled = false -- When working in UnControlled mode, all planes are Spawned in UnControlled mode before the scheduler starts. self.SpawnInitLimit = false -- By default, no InitLimit self.SpawnMaxUnitsAlive = 0 -- The maximum amount of groups that can be alive of SpawnTemplatePrefix at the same time. self.SpawnMaxGroups = 0 -- The maximum amount of groups that can be spawned. self.SpawnRandomize = false -- Sets the randomization flag of new Spawned units to false. self.SpawnVisible = false -- Flag that indicates if all the Groups of the SpawnGroup need to be visible when Spawned. self.AIOnOff = true -- The AI is on by default when spawning a group. self.SpawnUnControlled = false self.SpawnInitKeepUnitNames = false -- Overwrite unit names by default with group name. self.DelayOnOff = false -- No intial delay when spawning the first group. self.Grouping = nil -- No grouping self.SpawnGroups = {} -- Array containing the descriptions of each Group to be Spawned. else error( "SPAWN:New: There is no group declared in the mission editor with SpawnTemplatePrefix = '" .. SpawnTemplatePrefix .. "'" ) end self:SetEventPriority( 5 ) return self end --- Creates a new SPAWN instance to create new groups based on the defined template and using a new alias for each new group. -- @param #SPAWN self -- @param #string SpawnTemplatePrefix is the name of the Group in the ME that defines the Template. -- @param #string SpawnAliasPrefix is the name that will be given to the Group at runtime. -- @return #SPAWN -- @usage -- -- NATO helicopters engaging in the battle field. -- Spawn_BE_KA50 = SPAWN:NewWithAlias( 'BE KA-50@RAMP-Ground Defense', 'Helicopter Attacking a City' ) -- @usage local PlaneWithAlias = SPAWN:NewWithAlias( "Plane", "Bomber" ) -- Creates a new local variable that can instantiate new planes with the name "Bomber#ddd" using the template "Plane" as defined within the ME. function SPAWN:NewWithAlias( SpawnTemplatePrefix, SpawnAliasPrefix ) local self = BASE:Inherit( self, BASE:New() ) self:F( { SpawnTemplatePrefix, SpawnAliasPrefix } ) local TemplateGroup = Group.getByName( SpawnTemplatePrefix ) if TemplateGroup then self.SpawnTemplatePrefix = SpawnTemplatePrefix self.SpawnAliasPrefix = SpawnAliasPrefix self.SpawnIndex = 0 self.SpawnCount = 0 -- The internal counter of the amount of spawning the has happened since SpawnStart. self.AliveUnits = 0 -- Contains the counter how many units are currently alive self.SpawnIsScheduled = false -- Reflects if the spawning for this SpawnTemplatePrefix is going to be scheduled or not. self.SpawnTemplate = self._GetTemplate( self, SpawnTemplatePrefix ) -- Contains the template structure for a Group Spawn from the Mission Editor. Note that this group must have lateActivation always on!!! self.Repeat = false -- Don't repeat the group from Take-Off till Landing and back Take-Off by ReSpawning. self.UnControlled = false -- When working in UnControlled mode, all planes are Spawned in UnControlled mode before the scheduler starts. self.SpawnInitLimit = false -- By default, no InitLimit self.SpawnMaxUnitsAlive = 0 -- The maximum amount of groups that can be alive of SpawnTemplatePrefix at the same time. self.SpawnMaxGroups = 0 -- The maximum amount of groups that can be spawned. self.SpawnRandomize = false -- Sets the randomization flag of new Spawned units to false. self.SpawnVisible = false -- Flag that indicates if all the Groups of the SpawnGroup need to be visible when Spawned. self.AIOnOff = true -- The AI is on by default when spawning a group. self.SpawnUnControlled = false self.SpawnInitKeepUnitNames = false -- Overwrite unit names by default with group name. self.DelayOnOff = false -- No intial delay when spawning the first group. self.Grouping = nil self.SpawnGroups = {} -- Array containing the descriptions of each Group to be Spawned. else error( "SPAWN:New: There is no group declared in the mission editor with SpawnTemplatePrefix = '" .. SpawnTemplatePrefix .. "'" ) end self:SetEventPriority( 5 ) return self end --- Limits the Maximum amount of Units that can be alive at the same time, and the maximum amount of groups that can be spawned. -- Note that this method is exceptionally important to balance the performance of the mission. Depending on the machine etc, a mission can only process a maximum amount of units. -- If the time interval must be short, but there should not be more Units or Groups alive than a maximum amount of units, then this method should be used... -- When a @{#SPAWN.New} is executed and the limit of the amount of units alive is reached, then no new spawn will happen of the group, until some of these units of the spawn object will be destroyed. -- @param #SPAWN self -- @param #number SpawnMaxUnitsAlive The maximum amount of units that can be alive at runtime. -- @param #number SpawnMaxGroups The maximum amount of groups that can be spawned. When the limit is reached, then no more actual spawns will happen of the group. -- This parameter is useful to define a maximum amount of airplanes, ground troops, helicopters, ships etc within a supply area. -- This parameter accepts the value 0, which defines that there are no maximum group limits, but there are limits on the maximum of units that can be alive at the same time. -- @return #SPAWN self -- @usage -- -- NATO helicopters engaging in the battle field. -- -- This helicopter group consists of one Unit. So, this group will SPAWN maximum 2 groups simultaneously within the DCSRTE. -- -- There will be maximum 24 groups spawned during the whole mission lifetime. -- Spawn_BE_KA50 = SPAWN:New( 'BE KA-50@RAMP-Ground Defense' ):InitLimit( 2, 24 ) function SPAWN:InitLimit( SpawnMaxUnitsAlive, SpawnMaxGroups ) self:F( { self.SpawnTemplatePrefix, SpawnMaxUnitsAlive, SpawnMaxGroups } ) self.SpawnInitLimit = true self.SpawnMaxUnitsAlive = SpawnMaxUnitsAlive -- The maximum amount of groups that can be alive of SpawnTemplatePrefix at the same time. self.SpawnMaxGroups = SpawnMaxGroups -- The maximum amount of groups that can be spawned. for SpawnGroupID = 1, self.SpawnMaxGroups do self:_InitializeSpawnGroups( SpawnGroupID ) end return self end --- Keeps the unit names as defined within the mission editor, -- but note that anything after a # mark is ignored, -- and any spaces before and after the resulting name are removed. -- IMPORTANT! This method MUST be the first used after :New !!! -- @param #SPAWN self -- @return #SPAWN self function SPAWN:InitKeepUnitNames() self:F( ) self.SpawnInitKeepUnitNames = true return self end --- Randomizes the defined route of the SpawnTemplatePrefix group in the ME. This is very useful to define extra variation of the behaviour of groups. -- @param #SPAWN self -- @param #number SpawnStartPoint is the waypoint where the randomization begins. -- Note that the StartPoint = 0 equaling the point where the group is spawned. -- @param #number SpawnEndPoint is the waypoint where the randomization ends counting backwards. -- This parameter is useful to avoid randomization to end at a waypoint earlier than the last waypoint on the route. -- @param #number SpawnRadius is the radius in meters in which the randomization of the new waypoints, with the original waypoint of the original template located in the middle ... -- @param #number SpawnHeight (optional) Specifies the **additional** height in meters that can be added to the base height specified at each waypoint in the ME. -- @return #SPAWN -- @usage -- -- NATO helicopters engaging in the battle field. -- -- The KA-50 has waypoints Start point ( =0 or SP ), 1, 2, 3, 4, End point (= 5 or DP). -- -- Waypoints 2 and 3 will only be randomized. The others will remain on their original position with each new spawn of the helicopter. -- -- The randomization of waypoint 2 and 3 will take place within a radius of 2000 meters. -- Spawn_BE_KA50 = SPAWN:New( 'BE KA-50@RAMP-Ground Defense' ):InitRandomizeRoute( 2, 2, 2000 ) function SPAWN:InitRandomizeRoute( SpawnStartPoint, SpawnEndPoint, SpawnRadius, SpawnHeight ) self:F( { self.SpawnTemplatePrefix, SpawnStartPoint, SpawnEndPoint, SpawnRadius, SpawnHeight } ) self.SpawnRandomizeRoute = true self.SpawnRandomizeRouteStartPoint = SpawnStartPoint self.SpawnRandomizeRouteEndPoint = SpawnEndPoint self.SpawnRandomizeRouteRadius = SpawnRadius self.SpawnRandomizeRouteHeight = SpawnHeight for GroupID = 1, self.SpawnMaxGroups do self:_RandomizeRoute( GroupID ) end return self end --- Randomizes the position of @{Group}s that are spawned within a **radius band**, given an Outer and Inner radius, from the point that the spawn happens. -- @param #SPAWN self -- @param #boolean RandomizePosition If true, SPAWN will perform the randomization of the @{Group}s position between a given outer and inner radius. -- @param Dcs.DCSTypes#Distance OuterRadius (optional) The outer radius in meters where the new group will be spawned. -- @param Dcs.DCSTypes#Distance InnerRadius (optional) The inner radius in meters where the new group will NOT be spawned. -- @return #SPAWN function SPAWN:InitRandomizePosition( RandomizePosition, OuterRadius, InnerRadius ) self:F( { self.SpawnTemplatePrefix, RandomizePosition, OuterRadius, InnerRadius } ) self.SpawnRandomizePosition = RandomizePosition or false self.SpawnRandomizePositionOuterRadius = OuterRadius or 0 self.SpawnRandomizePositionInnerRadius = InnerRadius or 0 for GroupID = 1, self.SpawnMaxGroups do self:_RandomizeRoute( GroupID ) end return self end --- Randomizes the UNITs that are spawned within a radius band given an Outer and Inner radius. -- @param #SPAWN self -- @param #boolean RandomizeUnits If true, SPAWN will perform the randomization of the @{UNIT}s position within the group between a given outer and inner radius. -- @param Dcs.DCSTypes#Distance OuterRadius (optional) The outer radius in meters where the new group will be spawned. -- @param Dcs.DCSTypes#Distance InnerRadius (optional) The inner radius in meters where the new group will NOT be spawned. -- @return #SPAWN -- @usage -- -- NATO helicopters engaging in the battle field. -- -- The KA-50 has waypoints Start point ( =0 or SP ), 1, 2, 3, 4, End point (= 5 or DP). -- -- Waypoints 2 and 3 will only be randomized. The others will remain on their original position with each new spawn of the helicopter. -- -- The randomization of waypoint 2 and 3 will take place within a radius of 2000 meters. -- Spawn_BE_KA50 = SPAWN:New( 'BE KA-50@RAMP-Ground Defense' ):InitRandomizeRoute( 2, 2, 2000 ) function SPAWN:InitRandomizeUnits( RandomizeUnits, OuterRadius, InnerRadius ) self:F( { self.SpawnTemplatePrefix, RandomizeUnits, OuterRadius, InnerRadius } ) self.SpawnRandomizeUnits = RandomizeUnits or false self.SpawnOuterRadius = OuterRadius or 0 self.SpawnInnerRadius = InnerRadius or 0 for GroupID = 1, self.SpawnMaxGroups do self:_RandomizeRoute( GroupID ) end return self end --- This method is rather complicated to understand. But I'll try to explain. -- This method becomes useful when you need to spawn groups with random templates of groups defined within the mission editor, -- but they will all follow the same Template route and have the same prefix name. -- In other words, this method randomizes between a defined set of groups the template to be used for each new spawn of a group. -- @param #SPAWN self -- @param #string SpawnTemplatePrefixTable A table with the names of the groups defined within the mission editor, from which one will be choosen when a new group will be spawned. -- @return #SPAWN -- @usage -- -- NATO Tank Platoons invading Gori. -- -- Choose between 13 different 'US Tank Platoon' configurations for each new SPAWN the Group to be spawned for the -- -- 'US Tank Platoon Left', 'US Tank Platoon Middle' and 'US Tank Platoon Right' SpawnTemplatePrefixes. -- -- Each new SPAWN will randomize the route, with a defined time interval of 200 seconds with 40% time variation (randomization) and -- -- with a limit set of maximum 12 Units alive simulteneously and 150 Groups to be spawned during the whole mission. -- Spawn_US_Platoon = { 'US Tank Platoon 1', 'US Tank Platoon 2', 'US Tank Platoon 3', 'US Tank Platoon 4', 'US Tank Platoon 5', -- 'US Tank Platoon 6', 'US Tank Platoon 7', 'US Tank Platoon 8', 'US Tank Platoon 9', 'US Tank Platoon 10', -- 'US Tank Platoon 11', 'US Tank Platoon 12', 'US Tank Platoon 13' } -- Spawn_US_Platoon_Left = SPAWN:New( 'US Tank Platoon Left' ):InitLimit( 12, 150 ):Schedule( 200, 0.4 ):InitRandomizeTemplate( Spawn_US_Platoon ):InitRandomizeRoute( 3, 3, 2000 ) -- Spawn_US_Platoon_Middle = SPAWN:New( 'US Tank Platoon Middle' ):InitLimit( 12, 150 ):Schedule( 200, 0.4 ):InitRandomizeTemplate( Spawn_US_Platoon ):InitRandomizeRoute( 3, 3, 2000 ) -- Spawn_US_Platoon_Right = SPAWN:New( 'US Tank Platoon Right' ):InitLimit( 12, 150 ):Schedule( 200, 0.4 ):InitRandomizeTemplate( Spawn_US_Platoon ):InitRandomizeRoute( 3, 3, 2000 ) function SPAWN:InitRandomizeTemplate( SpawnTemplatePrefixTable ) self:F( { self.SpawnTemplatePrefix, SpawnTemplatePrefixTable } ) self.SpawnTemplatePrefixTable = SpawnTemplatePrefixTable self.SpawnRandomizeTemplate = true for SpawnGroupID = 1, self.SpawnMaxGroups do self:_RandomizeTemplate( SpawnGroupID ) end return self end --- When spawning a new group, make the grouping of the units according the InitGrouping setting. -- @param #SPAWN self -- @param #number Grouping Indicates the maximum amount of units in the group. -- @return #SPAWN function SPAWN:InitGrouping( Grouping ) -- R2.2 self:F( { self.SpawnTemplatePrefix, Grouping } ) self.SpawnGrouping = Grouping return self end --TODO: Add example. --- This method provides the functionality to randomize the spawning of the Groups at a given list of zones of different types. -- @param #SPAWN self -- @param #table SpawnZoneTable A table with @{Zone} objects. If this table is given, then each spawn will be executed within the given list of @{Zone}s objects. -- @return #SPAWN -- @usage -- -- NATO Tank Platoons invading Gori. -- -- Choose between 3 different zones for each new SPAWN the Group to be executed, regardless of the zone type. function SPAWN:InitRandomizeZones( SpawnZoneTable ) self:F( { self.SpawnTemplatePrefix, SpawnZoneTable } ) self.SpawnZoneTable = SpawnZoneTable self.SpawnRandomizeZones = true for SpawnGroupID = 1, self.SpawnMaxGroups do self:_RandomizeZones( SpawnGroupID ) end return self end --- For planes and helicopters, when these groups go home and land on their home airbases and farps, they normally would taxi to the parking spot, shut-down their engines and wait forever until the Group is removed by the runtime environment. -- This method is used to re-spawn automatically (so no extra call is needed anymore) the same group after it has landed. -- This will enable a spawned group to be re-spawned after it lands, until it is destroyed... -- Note: When the group is respawned, it will re-spawn from the original airbase where it took off. -- So ensure that the routes for groups that respawn, always return to the original airbase, or players may get confused ... -- @param #SPAWN self -- @return #SPAWN self -- @usage -- -- RU Su-34 - AI Ship Attack -- -- Re-SPAWN the Group(s) after each landing and Engine Shut-Down automatically. -- SpawnRU_SU34 = SPAWN:New( 'TF1 RU Su-34 Krymsk@AI - Attack Ships' ):Schedule( 2, 3, 1800, 0.4 ):SpawnUncontrolled():InitRandomizeRoute( 1, 1, 3000 ):RepeatOnEngineShutDown() function SPAWN:InitRepeat() self:F( { self.SpawnTemplatePrefix, self.SpawnIndex } ) self.Repeat = true self.RepeatOnEngineShutDown = false self.RepeatOnLanding = true return self end --- Respawn group after landing. -- @param #SPAWN self -- @return #SPAWN self function SPAWN:InitRepeatOnLanding() self:F( { self.SpawnTemplatePrefix } ) self:InitRepeat() self.RepeatOnEngineShutDown = false self.RepeatOnLanding = true return self end --- Respawn after landing when its engines have shut down. -- @param #SPAWN self -- @return #SPAWN self function SPAWN:InitRepeatOnEngineShutDown() self:F( { self.SpawnTemplatePrefix } ) self:InitRepeat() self.RepeatOnEngineShutDown = true self.RepeatOnLanding = false return self end --- CleanUp groups when they are still alive, but inactive. -- When groups are still alive and have become inactive due to damage and are unable to contribute anything, then this group will be removed at defined intervals in seconds. -- @param #SPAWN self -- @param #string SpawnCleanUpInterval The interval to check for inactive groups within seconds. -- @return #SPAWN self -- @usage Spawn_Helicopter:CleanUp( 20 ) -- CleanUp the spawning of the helicopters every 20 seconds when they become inactive. function SPAWN:InitCleanUp( SpawnCleanUpInterval ) self:F( { self.SpawnTemplatePrefix, SpawnCleanUpInterval } ) self.SpawnCleanUpInterval = SpawnCleanUpInterval self.SpawnCleanUpTimeStamps = {} local SpawnGroup, SpawnCursor = self:GetFirstAliveGroup() self:T( { "CleanUp Scheduler:", SpawnGroup } ) --self.CleanUpFunction = routines.scheduleFunction( self._SpawnCleanUpScheduler, { self }, timer.getTime() + 1, SpawnCleanUpInterval ) self.CleanUpScheduler = SCHEDULER:New( self, self._SpawnCleanUpScheduler, {}, 1, SpawnCleanUpInterval, 0.2 ) return self end --- Makes the groups visible before start (like a batallion). -- The method will take the position of the group as the first position in the array. -- @param #SPAWN self -- @param #number SpawnAngle The angle in degrees how the groups and each unit of the group will be positioned. -- @param #number SpawnWidth The amount of Groups that will be positioned on the X axis. -- @param #number SpawnDeltaX The space between each Group on the X-axis. -- @param #number SpawnDeltaY The space between each Group on the Y-axis. -- @return #SPAWN self -- @usage -- -- Define an array of Groups. -- Spawn_BE_Ground = SPAWN:New( 'BE Ground' ):InitLimit( 2, 24 ):InitArray( 90, "Diamond", 10, 100, 50 ) function SPAWN:InitArray( SpawnAngle, SpawnWidth, SpawnDeltaX, SpawnDeltaY ) self:F( { self.SpawnTemplatePrefix, SpawnAngle, SpawnWidth, SpawnDeltaX, SpawnDeltaY } ) self.SpawnVisible = true -- When the first Spawn executes, all the Groups need to be made visible before start. local SpawnX = 0 local SpawnY = 0 local SpawnXIndex = 0 local SpawnYIndex = 0 for SpawnGroupID = 1, self.SpawnMaxGroups do self:T( { SpawnX, SpawnY, SpawnXIndex, SpawnYIndex } ) self.SpawnGroups[SpawnGroupID].Visible = true self.SpawnGroups[SpawnGroupID].Spawned = false SpawnXIndex = SpawnXIndex + 1 if SpawnWidth and SpawnWidth ~= 0 then if SpawnXIndex >= SpawnWidth then SpawnXIndex = 0 SpawnYIndex = SpawnYIndex + 1 end end local SpawnRootX = self.SpawnGroups[SpawnGroupID].SpawnTemplate.x local SpawnRootY = self.SpawnGroups[SpawnGroupID].SpawnTemplate.y self:_TranslateRotate( SpawnGroupID, SpawnRootX, SpawnRootY, SpawnX, SpawnY, SpawnAngle ) self.SpawnGroups[SpawnGroupID].SpawnTemplate.lateActivation = true self.SpawnGroups[SpawnGroupID].SpawnTemplate.visible = true self.SpawnGroups[SpawnGroupID].Visible = true self:HandleEvent( EVENTS.Birth, self._OnBirth ) self:HandleEvent( EVENTS.Dead, self._OnDeadOrCrash ) self:HandleEvent( EVENTS.Crash, self._OnDeadOrCrash ) if self.Repeat then self:HandleEvent( EVENTS.Takeoff, self._OnTakeOff ) self:HandleEvent( EVENTS.Land, self._OnLand ) end if self.RepeatOnEngineShutDown then self:HandleEvent( EVENTS.EngineShutdown, self._OnEngineShutDown ) end self.SpawnGroups[SpawnGroupID].Group = _DATABASE:Spawn( self.SpawnGroups[SpawnGroupID].SpawnTemplate ) SpawnX = SpawnXIndex * SpawnDeltaX SpawnY = SpawnYIndex * SpawnDeltaY end return self end do -- AI methods --- Turns the AI On or Off for the @{Group} when spawning. -- @param #SPAWN self -- @param #boolean AIOnOff A value of true sets the AI On, a value of false sets the AI Off. -- @return #SPAWN The SPAWN object function SPAWN:InitAIOnOff( AIOnOff ) self.AIOnOff = AIOnOff return self end --- Turns the AI On for the @{Group} when spawning. -- @param #SPAWN self -- @return #SPAWN The SPAWN object function SPAWN:InitAIOn() return self:InitAIOnOff( true ) end --- Turns the AI Off for the @{Group} when spawning. -- @param #SPAWN self -- @return #SPAWN The SPAWN object function SPAWN:InitAIOff() return self:InitAIOnOff( false ) end end -- AI methods do -- Delay methods --- Turns the Delay On or Off for the first @{Group} scheduled spawning. -- The default value is that for scheduled spawning, there is an initial delay when spawning the first @{Group}. -- @param #SPAWN self -- @param #boolean DelayOnOff A value of true sets the Delay On, a value of false sets the Delay Off. -- @return #SPAWN The SPAWN object function SPAWN:InitDelayOnOff( DelayOnOff ) self.DelayOnOff = DelayOnOff return self end --- Turns the Delay On for the @{Group} when spawning. -- @param #SPAWN self -- @return #SPAWN The SPAWN object function SPAWN:InitDelayOn() return self:InitDelayOnOff( true ) end --- Turns the Delay Off for the @{Group} when spawning. -- @param #SPAWN self -- @return #SPAWN The SPAWN object function SPAWN:InitDelayOff() return self:InitDelayOnOff( false ) end end -- Delay methods --- Will spawn a group based on the internal index. -- Note: Uses @{DATABASE} module defined in MOOSE. -- @param #SPAWN self -- @return Wrapper.Group#GROUP The group that was spawned. You can use this group for further actions. function SPAWN:Spawn() self:F( { self.SpawnTemplatePrefix, self.SpawnIndex, self.AliveUnits } ) return self:SpawnWithIndex( self.SpawnIndex + 1 ) end --- Will re-spawn a group based on a given index. -- Note: Uses @{DATABASE} module defined in MOOSE. -- @param #SPAWN self -- @param #string SpawnIndex The index of the group to be spawned. -- @return Wrapper.Group#GROUP The group that was spawned. You can use this group for further actions. function SPAWN:ReSpawn( SpawnIndex ) self:F( { self.SpawnTemplatePrefix, SpawnIndex } ) if not SpawnIndex then SpawnIndex = 1 end -- TODO: This logic makes DCS crash and i don't know why (yet). local SpawnGroup = self:GetGroupFromIndex( SpawnIndex ) local WayPoints = SpawnGroup and SpawnGroup.WayPoints or nil if SpawnGroup then local SpawnDCSGroup = SpawnGroup:GetDCSObject() if SpawnDCSGroup then SpawnGroup:Destroy() end end local SpawnGroup = self:SpawnWithIndex( SpawnIndex ) if SpawnGroup and WayPoints then -- If there were WayPoints set, then Re-Execute those WayPoints! SpawnGroup:WayPointInitialize( WayPoints ) SpawnGroup:WayPointExecute( 1, 5 ) end if SpawnGroup.ReSpawnFunction then SpawnGroup:ReSpawnFunction() end SpawnGroup:ResetEvents() return SpawnGroup end --- Will spawn a group with a specified index number. -- Uses @{DATABASE} global object defined in MOOSE. -- @param #SPAWN self -- @param #string SpawnIndex The index of the group to be spawned. -- @return Wrapper.Group#GROUP The group that was spawned. You can use this group for further actions. function SPAWN:SpawnWithIndex( SpawnIndex ) self:F2( { SpawnTemplatePrefix = self.SpawnTemplatePrefix, SpawnIndex = SpawnIndex, AliveUnits = self.AliveUnits, SpawnMaxGroups = self.SpawnMaxGroups } ) if self:_GetSpawnIndex( SpawnIndex ) then if self.SpawnGroups[self.SpawnIndex].Visible then self.SpawnGroups[self.SpawnIndex].Group:Activate() else local SpawnTemplate = self.SpawnGroups[self.SpawnIndex].SpawnTemplate self:T( SpawnTemplate.name ) if SpawnTemplate then local PointVec3 = POINT_VEC3:New( SpawnTemplate.route.points[1].x, SpawnTemplate.route.points[1].alt, SpawnTemplate.route.points[1].y ) self:T( { "Current point of ", self.SpawnTemplatePrefix, PointVec3 } ) -- If RandomizePosition, then Randomize the formation in the zone band, keeping the template. if self.SpawnRandomizePosition then local RandomVec2 = PointVec3:GetRandomVec2InRadius( self.SpawnRandomizePositionOuterRadius, self.SpawnRandomizePositionInnerRadius ) local CurrentX = SpawnTemplate.units[1].x local CurrentY = SpawnTemplate.units[1].y SpawnTemplate.x = RandomVec2.x SpawnTemplate.y = RandomVec2.y for UnitID = 1, #SpawnTemplate.units do SpawnTemplate.units[UnitID].x = SpawnTemplate.units[UnitID].x + ( RandomVec2.x - CurrentX ) SpawnTemplate.units[UnitID].y = SpawnTemplate.units[UnitID].y + ( RandomVec2.y - CurrentY ) self:T( 'SpawnTemplate.units['..UnitID..'].x = ' .. SpawnTemplate.units[UnitID].x .. ', SpawnTemplate.units['..UnitID..'].y = ' .. SpawnTemplate.units[UnitID].y ) end end -- If RandomizeUnits, then Randomize the formation at the start point. if self.SpawnRandomizeUnits then for UnitID = 1, #SpawnTemplate.units do local RandomVec2 = PointVec3:GetRandomVec2InRadius( self.SpawnOuterRadius, self.SpawnInnerRadius ) SpawnTemplate.units[UnitID].x = RandomVec2.x SpawnTemplate.units[UnitID].y = RandomVec2.y self:T( 'SpawnTemplate.units['..UnitID..'].x = ' .. SpawnTemplate.units[UnitID].x .. ', SpawnTemplate.units['..UnitID..'].y = ' .. SpawnTemplate.units[UnitID].y ) end end if SpawnTemplate.CategoryID == Group.Category.HELICOPTER or SpawnTemplate.CategoryID == Group.Category.AIRPLANE then if SpawnTemplate.route.points[1].type == "TakeOffParking" then SpawnTemplate.uncontrolled = self.SpawnUnControlled end end end self:HandleEvent( EVENTS.Birth, self._OnBirth ) self:HandleEvent( EVENTS.Dead, self._OnDeadOrCrash ) self:HandleEvent( EVENTS.Crash, self._OnDeadOrCrash ) if self.Repeat then self:HandleEvent( EVENTS.Takeoff, self._OnTakeOff ) self:HandleEvent( EVENTS.Land, self._OnLand ) end if self.RepeatOnEngineShutDown then self:HandleEvent( EVENTS.EngineShutdown, self._OnEngineShutDown ) end self.SpawnGroups[self.SpawnIndex].Group = _DATABASE:Spawn( SpawnTemplate ) local SpawnGroup = self.SpawnGroups[self.SpawnIndex].Group -- Wrapper.Group#GROUP --TODO: Need to check if this function doesn't need to be scheduled, as the group may not be immediately there! if SpawnGroup then SpawnGroup:SetAIOnOff( self.AIOnOff ) end self:T3( SpawnTemplate.name ) -- If there is a SpawnFunction hook defined, call it. if self.SpawnFunctionHook then -- delay calling this for .1 seconds so that it hopefully comes after the BIRTH event of the group. self.SpawnHookScheduler = SCHEDULER:New() self.SpawnHookScheduler:Schedule( nil, self.SpawnFunctionHook, { self.SpawnGroups[self.SpawnIndex].Group, unpack( self.SpawnFunctionArguments)}, 0.1 ) -- self.SpawnFunctionHook( self.SpawnGroups[self.SpawnIndex].Group, unpack( self.SpawnFunctionArguments ) ) end -- TODO: Need to fix this by putting an "R" in the name of the group when the group repeats. --if self.Repeat then -- _DATABASE:SetStatusGroup( SpawnTemplate.name, "ReSpawn" ) --end end self.SpawnGroups[self.SpawnIndex].Spawned = true return self.SpawnGroups[self.SpawnIndex].Group else --self:E( { self.SpawnTemplatePrefix, "No more Groups to Spawn:", SpawnIndex, self.SpawnMaxGroups } ) end return nil end --- Spawns new groups at varying time intervals. -- This is useful if you want to have continuity within your missions of certain (AI) groups to be present (alive) within your missions. -- @param #SPAWN self -- @param #number SpawnTime The time interval defined in seconds between each new spawn of new groups. -- @param #number SpawnTimeVariation The variation to be applied on the defined time interval between each new spawn. -- The variation is a number between 0 and 1, representing the %-tage of variation to be applied on the time interval. -- @return #SPAWN self -- @usage -- -- NATO helicopters engaging in the battle field. -- -- The time interval is set to SPAWN new helicopters between each 600 seconds, with a time variation of 50%. -- -- The time variation in this case will be between 450 seconds and 750 seconds. -- -- This is calculated as follows: -- -- Low limit: 600 * ( 1 - 0.5 / 2 ) = 450 -- -- High limit: 600 * ( 1 + 0.5 / 2 ) = 750 -- -- Between these two values, a random amount of seconds will be choosen for each new spawn of the helicopters. -- Spawn_BE_KA50 = SPAWN:New( 'BE KA-50@RAMP-Ground Defense' ):Schedule( 600, 0.5 ) function SPAWN:SpawnScheduled( SpawnTime, SpawnTimeVariation ) self:F( { SpawnTime, SpawnTimeVariation } ) if SpawnTime ~= nil and SpawnTimeVariation ~= nil then local InitialDelay = 0 if self.DelayOnOff == true then InitialDelay = math.random( SpawnTime - SpawnTime * SpawnTimeVariation, SpawnTime + SpawnTime * SpawnTimeVariation ) end self.SpawnScheduler = SCHEDULER:New( self, self._Scheduler, {}, InitialDelay, SpawnTime, SpawnTimeVariation ) end return self end --- Will re-start the spawning scheduler. -- Note: This method is only required to be called when the schedule was stopped. -- @param #SPAWN self -- @return #SPAWN function SPAWN:SpawnScheduleStart() self:F( { self.SpawnTemplatePrefix } ) self.SpawnScheduler:Start() return self end --- Will stop the scheduled spawning scheduler. -- @param #SPAWN self -- @return #SPAWN function SPAWN:SpawnScheduleStop() self:F( { self.SpawnTemplatePrefix } ) self.SpawnScheduler:Stop() return self end --- Allows to place a CallFunction hook when a new group spawns. -- The provided method will be called when a new group is spawned, including its given parameters. -- The first parameter of the SpawnFunction is the @{Group#GROUP} that was spawned. -- @param #SPAWN self -- @param #function SpawnCallBackFunction The function to be called when a group spawns. -- @param SpawnFunctionArguments A random amount of arguments to be provided to the function when the group spawns. -- @return #SPAWN -- @usage -- -- Declare SpawnObject and call a function when a new Group is spawned. -- local SpawnObject = SPAWN -- :New( "SpawnObject" ) -- :InitLimit( 2, 10 ) -- :OnSpawnGroup( -- function( SpawnGroup ) -- SpawnGroup:E( "I am spawned" ) -- end -- ) -- :SpawnScheduled( 300, 0.3 ) function SPAWN:OnSpawnGroup( SpawnCallBackFunction, ... ) self:F( "OnSpawnGroup" ) self.SpawnFunctionHook = SpawnCallBackFunction self.SpawnFunctionArguments = {} if arg then self.SpawnFunctionArguments = arg end return self end --- Will spawn a group at an @{Airbase}. -- This method is mostly advisable to be used if you want to simulate spawning units at an airbase. -- Note that each point in the route assigned to the spawning group is reset to the point of the spawn. -- You can use the returned group to further define the route to be followed. -- -- The @{Airbase#AIRBASE} object must refer to a valid airbase known in the sim. -- You can use the following enumerations to search for the pre-defined airbases on the current known maps of DCS: -- -- * @{Airbase#AIRBASE.Caucasus}: The airbases on the Caucasus map. -- * @{Airbase#AIRBASE.Nevada}: The airbases on the Nevada (NTTR) map. -- * @{Airbase#AIRBASE.Normandy}: The airbases on the Normandy map. -- -- Use the method @{Airbase#AIRBASE.FindByName}() to retrieve the airbase object. -- The known AIRBASE objects are automatically imported at mission start by MOOSE. -- Therefore, there isn't any New() constructor defined for AIRBASE objects. -- -- Ships and Farps are added within the mission, and are therefore not known. -- For these AIRBASE objects, there isn't an @{Airbase#AIRBASE} enumeration defined. -- You need to provide the **exact name** of the airbase as the parameter to the @{Airbase#AIRBASE.FindByName}() method! -- -- @param #SPAWN self -- @param Wrapper.Airbase#AIRBASE SpawnAirbase The @{Airbase} where to spawn the group. -- @param #SPAWN.Takeoff Takeoff (optional) The location and takeoff method. Default is Hot. -- @param #number TakeoffAltitude (optional) The altitude above the ground. -- @return Wrapper.Group#GROUP that was spawned. -- @return #nil Nothing was spawned. -- @usage -- Spawn_Plane = SPAWN:New( "Plane" ) -- Spawn_Plane:SpawnAtAirbase( AIRBASE:FindByName( AIRBASE.Caucasus.Krymsk ), SPAWN.Takeoff.Cold ) -- Spawn_Plane:SpawnAtAirbase( AIRBASE:FindByName( AIRBASE.Caucasus.Krymsk ), SPAWN.Takeoff.Hot ) -- Spawn_Plane:SpawnAtAirbase( AIRBASE:FindByName( AIRBASE.Caucasus.Krymsk ), SPAWN.Takeoff.Runway ) -- -- Spawn_Plane:SpawnAtAirbase( AIRBASE:FindByName( "Carrier" ), SPAWN.Takeoff.Cold ) -- -- Spawn_Heli = SPAWN:New( "Heli") -- -- Spawn_Heli:SpawnAtAirbase( AIRBASE:FindByName( "FARP Cold" ), SPAWN.Takeoff.Cold ) -- Spawn_Heli:SpawnAtAirbase( AIRBASE:FindByName( "FARP Hot" ), SPAWN.Takeoff.Hot ) -- Spawn_Heli:SpawnAtAirbase( AIRBASE:FindByName( "FARP Runway" ), SPAWN.Takeoff.Runway ) -- Spawn_Heli:SpawnAtAirbase( AIRBASE:FindByName( "FARP Air" ), SPAWN.Takeoff.Air ) -- -- Spawn_Heli:SpawnAtAirbase( AIRBASE:FindByName( "Carrier" ), SPAWN.Takeoff.Cold ) -- function SPAWN:SpawnAtAirbase( SpawnAirbase, Takeoff, TakeoffAltitude ) -- R2.2 self:E( { self.SpawnTemplatePrefix, SpawnAirbase, Takeoff, TakeoffAltitude } ) local PointVec3 = SpawnAirbase:GetPointVec3() self:T2(PointVec3) Takeoff = Takeoff or SPAWN.Takeoff.Hot if self:_GetSpawnIndex( self.SpawnIndex + 1 ) then local SpawnTemplate = self.SpawnGroups[self.SpawnIndex].SpawnTemplate if SpawnTemplate then self:T( { "Current point of ", self.SpawnTemplatePrefix, SpawnAirbase } ) local SpawnPoint = SpawnTemplate.route.points[1] -- These are only for ships. SpawnPoint.linkUnit = nil SpawnPoint.helipadId = nil SpawnPoint.airdromeId = nil local AirbaseID = SpawnAirbase:GetID() local AirbaseCategory = SpawnAirbase:GetDesc().category self:F( { AirbaseCategory = AirbaseCategory } ) if AirbaseCategory == Airbase.Category.SHIP then SpawnPoint.linkUnit = AirbaseID SpawnPoint.helipadId = AirbaseID elseif AirbaseCategory == Airbase.Category.HELIPAD then SpawnPoint.linkUnit = AirbaseID SpawnPoint.helipadId = AirbaseID elseif AirbaseCategory == Airbase.Category.AIRDROME then SpawnPoint.airdromeId = AirbaseID end SpawnPoint.alt = 0 SpawnPoint.type = GROUPTEMPLATE.Takeoff[Takeoff][1] -- type SpawnPoint.action = GROUPTEMPLATE.Takeoff[Takeoff][2] -- action -- Translate the position of the Group Template to the Vec3. for UnitID = 1, #SpawnTemplate.units do self:T( 'Before Translation SpawnTemplate.units['..UnitID..'].x = ' .. SpawnTemplate.units[UnitID].x .. ', SpawnTemplate.units['..UnitID..'].y = ' .. SpawnTemplate.units[UnitID].y ) -- These cause a lot of confusion. local UnitTemplate = SpawnTemplate.units[UnitID] UnitTemplate.parking = nil UnitTemplate.parking_id = nil UnitTemplate.alt = 0 local SX = UnitTemplate.x local SY = UnitTemplate.y local BX = SpawnPoint.x local BY = SpawnPoint.y local TX = PointVec3.x + ( SX - BX ) local TY = PointVec3.z + ( SY - BY ) UnitTemplate.x = TX UnitTemplate.y = TY if Takeoff == GROUP.Takeoff.Air then UnitTemplate.alt = PointVec3.y + ( TakeoffAltitude or 200 ) --else -- UnitTemplate.alt = PointVec3.y + 10 end self:T( 'After Translation SpawnTemplate.units['..UnitID..'].x = ' .. UnitTemplate.x .. ', SpawnTemplate.units['..UnitID..'].y = ' .. UnitTemplate.y ) end SpawnPoint.x = PointVec3.x SpawnPoint.y = PointVec3.z if Takeoff == GROUP.Takeoff.Air then SpawnPoint.alt = PointVec3.y + ( TakeoffAltitude or 200 ) --else -- SpawnPoint.alt = PointVec3.y + 10 end SpawnTemplate.x = PointVec3.x SpawnTemplate.y = PointVec3.z local GroupSpawned = self:SpawnWithIndex( self.SpawnIndex ) -- When spawned in the air, we need to generate a Takeoff Event if Takeoff == GROUP.Takeoff.Air then for UnitID, UnitSpawned in pairs( GroupSpawned:GetUnits() ) do SCHEDULER:New( nil, BASE.CreateEventTakeoff, { GroupSpawned, timer.getTime(), UnitSpawned:GetDCSObject() } , 1 ) end end return GroupSpawned end end return nil end --- Will spawn a group from a Vec3 in 3D space. -- This method is mostly advisable to be used if you want to simulate spawning units in the air, like helicopters or airplanes. -- Note that each point in the route assigned to the spawning group is reset to the point of the spawn. -- You can use the returned group to further define the route to be followed. -- @param #SPAWN self -- @param Dcs.DCSTypes#Vec3 Vec3 The Vec3 coordinates where to spawn the group. -- @param #number SpawnIndex (optional) The index which group to spawn within the given zone. -- @return Wrapper.Group#GROUP that was spawned. -- @return #nil Nothing was spawned. function SPAWN:SpawnFromVec3( Vec3, SpawnIndex ) self:F( { self.SpawnTemplatePrefix, Vec3, SpawnIndex } ) local PointVec3 = POINT_VEC3:NewFromVec3( Vec3 ) self:T2(PointVec3) if SpawnIndex then else SpawnIndex = self.SpawnIndex + 1 end if self:_GetSpawnIndex( SpawnIndex ) then local SpawnTemplate = self.SpawnGroups[self.SpawnIndex].SpawnTemplate if SpawnTemplate then self:T( { "Current point of ", self.SpawnTemplatePrefix, Vec3 } ) local TemplateHeight = SpawnTemplate.route.points[1].alt -- Translate the position of the Group Template to the Vec3. for UnitID = 1, #SpawnTemplate.units do self:T( 'Before Translation SpawnTemplate.units['..UnitID..'].x = ' .. SpawnTemplate.units[UnitID].x .. ', SpawnTemplate.units['..UnitID..'].y = ' .. SpawnTemplate.units[UnitID].y ) local UnitTemplate = SpawnTemplate.units[UnitID] local SX = UnitTemplate.x local SY = UnitTemplate.y local BX = SpawnTemplate.route.points[1].x local BY = SpawnTemplate.route.points[1].y local TX = Vec3.x + ( SX - BX ) local TY = Vec3.z + ( SY - BY ) SpawnTemplate.units[UnitID].x = TX SpawnTemplate.units[UnitID].y = TY SpawnTemplate.units[UnitID].alt = Vec3.y or TemplateHeight self:T( 'After Translation SpawnTemplate.units['..UnitID..'].x = ' .. SpawnTemplate.units[UnitID].x .. ', SpawnTemplate.units['..UnitID..'].y = ' .. SpawnTemplate.units[UnitID].y ) end SpawnTemplate.route.points[1].x = Vec3.x SpawnTemplate.route.points[1].y = Vec3.z SpawnTemplate.route.points[1].alt = Vec3.y or TemplateHeight SpawnTemplate.x = Vec3.x SpawnTemplate.y = Vec3.z SpawnTemplate.alt = Vec3.y or TemplateHeight return self:SpawnWithIndex( self.SpawnIndex ) end end return nil end --- Will spawn a group from a Vec2 in 3D space. -- This method is mostly advisable to be used if you want to simulate spawning groups on the ground from air units, like vehicles. -- Note that each point in the route assigned to the spawning group is reset to the point of the spawn. -- You can use the returned group to further define the route to be followed. -- @param #SPAWN self -- @param Dcs.DCSTypes#Vec2 Vec2 The Vec2 coordinates where to spawn the group. -- @param #number MinHeight (optional) The minimum height to spawn an airborne group into the zone. -- @param #number MaxHeight (optional) The maximum height to spawn an airborne group into the zone. -- @param #number SpawnIndex (optional) The index which group to spawn within the given zone. -- @return Wrapper.Group#GROUP that was spawned. -- @return #nil Nothing was spawned. -- @usage -- -- local SpawnVec2 = ZONE:New( ZoneName ):GetVec2() -- -- -- Spawn at the zone center position at the height specified in the ME of the group template! -- SpawnAirplanes:SpawnFromVec2( SpawnVec2 ) -- -- -- Spawn from the static position at the height randomized between 2000 and 4000 meters. -- SpawnAirplanes:SpawnFromVec2( SpawnVec2, 2000, 4000 ) -- function SPAWN:SpawnFromVec2( Vec2, MinHeight, MaxHeight, SpawnIndex ) self:F( { self.SpawnTemplatePrefix, self.SpawnIndex, Vec2, MinHeight, MaxHeight, SpawnIndex } ) local Height = nil if MinHeight and MaxHeight then Height = math.random( MinHeight, MaxHeight) end return self:SpawnFromVec3( { x = Vec2.x, y = Height, z = Vec2.y }, SpawnIndex ) -- y can be nil. In this case, spawn on the ground for vehicles, and in the template altitude for air. end --- Will spawn a group from a hosting unit. This method is mostly advisable to be used if you want to simulate spawning from air units, like helicopters, which are dropping infantry into a defined Landing Zone. -- Note that each point in the route assigned to the spawning group is reset to the point of the spawn. -- You can use the returned group to further define the route to be followed. -- @param #SPAWN self -- @param Wrapper.Unit#UNIT HostUnit The air or ground unit dropping or unloading the group. -- @param #number MinHeight (optional) The minimum height to spawn an airborne group into the zone. -- @param #number MaxHeight (optional) The maximum height to spawn an airborne group into the zone. -- @param #number SpawnIndex (optional) The index which group to spawn within the given zone. -- @return Wrapper.Group#GROUP that was spawned. -- @return #nil Nothing was spawned. -- @usage -- -- local SpawnStatic = STATIC:FindByName( StaticName ) -- -- -- Spawn from the static position at the height specified in the ME of the group template! -- SpawnAirplanes:SpawnFromUnit( SpawnStatic ) -- -- -- Spawn from the static position at the height randomized between 2000 and 4000 meters. -- SpawnAirplanes:SpawnFromUnit( SpawnStatic, 2000, 4000 ) -- function SPAWN:SpawnFromUnit( HostUnit, MinHeight, MaxHeight, SpawnIndex ) self:F( { self.SpawnTemplatePrefix, HostUnit, MinHeight, MaxHeight, SpawnIndex } ) if HostUnit and HostUnit:IsAlive() ~= nil then -- and HostUnit:getUnit(1):inAir() == false then return self:SpawnFromVec2( HostUnit:GetVec2(), MinHeight, MaxHeight, SpawnIndex ) end return nil end --- Will spawn a group from a hosting static. This method is mostly advisable to be used if you want to simulate spawning from buldings and structures (static buildings). -- You can use the returned group to further define the route to be followed. -- @param #SPAWN self -- @param Wrapper.Static#STATIC HostStatic The static dropping or unloading the group. -- @param #number MinHeight (optional) The minimum height to spawn an airborne group into the zone. -- @param #number MaxHeight (optional) The maximum height to spawn an airborne group into the zone. -- @param #number SpawnIndex (optional) The index which group to spawn within the given zone. -- @return Wrapper.Group#GROUP that was spawned. -- @return #nil Nothing was spawned. -- @usage -- -- local SpawnStatic = STATIC:FindByName( StaticName ) -- -- -- Spawn from the static position at the height specified in the ME of the group template! -- SpawnAirplanes:SpawnFromStatic( SpawnStatic ) -- -- -- Spawn from the static position at the height randomized between 2000 and 4000 meters. -- SpawnAirplanes:SpawnFromStatic( SpawnStatic, 2000, 4000 ) -- function SPAWN:SpawnFromStatic( HostStatic, MinHeight, MaxHeight, SpawnIndex ) self:F( { self.SpawnTemplatePrefix, HostStatic, MinHeight, MaxHeight, SpawnIndex } ) if HostStatic and HostStatic:IsAlive() then return self:SpawnFromVec2( HostStatic:GetVec2(), MinHeight, MaxHeight, SpawnIndex ) end return nil end --- Will spawn a Group within a given @{Zone}. -- The @{Zone} can be of any type derived from @{Zone#ZONE_BASE}. -- Once the @{Group} is spawned within the zone, the @{Group} will continue on its route. -- The **first waypoint** (where the group is spawned) is replaced with the zone location coordinates. -- @param #SPAWN self -- @param Core.Zone#ZONE Zone The zone where the group is to be spawned. -- @param #boolean RandomizeGroup (optional) Randomization of the @{Group} position in the zone. -- @param #number MinHeight (optional) The minimum height to spawn an airborne group into the zone. -- @param #number MaxHeight (optional) The maximum height to spawn an airborne group into the zone. -- @param #number SpawnIndex (optional) The index which group to spawn within the given zone. -- @return Wrapper.Group#GROUP that was spawned. -- @return #nil when nothing was spawned. -- @usage -- -- local SpawnZone = ZONE:New( ZoneName ) -- -- -- Spawn at the zone center position at the height specified in the ME of the group template! -- SpawnAirplanes:SpawnFromZone( SpawnZone ) -- -- -- Spawn in the zone at a random position at the height specified in the Me of the group template. -- SpawnAirplanes:SpawnFromZone( SpawnZone, true ) -- -- -- Spawn in the zone at a random position at the height randomized between 2000 and 4000 meters. -- SpawnAirplanes:SpawnFromUnit( SpawnZone, true, 2000, 4000 ) -- -- -- Spawn at the zone center position at the height randomized between 2000 and 4000 meters. -- SpawnAirplanes:SpawnFromUnit( SpawnZone, false, 2000, 4000 ) -- -- -- Spawn at the zone center position at the height randomized between 2000 and 4000 meters. -- SpawnAirplanes:SpawnFromUnit( SpawnZone, nil, 2000, 4000 ) -- function SPAWN:SpawnInZone( Zone, RandomizeGroup, MinHeight, MaxHeight, SpawnIndex ) self:F( { self.SpawnTemplatePrefix, Zone, RandomizeGroup, MinHeight, MaxHeight, SpawnIndex } ) if Zone then if RandomizeGroup then return self:SpawnFromVec2( Zone:GetRandomVec2(), MinHeight, MaxHeight, SpawnIndex ) else return self:SpawnFromVec2( Zone:GetVec2(), MinHeight, MaxHeight, SpawnIndex ) end end return nil end --- (**AIR**) Will spawn a plane group in UnControlled or Controlled mode... -- This will be similar to the uncontrolled flag setting in the ME. -- You can use UnControlled mode to simulate planes startup and ready for take-off but aren't moving (yet). -- ReSpawn the plane in Controlled mode, and the plane will move... -- @param #SPAWN self -- @param #boolean UnControlled true if UnControlled, false if Controlled. -- @return #SPAWN self function SPAWN:InitUnControlled( UnControlled ) self:F2( { self.SpawnTemplatePrefix, UnControlled } ) self.SpawnUnControlled = UnControlled for SpawnGroupID = 1, self.SpawnMaxGroups do self.SpawnGroups[SpawnGroupID].UnControlled = UnControlled end return self end --- Get the Coordinate of the Group that is Late Activated as the template for the SPAWN object. -- @param #SPAWN self -- @return Core.Point#COORDINATE The Coordinate function SPAWN:GetCoordinate() local LateGroup = GROUP:FindByName( self.SpawnTemplatePrefix ) if LateGroup then return LateGroup:GetCoordinate() end return nil end --- Will return the SpawnGroupName either with with a specific count number or without any count. -- @param #SPAWN self -- @param #number SpawnIndex Is the number of the Group that is to be spawned. -- @return #string SpawnGroupName function SPAWN:SpawnGroupName( SpawnIndex ) self:F( { self.SpawnTemplatePrefix, SpawnIndex } ) local SpawnPrefix = self.SpawnTemplatePrefix if self.SpawnAliasPrefix then SpawnPrefix = self.SpawnAliasPrefix end if SpawnIndex then local SpawnName = string.format( '%s#%03d', SpawnPrefix, SpawnIndex ) self:T( SpawnName ) return SpawnName else self:T( SpawnPrefix ) return SpawnPrefix end end --- Will find the first alive @{Group} it has spawned, and return the alive @{Group} object and the first Index where the first alive @{Group} object has been found. -- @param #SPAWN self -- @return Wrapper.Group#GROUP, #number The @{Group} object found, the new Index where the group was found. -- @return #nil, #nil When no group is found, #nil is returned. -- @usage -- -- Find the first alive @{Group} object of the SpawnPlanes SPAWN object @{Group} collection that it has spawned during the mission. -- local GroupPlane, Index = SpawnPlanes:GetFirstAliveGroup() -- while GroupPlane ~= nil do -- -- Do actions with the GroupPlane object. -- GroupPlane, Index = SpawnPlanes:GetNextAliveGroup( Index ) -- end function SPAWN:GetFirstAliveGroup() self:F( { self.SpawnTemplatePrefix, self.SpawnAliasPrefix } ) for SpawnIndex = 1, self.SpawnCount do local SpawnGroup = self:GetGroupFromIndex( SpawnIndex ) if SpawnGroup and SpawnGroup:IsAlive() then return SpawnGroup, SpawnIndex end end return nil, nil end --- Will find the next alive @{Group} object from a given Index, and return a reference to the alive @{Group} object and the next Index where the alive @{Group} has been found. -- @param #SPAWN self -- @param #number SpawnIndexStart A Index holding the start position to search from. This method can also be used to find the first alive @{Group} object from the given Index. -- @return Wrapper.Group#GROUP, #number The next alive @{Group} object found, the next Index where the next alive @{Group} object was found. -- @return #nil, #nil When no alive @{Group} object is found from the start Index position, #nil is returned. -- @usage -- -- Find the first alive @{Group} object of the SpawnPlanes SPAWN object @{Group} collection that it has spawned during the mission. -- local GroupPlane, Index = SpawnPlanes:GetFirstAliveGroup() -- while GroupPlane ~= nil do -- -- Do actions with the GroupPlane object. -- GroupPlane, Index = SpawnPlanes:GetNextAliveGroup( Index ) -- end function SPAWN:GetNextAliveGroup( SpawnIndexStart ) self:F( { self.SpawnTemplatePrefix, self.SpawnAliasPrefix, SpawnIndexStart } ) SpawnIndexStart = SpawnIndexStart + 1 for SpawnIndex = SpawnIndexStart, self.SpawnCount do local SpawnGroup = self:GetGroupFromIndex( SpawnIndex ) if SpawnGroup and SpawnGroup:IsAlive() then return SpawnGroup, SpawnIndex end end return nil, nil end --- Will find the last alive @{Group} object, and will return a reference to the last live @{Group} object and the last Index where the last alive @{Group} object has been found. -- @param #SPAWN self -- @return Wrapper.Group#GROUP, #number The last alive @{Group} object found, the last Index where the last alive @{Group} object was found. -- @return #nil, #nil When no alive @{Group} object is found, #nil is returned. -- @usage -- -- Find the last alive @{Group} object of the SpawnPlanes SPAWN object @{Group} collection that it has spawned during the mission. -- local GroupPlane, Index = SpawnPlanes:GetLastAliveGroup() -- if GroupPlane then -- GroupPlane can be nil!!! -- -- Do actions with the GroupPlane object. -- end function SPAWN:GetLastAliveGroup() self:F( { self.SpawnTemplatePrefixself.SpawnAliasPrefix } ) self.SpawnIndex = self:_GetLastIndex() for SpawnIndex = self.SpawnIndex, 1, -1 do local SpawnGroup = self:GetGroupFromIndex( SpawnIndex ) if SpawnGroup and SpawnGroup:IsAlive() then self.SpawnIndex = SpawnIndex return SpawnGroup end end self.SpawnIndex = nil return nil end --- Get the group from an index. -- Returns the group from the SpawnGroups list. -- If no index is given, it will return the first group in the list. -- @param #SPAWN self -- @param #number SpawnIndex The index of the group to return. -- @return Wrapper.Group#GROUP self function SPAWN:GetGroupFromIndex( SpawnIndex ) self:F( { self.SpawnTemplatePrefix, self.SpawnAliasPrefix, SpawnIndex } ) if not SpawnIndex then SpawnIndex = 1 end if self.SpawnGroups and self.SpawnGroups[SpawnIndex] then local SpawnGroup = self.SpawnGroups[SpawnIndex].Group return SpawnGroup else return nil end end --- Return the prefix of a SpawnUnit. -- The method will search for a #-mark, and will return the text before the #-mark. -- It will return nil of no prefix was found. -- @param #SPAWN self -- @param Dcs.DCSWrapper.Unit#UNIT DCSUnit The @{DCSUnit} to be searched. -- @return #string The prefix -- @return #nil Nothing found function SPAWN:_GetPrefixFromGroup( SpawnGroup ) self:F3( { self.SpawnTemplatePrefix, self.SpawnAliasPrefix, SpawnGroup } ) local GroupName = SpawnGroup:GetName() if GroupName then local SpawnPrefix = string.match( GroupName, ".*#" ) if SpawnPrefix then SpawnPrefix = SpawnPrefix:sub( 1, -2 ) end return SpawnPrefix end return nil end --- Get the index from a given group. -- The function will search the name of the group for a #, and will return the number behind the #-mark. function SPAWN:GetSpawnIndexFromGroup( SpawnGroup ) self:F( { self.SpawnTemplatePrefix, self.SpawnAliasPrefix, SpawnGroup } ) local IndexString = string.match( SpawnGroup:GetName(), "#(%d*)$" ):sub( 2 ) local Index = tonumber( IndexString ) self:T3( IndexString, Index ) return Index end --- Return the last maximum index that can be used. function SPAWN:_GetLastIndex() self:F( { self.SpawnTemplatePrefix, self.SpawnAliasPrefix } ) return self.SpawnMaxGroups end --- Initalize the SpawnGroups collection. -- @param #SPAWN self function SPAWN:_InitializeSpawnGroups( SpawnIndex ) self:F3( { self.SpawnTemplatePrefix, self.SpawnAliasPrefix, SpawnIndex } ) if not self.SpawnGroups[SpawnIndex] then self.SpawnGroups[SpawnIndex] = {} self.SpawnGroups[SpawnIndex].Visible = false self.SpawnGroups[SpawnIndex].Spawned = false self.SpawnGroups[SpawnIndex].UnControlled = false self.SpawnGroups[SpawnIndex].SpawnTime = 0 self.SpawnGroups[SpawnIndex].SpawnTemplatePrefix = self.SpawnTemplatePrefix self.SpawnGroups[SpawnIndex].SpawnTemplate = self:_Prepare( self.SpawnGroups[SpawnIndex].SpawnTemplatePrefix, SpawnIndex ) end self:_RandomizeTemplate( SpawnIndex ) self:_RandomizeRoute( SpawnIndex ) --self:_TranslateRotate( SpawnIndex ) return self.SpawnGroups[SpawnIndex] end --- Gets the CategoryID of the Group with the given SpawnPrefix function SPAWN:_GetGroupCategoryID( SpawnPrefix ) local TemplateGroup = Group.getByName( SpawnPrefix ) if TemplateGroup then return TemplateGroup:getCategory() else return nil end end --- Gets the CoalitionID of the Group with the given SpawnPrefix function SPAWN:_GetGroupCoalitionID( SpawnPrefix ) local TemplateGroup = Group.getByName( SpawnPrefix ) if TemplateGroup then return TemplateGroup:getCoalition() else return nil end end --- Gets the CountryID of the Group with the given SpawnPrefix function SPAWN:_GetGroupCountryID( SpawnPrefix ) self:F( { self.SpawnTemplatePrefix, self.SpawnAliasPrefix, SpawnPrefix } ) local TemplateGroup = Group.getByName( SpawnPrefix ) if TemplateGroup then local TemplateUnits = TemplateGroup:getUnits() return TemplateUnits[1]:getCountry() else return nil end end --- Gets the Group Template from the ME environment definition. -- This method used the @{DATABASE} object, which contains ALL initial and new spawned object in MOOSE. -- @param #SPAWN self -- @param #string SpawnTemplatePrefix -- @return @SPAWN self function SPAWN:_GetTemplate( SpawnTemplatePrefix ) self:F( { self.SpawnTemplatePrefix, self.SpawnAliasPrefix, SpawnTemplatePrefix } ) local SpawnTemplate = nil SpawnTemplate = routines.utils.deepCopy( _DATABASE.Templates.Groups[SpawnTemplatePrefix].Template ) if SpawnTemplate == nil then error( 'No Template returned for SpawnTemplatePrefix = ' .. SpawnTemplatePrefix ) end --SpawnTemplate.SpawnCoalitionID = self:_GetGroupCoalitionID( SpawnTemplatePrefix ) --SpawnTemplate.SpawnCategoryID = self:_GetGroupCategoryID( SpawnTemplatePrefix ) --SpawnTemplate.SpawnCountryID = self:_GetGroupCountryID( SpawnTemplatePrefix ) self:T3( { SpawnTemplate } ) return SpawnTemplate end --- Prepares the new Group Template. -- @param #SPAWN self -- @param #string SpawnTemplatePrefix -- @param #number SpawnIndex -- @return #SPAWN self function SPAWN:_Prepare( SpawnTemplatePrefix, SpawnIndex ) --R2.2 self:F( { self.SpawnTemplatePrefix, self.SpawnAliasPrefix } ) local SpawnTemplate = self:_GetTemplate( SpawnTemplatePrefix ) SpawnTemplate.name = self:SpawnGroupName( SpawnIndex ) SpawnTemplate.groupId = nil --SpawnTemplate.lateActivation = false SpawnTemplate.lateActivation = false if SpawnTemplate.CategoryID == Group.Category.GROUND then self:T3( "For ground units, visible needs to be false..." ) SpawnTemplate.visible = false end if self.SpawnGrouping then local UnitAmount = #SpawnTemplate.units self:F( { UnitAmount = UnitAmount, SpawnGrouping = self.SpawnGrouping } ) if UnitAmount > self.SpawnGrouping then for UnitID = self.SpawnGrouping + 1, UnitAmount do SpawnTemplate.units[UnitID] = nil end else if UnitAmount < self.SpawnGrouping then for UnitID = UnitAmount + 1, self.SpawnGrouping do SpawnTemplate.units[UnitID] = UTILS.DeepCopy( SpawnTemplate.units[1] ) SpawnTemplate.units[UnitID].unitId = nil end end end end if self.SpawnInitKeepUnitNames == false then for UnitID = 1, #SpawnTemplate.units do SpawnTemplate.units[UnitID].name = string.format( SpawnTemplate.name .. '-%02d', UnitID ) SpawnTemplate.units[UnitID].unitId = nil end else for UnitID = 1, #SpawnTemplate.units do local UnitPrefix, Rest = string.match( SpawnTemplate.units[UnitID].name, "^([^#]+)#?" ):gsub( "^%s*(.-)%s*$", "%1" ) self:T( { UnitPrefix, Rest } ) SpawnTemplate.units[UnitID].name = string.format( '%s#%03d-%02d', UnitPrefix, SpawnIndex, UnitID ) SpawnTemplate.units[UnitID].unitId = nil end end self:T3( { "Template:", SpawnTemplate } ) return SpawnTemplate end --- Private method randomizing the routes. -- @param #SPAWN self -- @param #number SpawnIndex The index of the group to be spawned. -- @return #SPAWN function SPAWN:_RandomizeRoute( SpawnIndex ) self:F( { self.SpawnTemplatePrefix, SpawnIndex, self.SpawnRandomizeRoute, self.SpawnRandomizeRouteStartPoint, self.SpawnRandomizeRouteEndPoint, self.SpawnRandomizeRouteRadius } ) if self.SpawnRandomizeRoute then local SpawnTemplate = self.SpawnGroups[SpawnIndex].SpawnTemplate local RouteCount = #SpawnTemplate.route.points for t = self.SpawnRandomizeRouteStartPoint + 1, ( RouteCount - self.SpawnRandomizeRouteEndPoint ) do SpawnTemplate.route.points[t].x = SpawnTemplate.route.points[t].x + math.random( self.SpawnRandomizeRouteRadius * -1, self.SpawnRandomizeRouteRadius ) SpawnTemplate.route.points[t].y = SpawnTemplate.route.points[t].y + math.random( self.SpawnRandomizeRouteRadius * -1, self.SpawnRandomizeRouteRadius ) -- Manage randomization of altitude for airborne units ... if SpawnTemplate.CategoryID == Group.Category.AIRPLANE or SpawnTemplate.CategoryID == Group.Category.HELICOPTER then if SpawnTemplate.route.points[t].alt and self.SpawnRandomizeRouteHeight then SpawnTemplate.route.points[t].alt = SpawnTemplate.route.points[t].alt + math.random( 1, self.SpawnRandomizeRouteHeight ) end else SpawnTemplate.route.points[t].alt = nil end self:T( 'SpawnTemplate.route.points[' .. t .. '].x = ' .. SpawnTemplate.route.points[t].x .. ', SpawnTemplate.route.points[' .. t .. '].y = ' .. SpawnTemplate.route.points[t].y ) end end self:_RandomizeZones( SpawnIndex ) return self end --- Private method that randomizes the template of the group. -- @param #SPAWN self -- @param #number SpawnIndex -- @return #SPAWN self function SPAWN:_RandomizeTemplate( SpawnIndex ) self:F( { self.SpawnTemplatePrefix, SpawnIndex, self.SpawnRandomizeTemplate } ) if self.SpawnRandomizeTemplate then self.SpawnGroups[SpawnIndex].SpawnTemplatePrefix = self.SpawnTemplatePrefixTable[ math.random( 1, #self.SpawnTemplatePrefixTable ) ] self.SpawnGroups[SpawnIndex].SpawnTemplate = self:_Prepare( self.SpawnGroups[SpawnIndex].SpawnTemplatePrefix, SpawnIndex ) self.SpawnGroups[SpawnIndex].SpawnTemplate.route = routines.utils.deepCopy( self.SpawnTemplate.route ) self.SpawnGroups[SpawnIndex].SpawnTemplate.x = self.SpawnTemplate.x self.SpawnGroups[SpawnIndex].SpawnTemplate.y = self.SpawnTemplate.y self.SpawnGroups[SpawnIndex].SpawnTemplate.start_time = self.SpawnTemplate.start_time local OldX = self.SpawnGroups[SpawnIndex].SpawnTemplate.units[1].x local OldY = self.SpawnGroups[SpawnIndex].SpawnTemplate.units[1].y for UnitID = 1, #self.SpawnGroups[SpawnIndex].SpawnTemplate.units do self.SpawnGroups[SpawnIndex].SpawnTemplate.units[UnitID].heading = self.SpawnTemplate.units[1].heading self.SpawnGroups[SpawnIndex].SpawnTemplate.units[UnitID].x = self.SpawnTemplate.units[1].x + ( self.SpawnGroups[SpawnIndex].SpawnTemplate.units[UnitID].x - OldX ) self.SpawnGroups[SpawnIndex].SpawnTemplate.units[UnitID].y = self.SpawnTemplate.units[1].y + ( self.SpawnGroups[SpawnIndex].SpawnTemplate.units[UnitID].y - OldY ) self.SpawnGroups[SpawnIndex].SpawnTemplate.units[UnitID].alt = self.SpawnTemplate.units[1].alt end end self:_RandomizeRoute( SpawnIndex ) return self end --- Private method that randomizes the @{Zone}s where the Group will be spawned. -- @param #SPAWN self -- @param #number SpawnIndex -- @return #SPAWN self function SPAWN:_RandomizeZones( SpawnIndex ) self:F( { self.SpawnTemplatePrefix, SpawnIndex, self.SpawnRandomizeZones } ) if self.SpawnRandomizeZones then local SpawnZone = nil -- Core.Zone#ZONE_BASE while not SpawnZone do self:T( { SpawnZoneTableCount = #self.SpawnZoneTable, self.SpawnZoneTable } ) local ZoneID = math.random( #self.SpawnZoneTable ) self:T( ZoneID ) SpawnZone = self.SpawnZoneTable[ ZoneID ]:GetZoneMaybe() end self:T( "Preparing Spawn in Zone", SpawnZone:GetName() ) local SpawnVec2 = SpawnZone:GetRandomVec2() self:T( { SpawnVec2 = SpawnVec2 } ) local SpawnTemplate = self.SpawnGroups[SpawnIndex].SpawnTemplate self:T( { Route = SpawnTemplate.route } ) for UnitID = 1, #SpawnTemplate.units do local UnitTemplate = SpawnTemplate.units[UnitID] self:T( 'Before Translation SpawnTemplate.units['..UnitID..'].x = ' .. UnitTemplate.x .. ', SpawnTemplate.units['..UnitID..'].y = ' .. UnitTemplate.y ) local SX = UnitTemplate.x local SY = UnitTemplate.y local BX = SpawnTemplate.route.points[1].x local BY = SpawnTemplate.route.points[1].y local TX = SpawnVec2.x + ( SX - BX ) local TY = SpawnVec2.y + ( SY - BY ) UnitTemplate.x = TX UnitTemplate.y = TY -- TODO: Manage altitude based on landheight... --SpawnTemplate.units[UnitID].alt = SpawnVec2: self:T( 'After Translation SpawnTemplate.units['..UnitID..'].x = ' .. UnitTemplate.x .. ', SpawnTemplate.units['..UnitID..'].y = ' .. UnitTemplate.y ) end SpawnTemplate.x = SpawnVec2.x SpawnTemplate.y = SpawnVec2.y SpawnTemplate.route.points[1].x = SpawnVec2.x SpawnTemplate.route.points[1].y = SpawnVec2.y end return self end function SPAWN:_TranslateRotate( SpawnIndex, SpawnRootX, SpawnRootY, SpawnX, SpawnY, SpawnAngle ) self:F( { self.SpawnTemplatePrefix, SpawnIndex, SpawnRootX, SpawnRootY, SpawnX, SpawnY, SpawnAngle } ) -- Translate local TranslatedX = SpawnX local TranslatedY = SpawnY -- Rotate -- From Wikipedia: https://en.wikipedia.org/wiki/Rotation_matrix#Common_rotations -- x' = x \cos \theta - y \sin \theta\ -- y' = x \sin \theta + y \cos \theta\ local RotatedX = - TranslatedX * math.cos( math.rad( SpawnAngle ) ) + TranslatedY * math.sin( math.rad( SpawnAngle ) ) local RotatedY = TranslatedX * math.sin( math.rad( SpawnAngle ) ) + TranslatedY * math.cos( math.rad( SpawnAngle ) ) -- Assign self.SpawnGroups[SpawnIndex].SpawnTemplate.x = SpawnRootX - RotatedX self.SpawnGroups[SpawnIndex].SpawnTemplate.y = SpawnRootY + RotatedY local SpawnUnitCount = table.getn( self.SpawnGroups[SpawnIndex].SpawnTemplate.units ) for u = 1, SpawnUnitCount do -- Translate local TranslatedX = SpawnX local TranslatedY = SpawnY - 10 * ( u - 1 ) -- Rotate local RotatedX = - TranslatedX * math.cos( math.rad( SpawnAngle ) ) + TranslatedY * math.sin( math.rad( SpawnAngle ) ) local RotatedY = TranslatedX * math.sin( math.rad( SpawnAngle ) ) + TranslatedY * math.cos( math.rad( SpawnAngle ) ) -- Assign self.SpawnGroups[SpawnIndex].SpawnTemplate.units[u].x = SpawnRootX - RotatedX self.SpawnGroups[SpawnIndex].SpawnTemplate.units[u].y = SpawnRootY + RotatedY self.SpawnGroups[SpawnIndex].SpawnTemplate.units[u].heading = self.SpawnGroups[SpawnIndex].SpawnTemplate.units[u].heading + math.rad( SpawnAngle ) end return self end --- Get the next index of the groups to be spawned. This method is complicated, as it is used at several spaces. function SPAWN:_GetSpawnIndex( SpawnIndex ) self:F2( { self.SpawnTemplatePrefix, SpawnIndex, self.SpawnMaxGroups, self.SpawnMaxUnitsAlive, self.AliveUnits, #self.SpawnTemplate.units } ) if ( self.SpawnMaxGroups == 0 ) or ( SpawnIndex <= self.SpawnMaxGroups ) then if ( self.SpawnMaxUnitsAlive == 0 ) or ( self.AliveUnits + #self.SpawnTemplate.units <= self.SpawnMaxUnitsAlive ) or self.UnControlled == true then if SpawnIndex and SpawnIndex >= self.SpawnCount + 1 then self.SpawnCount = self.SpawnCount + 1 SpawnIndex = self.SpawnCount end self.SpawnIndex = SpawnIndex if not self.SpawnGroups[self.SpawnIndex] then self:_InitializeSpawnGroups( self.SpawnIndex ) end else return nil end else return nil end return self.SpawnIndex end -- TODO Need to delete this... _DATABASE does this now ... --- @param #SPAWN self -- @param Core.Event#EVENTDATA EventData function SPAWN:_OnBirth( EventData ) self:F( self.SpawnTemplatePrefix ) local SpawnGroup = EventData.IniGroup if SpawnGroup then local EventPrefix = self:_GetPrefixFromGroup( SpawnGroup ) if EventPrefix then -- EventPrefix can be nil if no # is found, which means, no spawnable group! self:T( { "Birth Event:", EventPrefix, self.SpawnTemplatePrefix } ) if EventPrefix == self.SpawnTemplatePrefix or ( self.SpawnAliasPrefix and EventPrefix == self.SpawnAliasPrefix ) then self.AliveUnits = self.AliveUnits + 1 self:T( "Alive Units: " .. self.AliveUnits ) end end end end --- Obscolete -- @todo Need to delete this... _DATABASE does this now ... --- @param #SPAWN self -- @param Core.Event#EVENTDATA EventData function SPAWN:_OnDeadOrCrash( EventData ) self:F( self.SpawnTemplatePrefix ) local SpawnGroup = EventData.IniGroup if SpawnGroup then local EventPrefix = self:_GetPrefixFromGroup( SpawnGroup ) if EventPrefix then -- EventPrefix can be nil if no # is found, which means, no spawnable group! self:T( { "Dead event: " .. EventPrefix } ) if EventPrefix == self.SpawnTemplatePrefix or ( self.SpawnAliasPrefix and EventPrefix == self.SpawnAliasPrefix ) then self.AliveUnits = self.AliveUnits - 1 self:T( "Alive Units: " .. self.AliveUnits ) end end end end --- Will detect AIR Units taking off... When the event takes place, the spawned Group is registered as airborne... -- This is needed to ensure that Re-SPAWNing only is done for landed AIR Groups. -- @param #SPAWN self -- @param Core.Event#EVENTDATA EventData function SPAWN:_OnTakeOff( EventData ) self:F( self.SpawnTemplatePrefix ) local SpawnGroup = EventData.IniGroup if SpawnGroup then local EventPrefix = self:_GetPrefixFromGroup( SpawnGroup ) if EventPrefix then -- EventPrefix can be nil if no # is found, which means, no spawnable group! self:T( { "TakeOff event: " .. EventPrefix } ) if EventPrefix == self.SpawnTemplatePrefix or ( self.SpawnAliasPrefix and EventPrefix == self.SpawnAliasPrefix ) then self:T( "self.Landed = false" ) SpawnGroup:SetState( SpawnGroup, "Spawn_Landed", false ) end end end end --- Will detect AIR Units landing... When the event takes place, the spawned Group is registered as landed. -- This is needed to ensure that Re-SPAWNing is only done for landed AIR Groups. -- @param #SPAWN self -- @param Core.Event#EVENTDATA EventData function SPAWN:_OnLand( EventData ) self:F( self.SpawnTemplatePrefix ) local SpawnGroup = EventData.IniGroup if SpawnGroup then local EventPrefix = self:_GetPrefixFromGroup( SpawnGroup ) if EventPrefix then -- EventPrefix can be nil if no # is found, which means, no spawnable group! self:T( { "Land event: " .. EventPrefix } ) if EventPrefix == self.SpawnTemplatePrefix or ( self.SpawnAliasPrefix and EventPrefix == self.SpawnAliasPrefix ) then -- TODO: Check if this is the last unit of the group that lands. SpawnGroup:SetState( SpawnGroup, "Spawn_Landed", true ) if self.RepeatOnLanding then local SpawnGroupIndex = self:GetSpawnIndexFromGroup( SpawnGroup ) self:T( { "Landed:", "ReSpawn:", SpawnGroup:GetName(), SpawnGroupIndex } ) self:ReSpawn( SpawnGroupIndex ) end end end end end --- Will detect AIR Units shutting down their engines ... -- When the event takes place, and the method @{RepeatOnEngineShutDown} was called, the spawned Group will Re-SPAWN. -- But only when the Unit was registered to have landed. -- @param #SPAWN self -- @param Core.Event#EVENTDATA EventData function SPAWN:_OnEngineShutDown( EventData ) self:F( self.SpawnTemplatePrefix ) local SpawnGroup = EventData.IniGroup if SpawnGroup then local EventPrefix = self:_GetPrefixFromGroup( SpawnGroup ) if EventPrefix then -- EventPrefix can be nil if no # is found, which means, no spawnable group! self:T( { "EngineShutdown event: " .. EventPrefix } ) if EventPrefix == self.SpawnTemplatePrefix or ( self.SpawnAliasPrefix and EventPrefix == self.SpawnAliasPrefix ) then -- todo: test if on the runway local Landed = SpawnGroup:GetState( SpawnGroup, "Spawn_Landed" ) if Landed and self.RepeatOnEngineShutDown then local SpawnGroupIndex = self:GetSpawnIndexFromGroup( SpawnGroup ) self:T( { "EngineShutDown: ", "ReSpawn:", SpawnGroup:GetName(), SpawnGroupIndex } ) self:ReSpawn( SpawnGroupIndex ) end end end end end --- This function is called automatically by the Spawning scheduler. -- It is the internal worker method SPAWNing new Groups on the defined time intervals. function SPAWN:_Scheduler() self:F2( { "_Scheduler", self.SpawnTemplatePrefix, self.SpawnAliasPrefix, self.SpawnIndex, self.SpawnMaxGroups, self.SpawnMaxUnitsAlive } ) -- Validate if there are still groups left in the batch... self:Spawn() return true end --- Schedules the CleanUp of Groups -- @param #SPAWN self -- @return #boolean True = Continue Scheduler function SPAWN:_SpawnCleanUpScheduler() self:F( { "CleanUp Scheduler:", self.SpawnTemplatePrefix } ) local SpawnGroup, SpawnCursor = self:GetFirstAliveGroup() self:T( { "CleanUp Scheduler:", SpawnGroup, SpawnCursor } ) while SpawnGroup do local SpawnUnits = SpawnGroup:GetUnits() for UnitID, UnitData in pairs( SpawnUnits ) do local SpawnUnit = UnitData -- Wrapper.Unit#UNIT local SpawnUnitName = SpawnUnit:GetName() self.SpawnCleanUpTimeStamps[SpawnUnitName] = self.SpawnCleanUpTimeStamps[SpawnUnitName] or {} local Stamp = self.SpawnCleanUpTimeStamps[SpawnUnitName] self:T( { SpawnUnitName, Stamp } ) if Stamp.Vec2 then if SpawnUnit:InAir() == false and SpawnUnit:GetVelocityKMH() < 1 then local NewVec2 = SpawnUnit:GetVec2() if Stamp.Vec2.x == NewVec2.x and Stamp.Vec2.y == NewVec2.y then -- If the plane is not moving, and is on the ground, assign it with a timestamp... if Stamp.Time + self.SpawnCleanUpInterval < timer.getTime() then self:T( { "CleanUp Scheduler:", "ReSpawning:", SpawnGroup:GetName() } ) self:ReSpawn( SpawnCursor ) Stamp.Vec2 = nil Stamp.Time = nil end else Stamp.Time = timer.getTime() Stamp.Vec2 = SpawnUnit:GetVec2() end else Stamp.Vec2 = nil Stamp.Time = nil end else if SpawnUnit:InAir() == false then Stamp.Vec2 = SpawnUnit:GetVec2() if SpawnUnit:GetVelocityKMH() < 1 then Stamp.Time = timer.getTime() end else Stamp.Time = nil Stamp.Vec2 = nil end end end SpawnGroup, SpawnCursor = self:GetNextAliveGroup( SpawnCursor ) self:T( { "CleanUp Scheduler:", SpawnGroup, SpawnCursor } ) end return true -- Repeat end --- **Functional** -- Limit the MOVEMENT of simulaneous moving ground vehicles. -- -- ==== -- -- Limit the simultaneous movement of Groups within a running Mission. -- This module is defined to improve the performance in missions, and to bring additional realism for GROUND vehicles. -- Performance: If in a DCSRTE there are a lot of moving GROUND units, then in a multi player mission, this WILL create lag if -- the main DCS execution core of your CPU is fully utilized. So, this class will limit the amount of simultaneous moving GROUND units -- on defined intervals (currently every minute). -- @module Movement --- the MOVEMENT class -- @type MOVEMENT -- @extends Core.Base#BASE MOVEMENT = { ClassName = "MOVEMENT", } --- Creates the main object which is handling the GROUND forces movement. -- @param table{string,...}|string MovePrefixes is a table of the Prefixes (names) of the GROUND Groups that need to be controlled by the MOVEMENT Object. -- @param number MoveMaximum is a number that defines the maximum amount of GROUND Units to be moving during one minute. -- @return MOVEMENT -- @usage -- -- Limit the amount of simultaneous moving units on the ground to prevent lag. -- Movement_US_Platoons = MOVEMENT:New( { 'US Tank Platoon Left', 'US Tank Platoon Middle', 'US Tank Platoon Right', 'US CH-47D Troops' }, 15 ) function MOVEMENT:New( MovePrefixes, MoveMaximum ) local self = BASE:Inherit( self, BASE:New() ) -- #MOVEMENT self:F( { MovePrefixes, MoveMaximum } ) if type( MovePrefixes ) == 'table' then self.MovePrefixes = MovePrefixes else self.MovePrefixes = { MovePrefixes } end self.MoveCount = 0 -- The internal counter of the amount of Moveing the has happened since MoveStart. self.MoveMaximum = MoveMaximum -- Contains the Maximum amount of units that are allowed to move... self.AliveUnits = 0 -- Contains the counter how many units are currently alive self.MoveUnits = {} -- Reflects if the Moving for this MovePrefixes is going to be scheduled or not. self:HandleEvent( EVENTS.Birth ) -- self:AddEvent( world.event.S_EVENT_BIRTH, self.OnBirth ) -- -- self:EnableEvents() self:ScheduleStart() return self end --- Call this function to start the MOVEMENT scheduling. function MOVEMENT:ScheduleStart() self:F() --self.MoveFunction = routines.scheduleFunction( self._Scheduler, { self }, timer.getTime() + 1, 120 ) self.MoveFunction = SCHEDULER:New( self, self._Scheduler, {}, 1, 120 ) end --- Call this function to stop the MOVEMENT scheduling. -- @todo need to implement it ... Forgot. function MOVEMENT:ScheduleStop() self:F() end --- Captures the birth events when new Units were spawned. -- @todo This method should become obsolete. The new @{DATABASE} class will handle the collection administration. -- @param #MOVEMENT self -- @param Core.Event#EVENTDATA self function MOVEMENT:OnEventBirth( EventData ) self:F( { EventData } ) if timer.getTime0() < timer.getAbsTime() then -- dont need to add units spawned in at the start of the mission if mist is loaded in init line if EventData.IniDCSUnit then self:T( "Birth object : " .. EventData.IniDCSUnitName ) if EventData.IniDCSGroup and EventData.IniDCSGroup:isExist() then for MovePrefixID, MovePrefix in pairs( self.MovePrefixes ) do if string.find( EventData.IniDCSUnitName, MovePrefix, 1, true ) then self.AliveUnits = self.AliveUnits + 1 self.MoveUnits[EventData.IniDCSUnitName] = EventData.IniDCSGroupName self:T( self.AliveUnits ) end end end end EventData.IniUnit:HandleEvent( EVENTS.DEAD, self.OnDeadOrCrash ) end end --- Captures the Dead or Crash events when Units crash or are destroyed. -- @todo This method should become obsolete. The new @{DATABASE} class will handle the collection administration. function MOVEMENT:OnDeadOrCrash( Event ) self:F( { Event } ) if Event.IniDCSUnit then self:T( "Dead object : " .. Event.IniDCSUnitName ) for MovePrefixID, MovePrefix in pairs( self.MovePrefixes ) do if string.find( Event.IniDCSUnitName, MovePrefix, 1, true ) then self.AliveUnits = self.AliveUnits - 1 self.MoveUnits[Event.IniDCSUnitName] = nil self:T( self.AliveUnits ) end end end end --- This function is called automatically by the MOVEMENT scheduler. A new function is scheduled when MoveScheduled is true. function MOVEMENT:_Scheduler() self:F( { self.MovePrefixes, self.MoveMaximum, self.AliveUnits, self.MovementGroups } ) if self.AliveUnits > 0 then local MoveProbability = ( self.MoveMaximum * 100 ) / self.AliveUnits self:T( 'Move Probability = ' .. MoveProbability ) for MovementUnitName, MovementGroupName in pairs( self.MoveUnits ) do local MovementGroup = Group.getByName( MovementGroupName ) if MovementGroup and MovementGroup:isExist() then local MoveOrStop = math.random( 1, 100 ) self:T( 'MoveOrStop = ' .. MoveOrStop ) if MoveOrStop <= MoveProbability then self:T( 'Group continues moving = ' .. MovementGroupName ) trigger.action.groupContinueMoving( MovementGroup ) else self:T( 'Group stops moving = ' .. MovementGroupName ) trigger.action.groupStopMoving( MovementGroup ) end else self.MoveUnits[MovementUnitName] = nil end end end return true end --- **Functional** -- Provides defensive behaviour to a set of SAM sites within a running Mission. -- -- ==== -- -- @module Sead --- The SEAD class -- @type SEAD -- @extends Core.Base#BASE SEAD = { ClassName = "SEAD", TargetSkill = { Average = { Evade = 50, DelayOff = { 10, 25 }, DelayOn = { 10, 30 } } , Good = { Evade = 30, DelayOff = { 8, 20 }, DelayOn = { 20, 40 } } , High = { Evade = 15, DelayOff = { 5, 17 }, DelayOn = { 30, 50 } } , Excellent = { Evade = 10, DelayOff = { 3, 10 }, DelayOn = { 30, 60 } } }, SEADGroupPrefixes = {} } --- Creates the main object which is handling defensive actions for SA sites or moving SA vehicles. -- When an anti radiation missile is fired (KH-58, KH-31P, KH-31A, KH-25MPU, HARM missiles), the SA will shut down their radars and will take evasive actions... -- Chances are big that the missile will miss. -- @param table{string,...}|string SEADGroupPrefixes which is a table of Prefixes of the SA Groups in the DCSRTE on which evasive actions need to be taken. -- @return SEAD -- @usage -- -- CCCP SEAD Defenses -- -- Defends the Russian SA installations from SEAD attacks. -- SEAD_RU_SAM_Defenses = SEAD:New( { 'RU SA-6 Kub', 'RU SA-6 Defenses', 'RU MI-26 Troops', 'RU Attack Gori' } ) function SEAD:New( SEADGroupPrefixes ) local self = BASE:Inherit( self, BASE:New() ) self:F( SEADGroupPrefixes ) if type( SEADGroupPrefixes ) == 'table' then for SEADGroupPrefixID, SEADGroupPrefix in pairs( SEADGroupPrefixes ) do self.SEADGroupPrefixes[SEADGroupPrefix] = SEADGroupPrefix end else self.SEADGroupNames[SEADGroupPrefixes] = SEADGroupPrefixes end self:HandleEvent( EVENTS.Shot ) return self end --- Detects if an SA site was shot with an anti radiation missile. In this case, take evasive actions based on the skill level set within the ME. -- @see SEAD -- @param #SEAD -- @param Core.Event#EVENTDATA EventData function SEAD:OnEventShot( EventData ) self:F( { EventData } ) local SEADUnit = EventData.IniDCSUnit local SEADUnitName = EventData.IniDCSUnitName local SEADWeapon = EventData.Weapon -- Identify the weapon fired local SEADWeaponName = EventData.WeaponName -- return weapon type -- Start of the 2nd loop self:T( "Missile Launched = " .. SEADWeaponName ) if SEADWeaponName == "KH-58" or SEADWeaponName == "KH-25MPU" or SEADWeaponName == "AGM-88" or SEADWeaponName == "KH-31A" or SEADWeaponName == "KH-31P" then -- Check if the missile is a SEAD local _evade = math.random (1,100) -- random number for chance of evading action local _targetMim = EventData.Weapon:getTarget() -- Identify target local _targetMimname = Unit.getName(_targetMim) local _targetMimgroup = Unit.getGroup(Weapon.getTarget(SEADWeapon)) local _targetMimgroupName = _targetMimgroup:getName() local _targetMimcont= _targetMimgroup:getController() local _targetskill = _DATABASE.Templates.Units[_targetMimname].Template.skill self:T( self.SEADGroupPrefixes ) self:T( _targetMimgroupName ) local SEADGroupFound = false for SEADGroupPrefixID, SEADGroupPrefix in pairs( self.SEADGroupPrefixes ) do if string.find( _targetMimgroupName, SEADGroupPrefix, 1, true ) then SEADGroupFound = true self:T( 'Group Found' ) break end end if SEADGroupFound == true then if _targetskill == "Random" then -- when skill is random, choose a skill local Skills = { "Average", "Good", "High", "Excellent" } _targetskill = Skills[ math.random(1,4) ] end self:T( _targetskill ) if self.TargetSkill[_targetskill] then if (_evade > self.TargetSkill[_targetskill].Evade) then self:T( string.format("Evading, target skill " ..string.format(_targetskill)) ) local _targetMim = Weapon.getTarget(SEADWeapon) local _targetMimname = Unit.getName(_targetMim) local _targetMimgroup = Unit.getGroup(Weapon.getTarget(SEADWeapon)) local _targetMimcont= _targetMimgroup:getController() routines.groupRandomDistSelf(_targetMimgroup,300,'Diamond',250,20) -- move randomly local SuppressedGroups1 = {} -- unit suppressed radar off for a random time local function SuppressionEnd1(id) id.ctrl:setOption(AI.Option.Ground.id.ALARM_STATE,AI.Option.Ground.val.ALARM_STATE.GREEN) SuppressedGroups1[id.groupName] = nil end local id = { groupName = _targetMimgroup, ctrl = _targetMimcont } local delay1 = math.random(self.TargetSkill[_targetskill].DelayOff[1], self.TargetSkill[_targetskill].DelayOff[2]) if SuppressedGroups1[id.groupName] == nil then SuppressedGroups1[id.groupName] = { SuppressionEndTime1 = timer.getTime() + delay1, SuppressionEndN1 = SuppressionEndCounter1 --Store instance of SuppressionEnd() scheduled function } Controller.setOption(_targetMimcont, AI.Option.Ground.id.ALARM_STATE,AI.Option.Ground.val.ALARM_STATE.GREEN) timer.scheduleFunction(SuppressionEnd1, id, SuppressedGroups1[id.groupName].SuppressionEndTime1) --Schedule the SuppressionEnd() function --trigger.action.outText( string.format("Radar Off " ..string.format(delay1)), 20) end local SuppressedGroups = {} local function SuppressionEnd(id) id.ctrl:setOption(AI.Option.Ground.id.ALARM_STATE,AI.Option.Ground.val.ALARM_STATE.RED) SuppressedGroups[id.groupName] = nil end local id = { groupName = _targetMimgroup, ctrl = _targetMimcont } local delay = math.random(self.TargetSkill[_targetskill].DelayOn[1], self.TargetSkill[_targetskill].DelayOn[2]) if SuppressedGroups[id.groupName] == nil then SuppressedGroups[id.groupName] = { SuppressionEndTime = timer.getTime() + delay, SuppressionEndN = SuppressionEndCounter --Store instance of SuppressionEnd() scheduled function } timer.scheduleFunction(SuppressionEnd, id, SuppressedGroups[id.groupName].SuppressionEndTime) --Schedule the SuppressionEnd() function --trigger.action.outText( string.format("Radar On " ..string.format(delay)), 20) end end end end end end --- **Functional** -- Taking the lead of AI escorting your flight. -- -- ==== -- -- @{#ESCORT} class -- ================ -- The @{#ESCORT} class allows you to interact with escorting AI on your flight and take the lead. -- Each escorting group can be commanded with a whole set of radio commands (radio menu in your flight, and then F10). -- -- The radio commands will vary according the category of the group. The richest set of commands are with Helicopters and AirPlanes. -- Ships and Ground troops will have a more limited set, but they can provide support through the bombing of targets designated by the other escorts. -- -- RADIO MENUs that can be created: -- ================================ -- Find a summary below of the current available commands: -- -- Navigation ...: -- --------------- -- Escort group navigation functions: -- -- * **"Join-Up and Follow at x meters":** The escort group fill follow you at about x meters, and they will follow you. -- * **"Flare":** Provides menu commands to let the escort group shoot a flare in the air in a color. -- * **"Smoke":** Provides menu commands to let the escort group smoke the air in a color. Note that smoking is only available for ground and naval troops. -- -- Hold position ...: -- ------------------ -- Escort group navigation functions: -- -- * **"At current location":** Stops the escort group and they will hover 30 meters above the ground at the position they stopped. -- * **"At client location":** Stops the escort group and they will hover 30 meters above the ground at the position they stopped. -- -- Report targets ...: -- ------------------- -- Report targets will make the escort group to report any target that it identifies within a 8km range. Any detected target can be attacked using the 4. Attack nearby targets function. (see below). -- -- * **"Report now":** Will report the current detected targets. -- * **"Report targets on":** Will make the escort group to report detected targets and will fill the "Attack nearby targets" menu list. -- * **"Report targets off":** Will stop detecting targets. -- -- Scan targets ...: -- ----------------- -- Menu items to pop-up the escort group for target scanning. After scanning, the escort group will resume with the mission or defined task. -- -- * **"Scan targets 30 seconds":** Scan 30 seconds for targets. -- * **"Scan targets 60 seconds":** Scan 60 seconds for targets. -- -- Attack targets ...: -- ------------------- -- This menu item will list all detected targets within a 15km range. Depending on the level of detection (known/unknown) and visuality, the targets type will also be listed. -- -- Request assistance from ...: -- ---------------------------- -- This menu item will list all detected targets within a 15km range, as with the menu item **Attack Targets**. -- This menu item allows to request attack support from other escorts supporting the current client group. -- eg. the function allows a player to request support from the Ship escort to attack a target identified by the Plane escort with its Tomahawk missiles. -- eg. the function allows a player to request support from other Planes escorting to bomb the unit with illumination missiles or bombs, so that the main plane escort can attack the area. -- -- ROE ...: -- -------- -- Sets the Rules of Engagement (ROE) of the escort group when in flight. -- -- * **"Hold Fire":** The escort group will hold fire. -- * **"Return Fire":** The escort group will return fire. -- * **"Open Fire":** The escort group will open fire on designated targets. -- * **"Weapon Free":** The escort group will engage with any target. -- -- Evasion ...: -- ------------ -- Will define the evasion techniques that the escort group will perform during flight or combat. -- -- * **"Fight until death":** The escort group will have no reaction to threats. -- * **"Use flares, chaff and jammers":** The escort group will use passive defense using flares and jammers. No evasive manoeuvres are executed. -- * **"Evade enemy fire":** The rescort group will evade enemy fire before firing. -- * **"Go below radar and evade fire":** The escort group will perform evasive vertical manoeuvres. -- -- Resume Mission ...: -- ------------------- -- Escort groups can have their own mission. This menu item will allow the escort group to resume their Mission from a given waypoint. -- Note that this is really fantastic, as you now have the dynamic of taking control of the escort groups, and allowing them to resume their path or mission. -- -- ESCORT construction methods. -- ============================ -- Create a new SPAWN object with the @{#ESCORT.New} method: -- -- * @{#ESCORT.New}: Creates a new ESCORT object from a @{Group#GROUP} for a @{Client#CLIENT}, with an optional briefing text. -- -- ESCORT initialization methods. -- ============================== -- The following menus are created within the RADIO MENU (F10) of an active unit hosted by a player: -- -- * @{#ESCORT.MenuFollowAt}: Creates a menu to make the escort follow the client. -- * @{#ESCORT.MenuHoldAtEscortPosition}: Creates a menu to hold the escort at its current position. -- * @{#ESCORT.MenuHoldAtLeaderPosition}: Creates a menu to hold the escort at the client position. -- * @{#ESCORT.MenuScanForTargets}: Creates a menu so that the escort scans targets. -- * @{#ESCORT.MenuFlare}: Creates a menu to disperse flares. -- * @{#ESCORT.MenuSmoke}: Creates a menu to disparse smoke. -- * @{#ESCORT.MenuReportTargets}: Creates a menu so that the escort reports targets. -- * @{#ESCORT.MenuReportPosition}: Creates a menu so that the escort reports its current position from bullseye. -- * @{#ESCORT.MenuAssistedAttack: Creates a menu so that the escort supportes assisted attack from other escorts with the client. -- * @{#ESCORT.MenuROE: Creates a menu structure to set the rules of engagement of the escort. -- * @{#ESCORT.MenuEvasion: Creates a menu structure to set the evasion techniques when the escort is under threat. -- * @{#ESCORT.MenuResumeMission}: Creates a menu structure so that the escort can resume from a waypoint. -- -- -- @usage -- -- Declare a new EscortPlanes object as follows: -- -- -- First find the GROUP object and the CLIENT object. -- local EscortClient = CLIENT:FindByName( "Unit Name" ) -- The Unit Name is the name of the unit flagged with the skill Client in the mission editor. -- local EscortGroup = GROUP:FindByName( "Group Name" ) -- The Group Name is the name of the group that will escort the Escort Client. -- -- -- Now use these 2 objects to construct the new EscortPlanes object. -- EscortPlanes = ESCORT:New( EscortClient, EscortGroup, "Desert", "Welcome to the mission. You are escorted by a plane with code name 'Desert', which can be instructed through the F10 radio menu." ) -- -- -- -- @module Escort -- @author FlightControl --- ESCORT class -- @type ESCORT -- @extends Core.Base#BASE -- @field Wrapper.Client#CLIENT EscortClient -- @field Wrapper.Group#GROUP EscortGroup -- @field #string EscortName -- @field #ESCORT.MODE EscortMode The mode the escort is in. -- @field Core.Scheduler#SCHEDULER FollowScheduler The instance of the SCHEDULER class. -- @field #number FollowDistance The current follow distance. -- @field #boolean ReportTargets If true, nearby targets are reported. -- @Field Dcs.DCSTypes#AI.Option.Air.val.ROE OptionROE Which ROE is set to the EscortGroup. -- @field Dcs.DCSTypes#AI.Option.Air.val.REACTION_ON_THREAT OptionReactionOnThreat Which REACTION_ON_THREAT is set to the EscortGroup. -- @field Core.Menu#MENU_CLIENT EscortMenuResumeMission -- @field Functional.Detection#DETECTION_BASE Detection ESCORT = { ClassName = "ESCORT", EscortName = nil, -- The Escort Name EscortClient = nil, EscortGroup = nil, EscortMode = 1, MODE = { FOLLOW = 1, MISSION = 2, }, Targets = {}, -- The identified targets FollowScheduler = nil, ReportTargets = true, OptionROE = AI.Option.Air.val.ROE.OPEN_FIRE, OptionReactionOnThreat = AI.Option.Air.val.REACTION_ON_THREAT.ALLOW_ABORT_MISSION, SmokeDirectionVector = false, TaskPoints = {} } --- ESCORT.Mode class -- @type ESCORT.MODE -- @field #number FOLLOW -- @field #number MISSION --- MENUPARAM type -- @type MENUPARAM -- @field #ESCORT ParamSelf -- @field #Distance ParamDistance -- @field #function ParamFunction -- @field #string ParamMessage --- ESCORT class constructor for an AI group -- @param #ESCORT self -- @param Wrapper.Client#CLIENT EscortClient The client escorted by the EscortGroup. -- @param Wrapper.Group#GROUP EscortGroup The group AI escorting the EscortClient. -- @param #string EscortName Name of the escort. -- @param #string EscortBriefing A text showing the ESCORT briefing to the player. Note that if no EscortBriefing is provided, the default briefing will be shown. -- @return #ESCORT self -- @usage -- -- Declare a new EscortPlanes object as follows: -- -- -- First find the GROUP object and the CLIENT object. -- local EscortClient = CLIENT:FindByName( "Unit Name" ) -- The Unit Name is the name of the unit flagged with the skill Client in the mission editor. -- local EscortGroup = GROUP:FindByName( "Group Name" ) -- The Group Name is the name of the group that will escort the Escort Client. -- -- -- Now use these 2 objects to construct the new EscortPlanes object. -- EscortPlanes = ESCORT:New( EscortClient, EscortGroup, "Desert", "Welcome to the mission. You are escorted by a plane with code name 'Desert', which can be instructed through the F10 radio menu." ) function ESCORT:New( EscortClient, EscortGroup, EscortName, EscortBriefing ) local self = BASE:Inherit( self, BASE:New() ) -- #ESCORT self:F( { EscortClient, EscortGroup, EscortName } ) self.EscortClient = EscortClient -- Wrapper.Client#CLIENT self.EscortGroup = EscortGroup -- Wrapper.Group#GROUP self.EscortName = EscortName self.EscortBriefing = EscortBriefing self.EscortSetGroup = SET_GROUP:New() self.EscortSetGroup:AddObject( self.EscortGroup ) self.EscortSetGroup:Flush() self.Detection = DETECTION_UNITS:New( self.EscortSetGroup, 15000 ) self.EscortGroup.Detection = self.Detection -- Set EscortGroup known at EscortClient. if not self.EscortClient._EscortGroups then self.EscortClient._EscortGroups = {} end if not self.EscortClient._EscortGroups[EscortGroup:GetName()] then self.EscortClient._EscortGroups[EscortGroup:GetName()] = {} self.EscortClient._EscortGroups[EscortGroup:GetName()].EscortGroup = self.EscortGroup self.EscortClient._EscortGroups[EscortGroup:GetName()].EscortName = self.EscortName self.EscortClient._EscortGroups[EscortGroup:GetName()].Detection = self.EscortGroup.Detection end self.EscortMenu = MENU_CLIENT:New( self.EscortClient, self.EscortName ) self.EscortGroup:WayPointInitialize(1) self.EscortGroup:OptionROTVertical() self.EscortGroup:OptionROEOpenFire() if not EscortBriefing then EscortGroup:MessageToClient( EscortGroup:GetCategoryName() .. " '" .. EscortName .. "' (" .. EscortGroup:GetCallsign() .. ") reporting! " .. "We're escorting your flight. " .. "Use the Radio Menu and F10 and use the options under + " .. EscortName .. "\n", 60, EscortClient ) else EscortGroup:MessageToClient( EscortGroup:GetCategoryName() .. " '" .. EscortName .. "' (" .. EscortGroup:GetCallsign() .. ") " .. EscortBriefing, 60, EscortClient ) end self.FollowDistance = 100 self.CT1 = 0 self.GT1 = 0 self.FollowScheduler, self.FollowSchedule = SCHEDULER:New( self, self._FollowScheduler, {}, 1, .5, .01 ) self.FollowScheduler:Stop( self.FollowSchedule ) self.EscortMode = ESCORT.MODE.MISSION return self end --- Set a Detection method for the EscortClient to be reported upon. -- Detection methods are based on the derived classes from DETECTION_BASE. -- @param #ESCORT self -- @param Function.Detection#DETECTION_BASE Detection function ESCORT:SetDetection( Detection ) self.Detection = Detection self.EscortGroup.Detection = self.Detection self.EscortClient._EscortGroups[self.EscortGroup:GetName()].Detection = self.EscortGroup.Detection Detection:__Start( 1 ) end --- This function is for test, it will put on the frequency of the FollowScheduler a red smoke at the direction vector calculated for the escort to fly to. -- This allows to visualize where the escort is flying to. -- @param #ESCORT self -- @param #boolean SmokeDirection If true, then the direction vector will be smoked. function ESCORT:TestSmokeDirectionVector( SmokeDirection ) self.SmokeDirectionVector = ( SmokeDirection == true ) and true or false end --- Defines the default menus -- @param #ESCORT self -- @return #ESCORT function ESCORT:Menus() self:F() self:MenuFollowAt( 100 ) self:MenuFollowAt( 200 ) self:MenuFollowAt( 300 ) self:MenuFollowAt( 400 ) self:MenuScanForTargets( 100, 60 ) self:MenuHoldAtEscortPosition( 30 ) self:MenuHoldAtLeaderPosition( 30 ) self:MenuFlare() self:MenuSmoke() self:MenuReportTargets( 60 ) self:MenuAssistedAttack() self:MenuROE() self:MenuEvasion() self:MenuResumeMission() return self end --- Defines a menu slot to let the escort Join and Follow you at a certain distance. -- This menu will appear under **Navigation**. -- @param #ESCORT self -- @param Dcs.DCSTypes#Distance Distance The distance in meters that the escort needs to follow the client. -- @return #ESCORT function ESCORT:MenuFollowAt( Distance ) self:F(Distance) if self.EscortGroup:IsAir() then if not self.EscortMenuReportNavigation then self.EscortMenuReportNavigation = MENU_CLIENT:New( self.EscortClient, "Navigation", self.EscortMenu ) end if not self.EscortMenuJoinUpAndFollow then self.EscortMenuJoinUpAndFollow = {} end self.EscortMenuJoinUpAndFollow[#self.EscortMenuJoinUpAndFollow+1] = MENU_CLIENT_COMMAND:New( self.EscortClient, "Join-Up and Follow at " .. Distance, self.EscortMenuReportNavigation, ESCORT._JoinUpAndFollow, self, Distance ) self.EscortMode = ESCORT.MODE.FOLLOW end return self end --- Defines a menu slot to let the escort hold at their current position and stay low with a specified height during a specified time in seconds. -- This menu will appear under **Hold position**. -- @param #ESCORT self -- @param Dcs.DCSTypes#Distance Height Optional parameter that sets the height in meters to let the escort orbit at the current location. The default value is 30 meters. -- @param Dcs.DCSTypes#Time Seconds Optional parameter that lets the escort orbit at the current position for a specified time. (not implemented yet). The default value is 0 seconds, meaning, that the escort will orbit forever until a sequent command is given. -- @param #string MenuTextFormat Optional parameter that shows the menu option text. The text string is formatted, and should contain two %d tokens in the string. The first for the Height, the second for the Time (if given). If no text is given, the default text will be displayed. -- @return #ESCORT -- TODO: Implement Seconds parameter. Challenge is to first develop the "continue from last activity" function. function ESCORT:MenuHoldAtEscortPosition( Height, Seconds, MenuTextFormat ) self:F( { Height, Seconds, MenuTextFormat } ) if self.EscortGroup:IsAir() then if not self.EscortMenuHold then self.EscortMenuHold = MENU_CLIENT:New( self.EscortClient, "Hold position", self.EscortMenu ) end if not Height then Height = 30 end if not Seconds then Seconds = 0 end local MenuText = "" if not MenuTextFormat then if Seconds == 0 then MenuText = string.format( "Hold at %d meter", Height ) else MenuText = string.format( "Hold at %d meter for %d seconds", Height, Seconds ) end else if Seconds == 0 then MenuText = string.format( MenuTextFormat, Height ) else MenuText = string.format( MenuTextFormat, Height, Seconds ) end end if not self.EscortMenuHoldPosition then self.EscortMenuHoldPosition = {} end self.EscortMenuHoldPosition[#self.EscortMenuHoldPosition+1] = MENU_CLIENT_COMMAND :New( self.EscortClient, MenuText, self.EscortMenuHold, ESCORT._HoldPosition, self, self.EscortGroup, Height, Seconds ) end return self end --- Defines a menu slot to let the escort hold at the client position and stay low with a specified height during a specified time in seconds. -- This menu will appear under **Navigation**. -- @param #ESCORT self -- @param Dcs.DCSTypes#Distance Height Optional parameter that sets the height in meters to let the escort orbit at the current location. The default value is 30 meters. -- @param Dcs.DCSTypes#Time Seconds Optional parameter that lets the escort orbit at the current position for a specified time. (not implemented yet). The default value is 0 seconds, meaning, that the escort will orbit forever until a sequent command is given. -- @param #string MenuTextFormat Optional parameter that shows the menu option text. The text string is formatted, and should contain one or two %d tokens in the string. The first for the Height, the second for the Time (if given). If no text is given, the default text will be displayed. -- @return #ESCORT -- TODO: Implement Seconds parameter. Challenge is to first develop the "continue from last activity" function. function ESCORT:MenuHoldAtLeaderPosition( Height, Seconds, MenuTextFormat ) self:F( { Height, Seconds, MenuTextFormat } ) if self.EscortGroup:IsAir() then if not self.EscortMenuHold then self.EscortMenuHold = MENU_CLIENT:New( self.EscortClient, "Hold position", self.EscortMenu ) end if not Height then Height = 30 end if not Seconds then Seconds = 0 end local MenuText = "" if not MenuTextFormat then if Seconds == 0 then MenuText = string.format( "Rejoin and hold at %d meter", Height ) else MenuText = string.format( "Rejoin and hold at %d meter for %d seconds", Height, Seconds ) end else if Seconds == 0 then MenuText = string.format( MenuTextFormat, Height ) else MenuText = string.format( MenuTextFormat, Height, Seconds ) end end if not self.EscortMenuHoldAtLeaderPosition then self.EscortMenuHoldAtLeaderPosition = {} end self.EscortMenuHoldAtLeaderPosition[#self.EscortMenuHoldAtLeaderPosition+1] = MENU_CLIENT_COMMAND :New( self.EscortClient, MenuText, self.EscortMenuHold, ESCORT._HoldPosition, { ParamSelf = self, ParamOrbitGroup = self.EscortClient, ParamHeight = Height, ParamSeconds = Seconds } ) end return self end --- Defines a menu slot to let the escort scan for targets at a certain height for a certain time in seconds. -- This menu will appear under **Scan targets**. -- @param #ESCORT self -- @param Dcs.DCSTypes#Distance Height Optional parameter that sets the height in meters to let the escort orbit at the current location. The default value is 30 meters. -- @param Dcs.DCSTypes#Time Seconds Optional parameter that lets the escort orbit at the current position for a specified time. (not implemented yet). The default value is 0 seconds, meaning, that the escort will orbit forever until a sequent command is given. -- @param #string MenuTextFormat Optional parameter that shows the menu option text. The text string is formatted, and should contain one or two %d tokens in the string. The first for the Height, the second for the Time (if given). If no text is given, the default text will be displayed. -- @return #ESCORT function ESCORT:MenuScanForTargets( Height, Seconds, MenuTextFormat ) self:F( { Height, Seconds, MenuTextFormat } ) if self.EscortGroup:IsAir() then if not self.EscortMenuScan then self.EscortMenuScan = MENU_CLIENT:New( self.EscortClient, "Scan for targets", self.EscortMenu ) end if not Height then Height = 100 end if not Seconds then Seconds = 30 end local MenuText = "" if not MenuTextFormat then if Seconds == 0 then MenuText = string.format( "At %d meter", Height ) else MenuText = string.format( "At %d meter for %d seconds", Height, Seconds ) end else if Seconds == 0 then MenuText = string.format( MenuTextFormat, Height ) else MenuText = string.format( MenuTextFormat, Height, Seconds ) end end if not self.EscortMenuScanForTargets then self.EscortMenuScanForTargets = {} end self.EscortMenuScanForTargets[#self.EscortMenuScanForTargets+1] = MENU_CLIENT_COMMAND :New( self.EscortClient, MenuText, self.EscortMenuScan, ESCORT._ScanTargets, self, 30 ) end return self end --- Defines a menu slot to let the escort disperse a flare in a certain color. -- This menu will appear under **Navigation**. -- The flare will be fired from the first unit in the group. -- @param #ESCORT self -- @param #string MenuTextFormat Optional parameter that shows the menu option text. If no text is given, the default text will be displayed. -- @return #ESCORT function ESCORT:MenuFlare( MenuTextFormat ) self:F() if not self.EscortMenuReportNavigation then self.EscortMenuReportNavigation = MENU_CLIENT:New( self.EscortClient, "Navigation", self.EscortMenu ) end local MenuText = "" if not MenuTextFormat then MenuText = "Flare" else MenuText = MenuTextFormat end if not self.EscortMenuFlare then self.EscortMenuFlare = MENU_CLIENT:New( self.EscortClient, MenuText, self.EscortMenuReportNavigation, ESCORT._Flare, self ) self.EscortMenuFlareGreen = MENU_CLIENT_COMMAND:New( self.EscortClient, "Release green flare", self.EscortMenuFlare, ESCORT._Flare, self, FLARECOLOR.Green, "Released a green flare!" ) self.EscortMenuFlareRed = MENU_CLIENT_COMMAND:New( self.EscortClient, "Release red flare", self.EscortMenuFlare, ESCORT._Flare, self, FLARECOLOR.Red, "Released a red flare!" ) self.EscortMenuFlareWhite = MENU_CLIENT_COMMAND:New( self.EscortClient, "Release white flare", self.EscortMenuFlare, ESCORT._Flare, self, FLARECOLOR.White, "Released a white flare!" ) self.EscortMenuFlareYellow = MENU_CLIENT_COMMAND:New( self.EscortClient, "Release yellow flare", self.EscortMenuFlare, ESCORT._Flare, self, FLARECOLOR.Yellow, "Released a yellow flare!" ) end return self end --- Defines a menu slot to let the escort disperse a smoke in a certain color. -- This menu will appear under **Navigation**. -- Note that smoke menu options will only be displayed for ships and ground units. Not for air units. -- The smoke will be fired from the first unit in the group. -- @param #ESCORT self -- @param #string MenuTextFormat Optional parameter that shows the menu option text. If no text is given, the default text will be displayed. -- @return #ESCORT function ESCORT:MenuSmoke( MenuTextFormat ) self:F() if not self.EscortGroup:IsAir() then if not self.EscortMenuReportNavigation then self.EscortMenuReportNavigation = MENU_CLIENT:New( self.EscortClient, "Navigation", self.EscortMenu ) end local MenuText = "" if not MenuTextFormat then MenuText = "Smoke" else MenuText = MenuTextFormat end if not self.EscortMenuSmoke then self.EscortMenuSmoke = MENU_CLIENT:New( self.EscortClient, "Smoke", self.EscortMenuReportNavigation, ESCORT._Smoke, self ) self.EscortMenuSmokeGreen = MENU_CLIENT_COMMAND:New( self.EscortClient, "Release green smoke", self.EscortMenuSmoke, ESCORT._Smoke, self, SMOKECOLOR.Green, "Releasing green smoke!" ) self.EscortMenuSmokeRed = MENU_CLIENT_COMMAND:New( self.EscortClient, "Release red smoke", self.EscortMenuSmoke, ESCORT._Smoke, self, SMOKECOLOR.Red, "Releasing red smoke!" ) self.EscortMenuSmokeWhite = MENU_CLIENT_COMMAND:New( self.EscortClient, "Release white smoke", self.EscortMenuSmoke, ESCORT._Smoke, self, SMOKECOLOR.White, "Releasing white smoke!" ) self.EscortMenuSmokeOrange = MENU_CLIENT_COMMAND:New( self.EscortClient, "Release orange smoke", self.EscortMenuSmoke, ESCORT._Smoke, self, SMOKECOLOR.Orange, "Releasing orange smoke!" ) self.EscortMenuSmokeBlue = MENU_CLIENT_COMMAND:New( self.EscortClient, "Release blue smoke", self.EscortMenuSmoke, ESCORT._Smoke, self, SMOKECOLOR.Blue, "Releasing blue smoke!" ) end end return self end --- Defines a menu slot to let the escort report their current detected targets with a specified time interval in seconds. -- This menu will appear under **Report targets**. -- Note that if a report targets menu is not specified, no targets will be detected by the escort, and the attack and assisted attack menus will not be displayed. -- @param #ESCORT self -- @param Dcs.DCSTypes#Time Seconds Optional parameter that lets the escort report their current detected targets after specified time interval in seconds. The default time is 30 seconds. -- @return #ESCORT function ESCORT:MenuReportTargets( Seconds ) self:F( { Seconds } ) if not self.EscortMenuReportNearbyTargets then self.EscortMenuReportNearbyTargets = MENU_CLIENT:New( self.EscortClient, "Report targets", self.EscortMenu ) end if not Seconds then Seconds = 30 end -- Report Targets self.EscortMenuReportNearbyTargetsNow = MENU_CLIENT_COMMAND:New( self.EscortClient, "Report targets now!", self.EscortMenuReportNearbyTargets, ESCORT._ReportNearbyTargetsNow, self ) self.EscortMenuReportNearbyTargetsOn = MENU_CLIENT_COMMAND:New( self.EscortClient, "Report targets on", self.EscortMenuReportNearbyTargets, ESCORT._SwitchReportNearbyTargets, self, true ) self.EscortMenuReportNearbyTargetsOff = MENU_CLIENT_COMMAND:New( self.EscortClient, "Report targets off", self.EscortMenuReportNearbyTargets, ESCORT._SwitchReportNearbyTargets, self, false ) -- Attack Targets self.EscortMenuAttackNearbyTargets = MENU_CLIENT:New( self.EscortClient, "Attack targets", self.EscortMenu ) self.ReportTargetsScheduler = SCHEDULER:New( self, self._ReportTargetsScheduler, {}, 1, Seconds ) return self end --- Defines a menu slot to let the escort attack its detected targets using assisted attack from another escort joined also with the client. -- This menu will appear under **Request assistance from**. -- Note that this method needs to be preceded with the method MenuReportTargets. -- @param #ESCORT self -- @return #ESCORT function ESCORT:MenuAssistedAttack() self:F() -- Request assistance from other escorts. -- This is very useful to let f.e. an escorting ship attack a target detected by an escorting plane... self.EscortMenuTargetAssistance = MENU_CLIENT:New( self.EscortClient, "Request assistance from", self.EscortMenu ) return self end --- Defines a menu to let the escort set its rules of engagement. -- All rules of engagement will appear under the menu **ROE**. -- @param #ESCORT self -- @return #ESCORT function ESCORT:MenuROE( MenuTextFormat ) self:F( MenuTextFormat ) if not self.EscortMenuROE then -- Rules of Engagement self.EscortMenuROE = MENU_CLIENT:New( self.EscortClient, "ROE", self.EscortMenu ) if self.EscortGroup:OptionROEHoldFirePossible() then self.EscortMenuROEHoldFire = MENU_CLIENT_COMMAND:New( self.EscortClient, "Hold Fire", self.EscortMenuROE, ESCORT._ROE, self, self.EscortGroup:OptionROEHoldFire(), "Holding weapons!" ) end if self.EscortGroup:OptionROEReturnFirePossible() then self.EscortMenuROEReturnFire = MENU_CLIENT_COMMAND:New( self.EscortClient, "Return Fire", self.EscortMenuROE, ESCORT._ROE, self, self.EscortGroup:OptionROEReturnFire(), "Returning fire!" ) end if self.EscortGroup:OptionROEOpenFirePossible() then self.EscortMenuROEOpenFire = MENU_CLIENT_COMMAND:New( self.EscortClient, "Open Fire", self.EscortMenuROE, ESCORT._ROE, self, self.EscortGroup:OptionROEOpenFire(), "Opening fire on designated targets!!" ) end if self.EscortGroup:OptionROEWeaponFreePossible() then self.EscortMenuROEWeaponFree = MENU_CLIENT_COMMAND:New( self.EscortClient, "Weapon Free", self.EscortMenuROE, ESCORT._ROE, self, self.EscortGroup:OptionROEWeaponFree(), "Opening fire on targets of opportunity!" ) end end return self end --- Defines a menu to let the escort set its evasion when under threat. -- All rules of engagement will appear under the menu **Evasion**. -- @param #ESCORT self -- @return #ESCORT function ESCORT:MenuEvasion( MenuTextFormat ) self:F( MenuTextFormat ) if self.EscortGroup:IsAir() then if not self.EscortMenuEvasion then -- Reaction to Threats self.EscortMenuEvasion = MENU_CLIENT:New( self.EscortClient, "Evasion", self.EscortMenu ) if self.EscortGroup:OptionROTNoReactionPossible() then self.EscortMenuEvasionNoReaction = MENU_CLIENT_COMMAND:New( self.EscortClient, "Fight until death", self.EscortMenuEvasion, ESCORT._ROT, self, self.EscortGroup:OptionROTNoReaction(), "Fighting until death!" ) end if self.EscortGroup:OptionROTPassiveDefensePossible() then self.EscortMenuEvasionPassiveDefense = MENU_CLIENT_COMMAND:New( self.EscortClient, "Use flares, chaff and jammers", self.EscortMenuEvasion, ESCORT._ROT, self, self.EscortGroup:OptionROTPassiveDefense(), "Defending using jammers, chaff and flares!" ) end if self.EscortGroup:OptionROTEvadeFirePossible() then self.EscortMenuEvasionEvadeFire = MENU_CLIENT_COMMAND:New( self.EscortClient, "Evade enemy fire", self.EscortMenuEvasion, ESCORT._ROT, self, self.EscortGroup:OptionROTEvadeFire(), "Evading on enemy fire!" ) end if self.EscortGroup:OptionROTVerticalPossible() then self.EscortMenuOptionEvasionVertical = MENU_CLIENT_COMMAND:New( self.EscortClient, "Go below radar and evade fire", self.EscortMenuEvasion, ESCORT._ROT, self, self.EscortGroup:OptionROTVertical(), "Evading on enemy fire with vertical manoeuvres!" ) end end end return self end --- Defines a menu to let the escort resume its mission from a waypoint on its route. -- All rules of engagement will appear under the menu **Resume mission from**. -- @param #ESCORT self -- @return #ESCORT function ESCORT:MenuResumeMission() self:F() if not self.EscortMenuResumeMission then -- Mission Resume Menu Root self.EscortMenuResumeMission = MENU_CLIENT:New( self.EscortClient, "Resume mission from", self.EscortMenu ) end return self end --- @param #MENUPARAM MenuParam function ESCORT:_HoldPosition( OrbitGroup, OrbitHeight, OrbitSeconds ) local EscortGroup = self.EscortGroup local EscortClient = self.EscortClient local OrbitUnit = OrbitGroup:GetUnit(1) -- Wrapper.Unit#UNIT self.FollowScheduler:Stop( self.FollowSchedule ) local PointFrom = {} local GroupVec3 = EscortGroup:GetUnit(1):GetVec3() PointFrom = {} PointFrom.x = GroupVec3.x PointFrom.y = GroupVec3.z PointFrom.speed = 250 PointFrom.type = AI.Task.WaypointType.TURNING_POINT PointFrom.alt = GroupVec3.y PointFrom.alt_type = AI.Task.AltitudeType.BARO local OrbitPoint = OrbitUnit:GetVec2() local PointTo = {} PointTo.x = OrbitPoint.x PointTo.y = OrbitPoint.y PointTo.speed = 250 PointTo.type = AI.Task.WaypointType.TURNING_POINT PointTo.alt = OrbitHeight PointTo.alt_type = AI.Task.AltitudeType.BARO PointTo.task = EscortGroup:TaskOrbitCircleAtVec2( OrbitPoint, OrbitHeight, 0 ) local Points = { PointFrom, PointTo } EscortGroup:OptionROEHoldFire() EscortGroup:OptionROTPassiveDefense() EscortGroup:SetTask( EscortGroup:TaskRoute( Points ) ) EscortGroup:MessageToClient( "Orbiting at location.", 10, EscortClient ) end --- @param #MENUPARAM MenuParam function ESCORT:_JoinUpAndFollow( Distance ) local EscortGroup = self.EscortGroup local EscortClient = self.EscortClient self.Distance = Distance self:JoinUpAndFollow( EscortGroup, EscortClient, self.Distance ) end --- JoinsUp and Follows a CLIENT. -- @param Functional.Escort#ESCORT self -- @param Wrapper.Group#GROUP EscortGroup -- @param Wrapper.Client#CLIENT EscortClient -- @param Dcs.DCSTypes#Distance Distance function ESCORT:JoinUpAndFollow( EscortGroup, EscortClient, Distance ) self:F( { EscortGroup, EscortClient, Distance } ) self.FollowScheduler:Stop( self.FollowSchedule ) EscortGroup:OptionROEHoldFire() EscortGroup:OptionROTPassiveDefense() self.EscortMode = ESCORT.MODE.FOLLOW self.CT1 = 0 self.GT1 = 0 self.FollowScheduler:Start( self.FollowSchedule ) EscortGroup:MessageToClient( "Rejoining and Following at " .. Distance .. "!", 30, EscortClient ) end --- @param #MENUPARAM MenuParam function ESCORT:_Flare( Color, Message ) local EscortGroup = self.EscortGroup local EscortClient = self.EscortClient EscortGroup:GetUnit(1):Flare( Color ) EscortGroup:MessageToClient( Message, 10, EscortClient ) end --- @param #MENUPARAM MenuParam function ESCORT:_Smoke( Color, Message ) local EscortGroup = self.EscortGroup local EscortClient = self.EscortClient EscortGroup:GetUnit(1):Smoke( Color ) EscortGroup:MessageToClient( Message, 10, EscortClient ) end --- @param #MENUPARAM MenuParam function ESCORT:_ReportNearbyTargetsNow() local EscortGroup = self.EscortGroup local EscortClient = self.EscortClient self:_ReportTargetsScheduler() end function ESCORT:_SwitchReportNearbyTargets( ReportTargets ) local EscortGroup = self.EscortGroup local EscortClient = self.EscortClient self.ReportTargets = ReportTargets if self.ReportTargets then if not self.ReportTargetsScheduler then self.ReportTargetsScheduler:Schedule( self, self._ReportTargetsScheduler, {}, 1, 30 ) end else routines.removeFunction( self.ReportTargetsScheduler ) self.ReportTargetsScheduler = nil end end --- @param #MENUPARAM MenuParam function ESCORT:_ScanTargets( ScanDuration ) local EscortGroup = self.EscortGroup -- Wrapper.Group#GROUP local EscortClient = self.EscortClient self.FollowScheduler:Stop( self.FollowSchedule ) if EscortGroup:IsHelicopter() then EscortGroup:PushTask( EscortGroup:TaskControlled( EscortGroup:TaskOrbitCircle( 200, 20 ), EscortGroup:TaskCondition( nil, nil, nil, nil, ScanDuration, nil ) ), 1 ) elseif EscortGroup:IsAirPlane() then EscortGroup:PushTask( EscortGroup:TaskControlled( EscortGroup:TaskOrbitCircle( 1000, 500 ), EscortGroup:TaskCondition( nil, nil, nil, nil, ScanDuration, nil ) ), 1 ) end EscortGroup:MessageToClient( "Scanning targets for " .. ScanDuration .. " seconds.", ScanDuration, EscortClient ) if self.EscortMode == ESCORT.MODE.FOLLOW then self.FollowScheduler:Start( self.FollowSchedule ) end end --- @param Wrapper.Group#GROUP EscortGroup function _Resume( EscortGroup ) env.info( '_Resume' ) local Escort = EscortGroup:GetState( EscortGroup, "Escort" ) env.info( "EscortMode = " .. Escort.EscortMode ) if Escort.EscortMode == ESCORT.MODE.FOLLOW then Escort:JoinUpAndFollow( EscortGroup, Escort.EscortClient, Escort.Distance ) end end --- @param #ESCORT self -- @param #number DetectedItemID function ESCORT:_AttackTarget( DetectedItemID ) local EscortGroup = self.EscortGroup -- Wrapper.Group#GROUP self:E( EscortGroup ) local EscortClient = self.EscortClient self.FollowScheduler:Stop( self.FollowSchedule ) if EscortGroup:IsAir() then EscortGroup:OptionROEOpenFire() EscortGroup:OptionROTPassiveDefense() EscortGroup:SetState( EscortGroup, "Escort", self ) local DetectedSet = self.Detection:GetDetectedSet( DetectedItemID ) local Tasks = {} DetectedSet:ForEachUnit( --- @param Wrapper.Unit#UNIT DetectedUnit function( DetectedUnit, Tasks ) if DetectedUnit:IsAlive() then Tasks[#Tasks+1] = EscortGroup:TaskAttackUnit( DetectedUnit ) end end, Tasks ) Tasks[#Tasks+1] = EscortGroup:TaskFunction( "_Resume", { "''" } ) EscortGroup:SetTask( EscortGroup:TaskCombo( Tasks ), 1 ) else local DetectedSet = self.Detection:GetDetectedSet( DetectedItemID ) local Tasks = {} DetectedSet:ForEachUnit( --- @param Wrapper.Unit#UNIT DetectedUnit function( DetectedUnit, Tasks ) if DetectedUnit:IsAlive() then Tasks[#Tasks+1] = EscortGroup:TaskFireAtPoint( DetectedUnit:GetVec2(), 50 ) end end, Tasks ) EscortGroup:SetTask( EscortGroup:TaskCombo( Tasks ), 1 ) end EscortGroup:MessageToClient( "Engaging Designated Unit!", 10, EscortClient ) end --- -- @param #number DetectedItemID function ESCORT:_AssistTarget( EscortGroupAttack, DetectedItemID ) local EscortGroup = self.EscortGroup local EscortClient = self.EscortClient self.FollowScheduler:Stop( self.FollowSchedule ) if EscortGroupAttack:IsAir() then EscortGroupAttack:OptionROEOpenFire() EscortGroupAttack:OptionROTVertical() local DetectedSet = self.Detection:GetDetectedSet( DetectedItemID ) local Tasks = {} DetectedSet:ForEachUnit( --- @param Wrapper.Unit#UNIT DetectedUnit function( DetectedUnit, Tasks ) if DetectedUnit:IsAlive() then Tasks[#Tasks+1] = EscortGroupAttack:TaskAttackUnit( DetectedUnit ) end end, Tasks ) Tasks[#Tasks+1] = EscortGroupAttack:TaskOrbitCircle( 500, 350 ) EscortGroupAttack:SetTask( EscortGroupAttack:TaskCombo( Tasks ), 1 ) else local DetectedSet = self.Detection:GetDetectedSet( DetectedItemID ) local Tasks = {} DetectedSet:ForEachUnit( --- @param Wrapper.Unit#UNIT DetectedUnit function( DetectedUnit, Tasks ) if DetectedUnit:IsAlive() then Tasks[#Tasks+1] = EscortGroupAttack:TaskFireAtPoint( DetectedUnit:GetVec2(), 50 ) end end, Tasks ) EscortGroupAttack:SetTask( EscortGroupAttack:TaskCombo( Tasks ), 1 ) end EscortGroupAttack:MessageToClient( "Assisting with the destroying the enemy unit!", 10, EscortClient ) end --- @param #MENUPARAM MenuParam function ESCORT:_ROE( EscortROEFunction, EscortROEMessage ) local EscortGroup = self.EscortGroup local EscortClient = self.EscortClient pcall( function() EscortROEFunction() end ) EscortGroup:MessageToClient( EscortROEMessage, 10, EscortClient ) end --- @param #MENUPARAM MenuParam function ESCORT:_ROT( EscortROTFunction, EscortROTMessage ) local EscortGroup = self.EscortGroup local EscortClient = self.EscortClient pcall( function() EscortROTFunction() end ) EscortGroup:MessageToClient( EscortROTMessage, 10, EscortClient ) end --- @param #MENUPARAM MenuParam function ESCORT:_ResumeMission( WayPoint ) local EscortGroup = self.EscortGroup local EscortClient = self.EscortClient self.FollowScheduler:Stop( self.FollowSchedule ) local WayPoints = EscortGroup:GetTaskRoute() self:T( WayPoint, WayPoints ) for WayPointIgnore = 1, WayPoint do table.remove( WayPoints, 1 ) end SCHEDULER:New( EscortGroup, EscortGroup.SetTask, { EscortGroup:TaskRoute( WayPoints ) }, 1 ) EscortGroup:MessageToClient( "Resuming mission from waypoint " .. WayPoint .. ".", 10, EscortClient ) end --- Registers the waypoints -- @param #ESCORT self -- @return #table function ESCORT:RegisterRoute() self:F() local EscortGroup = self.EscortGroup -- Wrapper.Group#GROUP local TaskPoints = EscortGroup:GetTaskRoute() self:T( TaskPoints ) return TaskPoints end --- @param Functional.Escort#ESCORT self function ESCORT:_FollowScheduler() self:F( { self.FollowDistance } ) self:T( {self.EscortClient.UnitName, self.EscortGroup.GroupName } ) if self.EscortGroup:IsAlive() and self.EscortClient:IsAlive() then local ClientUnit = self.EscortClient:GetClientGroupUnit() local GroupUnit = self.EscortGroup:GetUnit( 1 ) local FollowDistance = self.FollowDistance self:T( {ClientUnit.UnitName, GroupUnit.UnitName } ) if self.CT1 == 0 and self.GT1 == 0 then self.CV1 = ClientUnit:GetVec3() self:T( { "self.CV1", self.CV1 } ) self.CT1 = timer.getTime() self.GV1 = GroupUnit:GetVec3() self.GT1 = timer.getTime() else local CT1 = self.CT1 local CT2 = timer.getTime() local CV1 = self.CV1 local CV2 = ClientUnit:GetVec3() self.CT1 = CT2 self.CV1 = CV2 local CD = ( ( CV2.x - CV1.x )^2 + ( CV2.y - CV1.y )^2 + ( CV2.z - CV1.z )^2 ) ^ 0.5 local CT = CT2 - CT1 local CS = ( 3600 / CT ) * ( CD / 1000 ) self:T2( { "Client:", CS, CD, CT, CV2, CV1, CT2, CT1 } ) local GT1 = self.GT1 local GT2 = timer.getTime() local GV1 = self.GV1 local GV2 = GroupUnit:GetVec3() self.GT1 = GT2 self.GV1 = GV2 local GD = ( ( GV2.x - GV1.x )^2 + ( GV2.y - GV1.y )^2 + ( GV2.z - GV1.z )^2 ) ^ 0.5 local GT = GT2 - GT1 local GS = ( 3600 / GT ) * ( GD / 1000 ) self:T2( { "Group:", GS, GD, GT, GV2, GV1, GT2, GT1 } ) -- Calculate the group direction vector local GV = { x = GV2.x - CV2.x, y = GV2.y - CV2.y, z = GV2.z - CV2.z } -- Calculate GH2, GH2 with the same height as CV2. local GH2 = { x = GV2.x, y = CV2.y, z = GV2.z } -- Calculate the angle of GV to the orthonormal plane local alpha = math.atan2( GV.z, GV.x ) -- Now we calculate the intersecting vector between the circle around CV2 with radius FollowDistance and GH2. -- From the GeoGebra model: CVI = (x(CV2) + FollowDistance cos(alpha), y(GH2) + FollowDistance sin(alpha), z(CV2)) local CVI = { x = CV2.x + FollowDistance * math.cos(alpha), y = GH2.y, z = CV2.z + FollowDistance * math.sin(alpha), } -- Calculate the direction vector DV of the escort group. We use CVI as the base and CV2 as the direction. local DV = { x = CV2.x - CVI.x, y = CV2.y - CVI.y, z = CV2.z - CVI.z } -- We now calculate the unary direction vector DVu, so that we can multiply DVu with the speed, which is expressed in meters / s. -- We need to calculate this vector to predict the point the escort group needs to fly to according its speed. -- The distance of the destination point should be far enough not to have the aircraft starting to swipe left to right... local DVu = { x = DV.x / FollowDistance, y = DV.y / FollowDistance, z = DV.z / FollowDistance } -- Now we can calculate the group destination vector GDV. local GDV = { x = DVu.x * CS * 8 + CVI.x, y = CVI.y, z = DVu.z * CS * 8 + CVI.z } if self.SmokeDirectionVector == true then trigger.action.smoke( GDV, trigger.smokeColor.Red ) end self:T2( { "CV2:", CV2 } ) self:T2( { "CVI:", CVI } ) self:T2( { "GDV:", GDV } ) -- Measure distance between client and group local CatchUpDistance = ( ( GDV.x - GV2.x )^2 + ( GDV.y - GV2.y )^2 + ( GDV.z - GV2.z )^2 ) ^ 0.5 -- The calculation of the Speed would simulate that the group would take 30 seconds to overcome -- the requested Distance). local Time = 10 local CatchUpSpeed = ( CatchUpDistance - ( CS * 8.4 ) ) / Time local Speed = CS + CatchUpSpeed if Speed < 0 then Speed = 0 end self:T( { "Client Speed, Escort Speed, Speed, FollowDistance, Time:", CS, GS, Speed, FollowDistance, Time } ) -- Now route the escort to the desired point with the desired speed. self.EscortGroup:RouteToVec3( GDV, Speed / 3.6 ) -- DCS models speed in Mps (Miles per second) end return true end return false end --- Report Targets Scheduler. -- @param #ESCORT self function ESCORT:_ReportTargetsScheduler() self:F( self.EscortGroup:GetName() ) if self.EscortGroup:IsAlive() and self.EscortClient:IsAlive() then if true then local EscortGroupName = self.EscortGroup:GetName() self.EscortMenuAttackNearbyTargets:RemoveSubMenus() if self.EscortMenuTargetAssistance then self.EscortMenuTargetAssistance:RemoveSubMenus() end local DetectedItems = self.Detection:GetDetectedItems() self:E( DetectedItems ) local DetectedTargets = false local DetectedMsgs = {} for ClientEscortGroupName, EscortGroupData in pairs( self.EscortClient._EscortGroups ) do local ClientEscortTargets = EscortGroupData.Detection --local EscortUnit = EscortGroupData:GetUnit( 1 ) for DetectedItemID, DetectedItem in pairs( DetectedItems ) do self:E( { DetectedItemID, DetectedItem } ) -- Remove the sub menus of the Attack menu of the Escort for the EscortGroup. local DetectedItemReportSummary = self.Detection:DetectedItemReportSummary( DetectedItemID, EscortGroupData.EscortGroup, _DATABASE:GetPlayerSettings( self.EscortClient:GetPlayerName() ) ) if ClientEscortGroupName == EscortGroupName then local DetectedMsg = DetectedItemReportSummary:Text("\n") DetectedMsgs[#DetectedMsgs+1] = DetectedMsg self:T( DetectedMsg ) MENU_CLIENT_COMMAND:New( self.EscortClient, DetectedMsg, self.EscortMenuAttackNearbyTargets, ESCORT._AttackTarget, self, DetectedItemID ) else if self.EscortMenuTargetAssistance then local DetectedMsg = DetectedItemReportSummary:Text("\n") self:T( DetectedMsg ) local MenuTargetAssistance = MENU_CLIENT:New( self.EscortClient, EscortGroupData.EscortName, self.EscortMenuTargetAssistance ) MENU_CLIENT_COMMAND:New( self.EscortClient, DetectedMsg, MenuTargetAssistance, ESCORT._AssistTarget, self, EscortGroupData.EscortGroup, DetectedItemID ) end end DetectedTargets = true end end self:E( DetectedMsgs ) if DetectedTargets then self.EscortGroup:MessageToClient( "Reporting detected targets:\n" .. table.concat( DetectedMsgs, "\n" ), 20, self.EscortClient ) else self.EscortGroup:MessageToClient( "No targets detected.", 10, self.EscortClient ) end return true else -- local EscortGroupName = self.EscortGroup:GetName() -- local EscortTargets = self.EscortGroup:GetDetectedTargets() -- -- local ClientEscortTargets = self.EscortClient._EscortGroups[EscortGroupName].Targets -- -- local EscortTargetMessages = "" -- for EscortTargetID, EscortTarget in pairs( EscortTargets ) do -- local EscortObject = EscortTarget.object -- self:T( EscortObject ) -- if EscortObject and EscortObject:isExist() and EscortObject.id_ < 50000000 then -- -- local EscortTargetUnit = UNIT:Find( EscortObject ) -- local EscortTargetUnitName = EscortTargetUnit:GetName() -- -- -- -- -- local EscortTargetIsDetected, -- -- EscortTargetIsVisible, -- -- EscortTargetLastTime, -- -- EscortTargetKnowType, -- -- EscortTargetKnowDistance, -- -- EscortTargetLastPos, -- -- EscortTargetLastVelocity -- -- = self.EscortGroup:IsTargetDetected( EscortObject ) -- -- -- -- self:T( { EscortTargetIsDetected, -- -- EscortTargetIsVisible, -- -- EscortTargetLastTime, -- -- EscortTargetKnowType, -- -- EscortTargetKnowDistance, -- -- EscortTargetLastPos, -- -- EscortTargetLastVelocity } ) -- -- -- local EscortTargetUnitVec3 = EscortTargetUnit:GetVec3() -- local EscortVec3 = self.EscortGroup:GetVec3() -- local Distance = ( ( EscortTargetUnitVec3.x - EscortVec3.x )^2 + -- ( EscortTargetUnitVec3.y - EscortVec3.y )^2 + -- ( EscortTargetUnitVec3.z - EscortVec3.z )^2 -- ) ^ 0.5 / 1000 -- -- self:T( { self.EscortGroup:GetName(), EscortTargetUnit:GetName(), Distance, EscortTarget } ) -- -- if Distance <= 15 then -- -- if not ClientEscortTargets[EscortTargetUnitName] then -- ClientEscortTargets[EscortTargetUnitName] = {} -- end -- ClientEscortTargets[EscortTargetUnitName].AttackUnit = EscortTargetUnit -- ClientEscortTargets[EscortTargetUnitName].visible = EscortTarget.visible -- ClientEscortTargets[EscortTargetUnitName].type = EscortTarget.type -- ClientEscortTargets[EscortTargetUnitName].distance = EscortTarget.distance -- else -- if ClientEscortTargets[EscortTargetUnitName] then -- ClientEscortTargets[EscortTargetUnitName] = nil -- end -- end -- end -- end -- -- self:T( { "Sorting Targets Table:", ClientEscortTargets } ) -- table.sort( ClientEscortTargets, function( a, b ) return a.Distance < b.Distance end ) -- self:T( { "Sorted Targets Table:", ClientEscortTargets } ) -- -- -- Remove the sub menus of the Attack menu of the Escort for the EscortGroup. -- self.EscortMenuAttackNearbyTargets:RemoveSubMenus() -- -- if self.EscortMenuTargetAssistance then -- self.EscortMenuTargetAssistance:RemoveSubMenus() -- end -- -- --for MenuIndex = 1, #self.EscortMenuAttackTargets do -- -- self:T( { "Remove Menu:", self.EscortMenuAttackTargets[MenuIndex] } ) -- -- self.EscortMenuAttackTargets[MenuIndex] = self.EscortMenuAttackTargets[MenuIndex]:Remove() -- --end -- -- -- if ClientEscortTargets then -- for ClientEscortTargetUnitName, ClientEscortTargetData in pairs( ClientEscortTargets ) do -- -- for ClientEscortGroupName, EscortGroupData in pairs( self.EscortClient._EscortGroups ) do -- -- if ClientEscortTargetData and ClientEscortTargetData.AttackUnit:IsAlive() then -- -- local EscortTargetMessage = "" -- local EscortTargetCategoryName = ClientEscortTargetData.AttackUnit:GetCategoryName() -- local EscortTargetCategoryType = ClientEscortTargetData.AttackUnit:GetTypeName() -- if ClientEscortTargetData.type then -- EscortTargetMessage = EscortTargetMessage .. EscortTargetCategoryName .. " (" .. EscortTargetCategoryType .. ") at " -- else -- EscortTargetMessage = EscortTargetMessage .. "Unknown target at " -- end -- -- local EscortTargetUnitVec3 = ClientEscortTargetData.AttackUnit:GetVec3() -- local EscortVec3 = self.EscortGroup:GetVec3() -- local Distance = ( ( EscortTargetUnitVec3.x - EscortVec3.x )^2 + -- ( EscortTargetUnitVec3.y - EscortVec3.y )^2 + -- ( EscortTargetUnitVec3.z - EscortVec3.z )^2 -- ) ^ 0.5 / 1000 -- -- self:T( { self.EscortGroup:GetName(), ClientEscortTargetData.AttackUnit:GetName(), Distance, ClientEscortTargetData.AttackUnit } ) -- if ClientEscortTargetData.visible == false then -- EscortTargetMessage = EscortTargetMessage .. string.format( "%.2f", Distance ) .. " estimated km" -- else -- EscortTargetMessage = EscortTargetMessage .. string.format( "%.2f", Distance ) .. " km" -- end -- -- if ClientEscortTargetData.visible then -- EscortTargetMessage = EscortTargetMessage .. ", visual" -- end -- -- if ClientEscortGroupName == EscortGroupName then -- -- MENU_CLIENT_COMMAND:New( self.EscortClient, -- EscortTargetMessage, -- self.EscortMenuAttackNearbyTargets, -- ESCORT._AttackTarget, -- { ParamSelf = self, -- ParamUnit = ClientEscortTargetData.AttackUnit -- } -- ) -- EscortTargetMessages = EscortTargetMessages .. "\n - " .. EscortTargetMessage -- else -- if self.EscortMenuTargetAssistance then -- local MenuTargetAssistance = MENU_CLIENT:New( self.EscortClient, EscortGroupData.EscortName, self.EscortMenuTargetAssistance ) -- MENU_CLIENT_COMMAND:New( self.EscortClient, -- EscortTargetMessage, -- MenuTargetAssistance, -- ESCORT._AssistTarget, -- self, -- EscortGroupData.EscortGroup, -- ClientEscortTargetData.AttackUnit -- ) -- end -- end -- else -- ClientEscortTargetData = nil -- end -- end -- end -- -- if EscortTargetMessages ~= "" and self.ReportTargets == true then -- self.EscortGroup:MessageToClient( "Detected targets within 15 km range:" .. EscortTargetMessages:gsub("\n$",""), 20, self.EscortClient ) -- else -- self.EscortGroup:MessageToClient( "No targets detected!", 20, self.EscortClient ) -- end -- end -- -- if self.EscortMenuResumeMission then -- self.EscortMenuResumeMission:RemoveSubMenus() -- -- -- if self.EscortMenuResumeWayPoints then -- -- for MenuIndex = 1, #self.EscortMenuResumeWayPoints do -- -- self:T( { "Remove Menu:", self.EscortMenuResumeWayPoints[MenuIndex] } ) -- -- self.EscortMenuResumeWayPoints[MenuIndex] = self.EscortMenuResumeWayPoints[MenuIndex]:Remove() -- -- end -- -- end -- -- local TaskPoints = self:RegisterRoute() -- for WayPointID, WayPoint in pairs( TaskPoints ) do -- local EscortVec3 = self.EscortGroup:GetVec3() -- local Distance = ( ( WayPoint.x - EscortVec3.x )^2 + -- ( WayPoint.y - EscortVec3.z )^2 -- ) ^ 0.5 / 1000 -- MENU_CLIENT_COMMAND:New( self.EscortClient, "Waypoint " .. WayPointID .. " at " .. string.format( "%.2f", Distance ).. "km", self.EscortMenuResumeMission, ESCORT._ResumeMission, { ParamSelf = self, ParamWayPoint = WayPointID } ) -- end -- end -- -- return true end end return false end --- **Functional** -- MISSILETRAINER helps you to train missile avoidance. -- -- === -- -- 1) @{MissileTrainer#MISSILETRAINER} class, extends @{Base#BASE} -- =============================================================== -- The @{#MISSILETRAINER} class uses the DCS world messaging system to be alerted of any missiles fired, and when a missile would hit your aircraft, -- the class will destroy the missile within a certain range, to avoid damage to your aircraft. -- It suports the following functionality: -- -- * Track the missiles fired at you and other players, providing bearing and range information of the missiles towards the airplanes. -- * Provide alerts of missile launches, including detailed information of the units launching, including bearing, range � -- * Provide alerts when a missile would have killed your aircraft. -- * Provide alerts when the missile self destructs. -- * Enable / Disable and Configure the Missile Trainer using the various menu options. -- -- When running a mission where MISSILETRAINER is used, the following radio menu structure ( 'Radio Menu' -> 'Other (F10)' -> 'MissileTrainer' ) options are available for the players: -- -- * **Messages**: Menu to configure all messages. -- * **Messages On**: Show all messages. -- * **Messages Off**: Disable all messages. -- * **Tracking**: Menu to configure missile tracking messages. -- * **To All**: Shows missile tracking messages to all players. -- * **To Target**: Shows missile tracking messages only to the player where the missile is targetted at. -- * **Tracking On**: Show missile tracking messages. -- * **Tracking Off**: Disable missile tracking messages. -- * **Frequency Increase**: Increases the missile tracking message frequency with one second. -- * **Frequency Decrease**: Decreases the missile tracking message frequency with one second. -- * **Alerts**: Menu to configure alert messages. -- * **To All**: Shows alert messages to all players. -- * **To Target**: Shows alert messages only to the player where the missile is (was) targetted at. -- * **Hits On**: Show missile hit alert messages. -- * **Hits Off**: Disable missile hit alert messages. -- * **Launches On**: Show missile launch messages. -- * **Launches Off**: Disable missile launch messages. -- * **Details**: Menu to configure message details. -- * **Range On**: Shows range information when a missile is fired to a target. -- * **Range Off**: Disable range information when a missile is fired to a target. -- * **Bearing On**: Shows bearing information when a missile is fired to a target. -- * **Bearing Off**: Disable bearing information when a missile is fired to a target. -- * **Distance**: Menu to configure the distance when a missile needs to be destroyed when near to a player, during tracking. This will improve/influence hit calculation accuracy, but has the risk of damaging the aircraft when the missile reaches the aircraft before the distance is measured. -- * **50 meter**: Destroys the missile when the distance to the aircraft is below or equal to 50 meter. -- * **100 meter**: Destroys the missile when the distance to the aircraft is below or equal to 100 meter. -- * **150 meter**: Destroys the missile when the distance to the aircraft is below or equal to 150 meter. -- * **200 meter**: Destroys the missile when the distance to the aircraft is below or equal to 200 meter. -- -- -- 1.1) MISSILETRAINER construction methods: -- ----------------------------------------- -- Create a new MISSILETRAINER object with the @{#MISSILETRAINER.New} method: -- -- * @{#MISSILETRAINER.New}: Creates a new MISSILETRAINER object taking the maximum distance to your aircraft to evaluate when a missile needs to be destroyed. -- -- MISSILETRAINER will collect each unit declared in the mission with a skill level "Client" and "Player", and will monitor the missiles shot at those. -- -- 1.2) MISSILETRAINER initialization methods: -- ------------------------------------------- -- A MISSILETRAINER object will behave differently based on the usage of initialization methods: -- -- * @{#MISSILETRAINER.InitMessagesOnOff}: Sets by default the display of any message to be ON or OFF. -- * @{#MISSILETRAINER.InitTrackingToAll}: Sets by default the missile tracking report for all players or only for those missiles targetted to you. -- * @{#MISSILETRAINER.InitTrackingOnOff}: Sets by default the display of missile tracking report to be ON or OFF. -- * @{#MISSILETRAINER.InitTrackingFrequency}: Increases, decreases the missile tracking message display frequency with the provided time interval in seconds. -- * @{#MISSILETRAINER.InitAlertsToAll}: Sets by default the display of alerts to be shown to all players or only to you. -- * @{#MISSILETRAINER.InitAlertsHitsOnOff}: Sets by default the display of hit alerts ON or OFF. -- * @{#MISSILETRAINER.InitAlertsLaunchesOnOff}: Sets by default the display of launch alerts ON or OFF. -- * @{#MISSILETRAINER.InitRangeOnOff}: Sets by default the display of range information of missiles ON of OFF. -- * @{#MISSILETRAINER.InitBearingOnOff}: Sets by default the display of bearing information of missiles ON of OFF. -- * @{#MISSILETRAINER.InitMenusOnOff}: Allows to configure the options through the radio menu. -- -- === -- -- CREDITS -- ======= -- **Stuka (Danny)** Who you can search on the Eagle Dynamics Forums. -- Working together with Danny has resulted in the MISSILETRAINER class. -- Danny has shared his ideas and together we made a design. -- Together with the **476 virtual team**, we tested the MISSILETRAINER class, and got much positive feedback! -- -- @module MissileTrainer -- @author FlightControl --- The MISSILETRAINER class -- @type MISSILETRAINER -- @field Core.Set#SET_CLIENT DBClients -- @extends Core.Base#BASE MISSILETRAINER = { ClassName = "MISSILETRAINER", TrackingMissiles = {}, } function MISSILETRAINER._Alive( Client, self ) if self.Briefing then Client:Message( self.Briefing, 15, "Trainer" ) end if self.MenusOnOff == true then Client:Message( "Use the 'Radio Menu' -> 'Other (F10)' -> 'Missile Trainer' menu options to change the Missile Trainer settings (for all players).", 15, "Trainer" ) Client.MainMenu = MENU_CLIENT:New( Client, "Missile Trainer", nil ) -- Menu#MENU_CLIENT Client.MenuMessages = MENU_CLIENT:New( Client, "Messages", Client.MainMenu ) Client.MenuOn = MENU_CLIENT_COMMAND:New( Client, "Messages On", Client.MenuMessages, self._MenuMessages, { MenuSelf = self, MessagesOnOff = true } ) Client.MenuOff = MENU_CLIENT_COMMAND:New( Client, "Messages Off", Client.MenuMessages, self._MenuMessages, { MenuSelf = self, MessagesOnOff = false } ) Client.MenuTracking = MENU_CLIENT:New( Client, "Tracking", Client.MainMenu ) Client.MenuTrackingToAll = MENU_CLIENT_COMMAND:New( Client, "To All", Client.MenuTracking, self._MenuMessages, { MenuSelf = self, TrackingToAll = true } ) Client.MenuTrackingToTarget = MENU_CLIENT_COMMAND:New( Client, "To Target", Client.MenuTracking, self._MenuMessages, { MenuSelf = self, TrackingToAll = false } ) Client.MenuTrackOn = MENU_CLIENT_COMMAND:New( Client, "Tracking On", Client.MenuTracking, self._MenuMessages, { MenuSelf = self, TrackingOnOff = true } ) Client.MenuTrackOff = MENU_CLIENT_COMMAND:New( Client, "Tracking Off", Client.MenuTracking, self._MenuMessages, { MenuSelf = self, TrackingOnOff = false } ) Client.MenuTrackIncrease = MENU_CLIENT_COMMAND:New( Client, "Frequency Increase", Client.MenuTracking, self._MenuMessages, { MenuSelf = self, TrackingFrequency = -1 } ) Client.MenuTrackDecrease = MENU_CLIENT_COMMAND:New( Client, "Frequency Decrease", Client.MenuTracking, self._MenuMessages, { MenuSelf = self, TrackingFrequency = 1 } ) Client.MenuAlerts = MENU_CLIENT:New( Client, "Alerts", Client.MainMenu ) Client.MenuAlertsToAll = MENU_CLIENT_COMMAND:New( Client, "To All", Client.MenuAlerts, self._MenuMessages, { MenuSelf = self, AlertsToAll = true } ) Client.MenuAlertsToTarget = MENU_CLIENT_COMMAND:New( Client, "To Target", Client.MenuAlerts, self._MenuMessages, { MenuSelf = self, AlertsToAll = false } ) Client.MenuHitsOn = MENU_CLIENT_COMMAND:New( Client, "Hits On", Client.MenuAlerts, self._MenuMessages, { MenuSelf = self, AlertsHitsOnOff = true } ) Client.MenuHitsOff = MENU_CLIENT_COMMAND:New( Client, "Hits Off", Client.MenuAlerts, self._MenuMessages, { MenuSelf = self, AlertsHitsOnOff = false } ) Client.MenuLaunchesOn = MENU_CLIENT_COMMAND:New( Client, "Launches On", Client.MenuAlerts, self._MenuMessages, { MenuSelf = self, AlertsLaunchesOnOff = true } ) Client.MenuLaunchesOff = MENU_CLIENT_COMMAND:New( Client, "Launches Off", Client.MenuAlerts, self._MenuMessages, { MenuSelf = self, AlertsLaunchesOnOff = false } ) Client.MenuDetails = MENU_CLIENT:New( Client, "Details", Client.MainMenu ) Client.MenuDetailsDistanceOn = MENU_CLIENT_COMMAND:New( Client, "Range On", Client.MenuDetails, self._MenuMessages, { MenuSelf = self, DetailsRangeOnOff = true } ) Client.MenuDetailsDistanceOff = MENU_CLIENT_COMMAND:New( Client, "Range Off", Client.MenuDetails, self._MenuMessages, { MenuSelf = self, DetailsRangeOnOff = false } ) Client.MenuDetailsBearingOn = MENU_CLIENT_COMMAND:New( Client, "Bearing On", Client.MenuDetails, self._MenuMessages, { MenuSelf = self, DetailsBearingOnOff = true } ) Client.MenuDetailsBearingOff = MENU_CLIENT_COMMAND:New( Client, "Bearing Off", Client.MenuDetails, self._MenuMessages, { MenuSelf = self, DetailsBearingOnOff = false } ) Client.MenuDistance = MENU_CLIENT:New( Client, "Set distance to plane", Client.MainMenu ) Client.MenuDistance50 = MENU_CLIENT_COMMAND:New( Client, "50 meter", Client.MenuDistance, self._MenuMessages, { MenuSelf = self, Distance = 50 / 1000 } ) Client.MenuDistance100 = MENU_CLIENT_COMMAND:New( Client, "100 meter", Client.MenuDistance, self._MenuMessages, { MenuSelf = self, Distance = 100 / 1000 } ) Client.MenuDistance150 = MENU_CLIENT_COMMAND:New( Client, "150 meter", Client.MenuDistance, self._MenuMessages, { MenuSelf = self, Distance = 150 / 1000 } ) Client.MenuDistance200 = MENU_CLIENT_COMMAND:New( Client, "200 meter", Client.MenuDistance, self._MenuMessages, { MenuSelf = self, Distance = 200 / 1000 } ) else if Client.MainMenu then Client.MainMenu:Remove() end end local ClientID = Client:GetID() self:T( ClientID ) if not self.TrackingMissiles[ClientID] then self.TrackingMissiles[ClientID] = {} end self.TrackingMissiles[ClientID].Client = Client if not self.TrackingMissiles[ClientID].MissileData then self.TrackingMissiles[ClientID].MissileData = {} end end --- Creates the main object which is handling missile tracking. -- When a missile is fired a SCHEDULER is set off that follows the missile. When near a certain a client player, the missile will be destroyed. -- @param #MISSILETRAINER self -- @param #number Distance The distance in meters when a tracked missile needs to be destroyed when close to a player. -- @param #string Briefing (Optional) Will show a text to the players when starting their mission. Can be used for briefing purposes. -- @return #MISSILETRAINER function MISSILETRAINER:New( Distance, Briefing ) local self = BASE:Inherit( self, BASE:New() ) self:F( Distance ) if Briefing then self.Briefing = Briefing end self.Schedulers = {} self.SchedulerID = 0 self.MessageInterval = 2 self.MessageLastTime = timer.getTime() self.Distance = Distance / 1000 self:HandleEvent( EVENTS.Shot ) self.DBClients = SET_CLIENT:New():FilterStart() -- for ClientID, Client in pairs( self.DBClients.Database ) do -- self:E( "ForEach:" .. Client.UnitName ) -- Client:Alive( self._Alive, self ) -- end -- self.DBClients:ForEachClient( function( Client ) self:E( "ForEach:" .. Client.UnitName ) Client:Alive( self._Alive, self ) end ) -- self.DB:ForEachClient( -- --- @param Wrapper.Client#CLIENT Client -- function( Client ) -- -- ... actions ... -- -- end -- ) self.MessagesOnOff = true self.TrackingToAll = false self.TrackingOnOff = true self.TrackingFrequency = 3 self.AlertsToAll = true self.AlertsHitsOnOff = true self.AlertsLaunchesOnOff = true self.DetailsRangeOnOff = true self.DetailsBearingOnOff = true self.MenusOnOff = true self.TrackingMissiles = {} self.TrackingScheduler = SCHEDULER:New( self, self._TrackMissiles, {}, 0.5, 0.05, 0 ) return self end -- Initialization methods. --- Sets by default the display of any message to be ON or OFF. -- @param #MISSILETRAINER self -- @param #boolean MessagesOnOff true or false -- @return #MISSILETRAINER self function MISSILETRAINER:InitMessagesOnOff( MessagesOnOff ) self:F( MessagesOnOff ) self.MessagesOnOff = MessagesOnOff if self.MessagesOnOff == true then MESSAGE:New( "Messages ON", 15, "Menu" ):ToAll() else MESSAGE:New( "Messages OFF", 15, "Menu" ):ToAll() end return self end --- Sets by default the missile tracking report for all players or only for those missiles targetted to you. -- @param #MISSILETRAINER self -- @param #boolean TrackingToAll true or false -- @return #MISSILETRAINER self function MISSILETRAINER:InitTrackingToAll( TrackingToAll ) self:F( TrackingToAll ) self.TrackingToAll = TrackingToAll if self.TrackingToAll == true then MESSAGE:New( "Missile tracking to all players ON", 15, "Menu" ):ToAll() else MESSAGE:New( "Missile tracking to all players OFF", 15, "Menu" ):ToAll() end return self end --- Sets by default the display of missile tracking report to be ON or OFF. -- @param #MISSILETRAINER self -- @param #boolean TrackingOnOff true or false -- @return #MISSILETRAINER self function MISSILETRAINER:InitTrackingOnOff( TrackingOnOff ) self:F( TrackingOnOff ) self.TrackingOnOff = TrackingOnOff if self.TrackingOnOff == true then MESSAGE:New( "Missile tracking ON", 15, "Menu" ):ToAll() else MESSAGE:New( "Missile tracking OFF", 15, "Menu" ):ToAll() end return self end --- Increases, decreases the missile tracking message display frequency with the provided time interval in seconds. -- The default frequency is a 3 second interval, so the Tracking Frequency parameter specifies the increase or decrease from the default 3 seconds or the last frequency update. -- @param #MISSILETRAINER self -- @param #number TrackingFrequency Provide a negative or positive value in seconds to incraese or decrease the display frequency. -- @return #MISSILETRAINER self function MISSILETRAINER:InitTrackingFrequency( TrackingFrequency ) self:F( TrackingFrequency ) self.TrackingFrequency = self.TrackingFrequency + TrackingFrequency if self.TrackingFrequency < 0.5 then self.TrackingFrequency = 0.5 end if self.TrackingFrequency then MESSAGE:New( "Missile tracking frequency is " .. self.TrackingFrequency .. " seconds.", 15, "Menu" ):ToAll() end return self end --- Sets by default the display of alerts to be shown to all players or only to you. -- @param #MISSILETRAINER self -- @param #boolean AlertsToAll true or false -- @return #MISSILETRAINER self function MISSILETRAINER:InitAlertsToAll( AlertsToAll ) self:F( AlertsToAll ) self.AlertsToAll = AlertsToAll if self.AlertsToAll == true then MESSAGE:New( "Alerts to all players ON", 15, "Menu" ):ToAll() else MESSAGE:New( "Alerts to all players OFF", 15, "Menu" ):ToAll() end return self end --- Sets by default the display of hit alerts ON or OFF. -- @param #MISSILETRAINER self -- @param #boolean AlertsHitsOnOff true or false -- @return #MISSILETRAINER self function MISSILETRAINER:InitAlertsHitsOnOff( AlertsHitsOnOff ) self:F( AlertsHitsOnOff ) self.AlertsHitsOnOff = AlertsHitsOnOff if self.AlertsHitsOnOff == true then MESSAGE:New( "Alerts Hits ON", 15, "Menu" ):ToAll() else MESSAGE:New( "Alerts Hits OFF", 15, "Menu" ):ToAll() end return self end --- Sets by default the display of launch alerts ON or OFF. -- @param #MISSILETRAINER self -- @param #boolean AlertsLaunchesOnOff true or false -- @return #MISSILETRAINER self function MISSILETRAINER:InitAlertsLaunchesOnOff( AlertsLaunchesOnOff ) self:F( AlertsLaunchesOnOff ) self.AlertsLaunchesOnOff = AlertsLaunchesOnOff if self.AlertsLaunchesOnOff == true then MESSAGE:New( "Alerts Launches ON", 15, "Menu" ):ToAll() else MESSAGE:New( "Alerts Launches OFF", 15, "Menu" ):ToAll() end return self end --- Sets by default the display of range information of missiles ON of OFF. -- @param #MISSILETRAINER self -- @param #boolean DetailsRangeOnOff true or false -- @return #MISSILETRAINER self function MISSILETRAINER:InitRangeOnOff( DetailsRangeOnOff ) self:F( DetailsRangeOnOff ) self.DetailsRangeOnOff = DetailsRangeOnOff if self.DetailsRangeOnOff == true then MESSAGE:New( "Range display ON", 15, "Menu" ):ToAll() else MESSAGE:New( "Range display OFF", 15, "Menu" ):ToAll() end return self end --- Sets by default the display of bearing information of missiles ON of OFF. -- @param #MISSILETRAINER self -- @param #boolean DetailsBearingOnOff true or false -- @return #MISSILETRAINER self function MISSILETRAINER:InitBearingOnOff( DetailsBearingOnOff ) self:F( DetailsBearingOnOff ) self.DetailsBearingOnOff = DetailsBearingOnOff if self.DetailsBearingOnOff == true then MESSAGE:New( "Bearing display OFF", 15, "Menu" ):ToAll() else MESSAGE:New( "Bearing display OFF", 15, "Menu" ):ToAll() end return self end --- Enables / Disables the menus. -- @param #MISSILETRAINER self -- @param #boolean MenusOnOff true or false -- @return #MISSILETRAINER self function MISSILETRAINER:InitMenusOnOff( MenusOnOff ) self:F( MenusOnOff ) self.MenusOnOff = MenusOnOff if self.MenusOnOff == true then MESSAGE:New( "Menus are ENABLED (only when a player rejoins a slot)", 15, "Menu" ):ToAll() else MESSAGE:New( "Menus are DISABLED", 15, "Menu" ):ToAll() end return self end -- Menu functions function MISSILETRAINER._MenuMessages( MenuParameters ) local self = MenuParameters.MenuSelf if MenuParameters.MessagesOnOff ~= nil then self:InitMessagesOnOff( MenuParameters.MessagesOnOff ) end if MenuParameters.TrackingToAll ~= nil then self:InitTrackingToAll( MenuParameters.TrackingToAll ) end if MenuParameters.TrackingOnOff ~= nil then self:InitTrackingOnOff( MenuParameters.TrackingOnOff ) end if MenuParameters.TrackingFrequency ~= nil then self:InitTrackingFrequency( MenuParameters.TrackingFrequency ) end if MenuParameters.AlertsToAll ~= nil then self:InitAlertsToAll( MenuParameters.AlertsToAll ) end if MenuParameters.AlertsHitsOnOff ~= nil then self:InitAlertsHitsOnOff( MenuParameters.AlertsHitsOnOff ) end if MenuParameters.AlertsLaunchesOnOff ~= nil then self:InitAlertsLaunchesOnOff( MenuParameters.AlertsLaunchesOnOff ) end if MenuParameters.DetailsRangeOnOff ~= nil then self:InitRangeOnOff( MenuParameters.DetailsRangeOnOff ) end if MenuParameters.DetailsBearingOnOff ~= nil then self:InitBearingOnOff( MenuParameters.DetailsBearingOnOff ) end if MenuParameters.Distance ~= nil then self.Distance = MenuParameters.Distance MESSAGE:New( "Hit detection distance set to " .. ( self.Distance * 1000 ) .. " meters", 15, "Menu" ):ToAll() end end --- Detects if an SA site was shot with an anti radiation missile. In this case, take evasive actions based on the skill level set within the ME. -- @param #MISSILETRAINER self -- @param Core.Event#EVENTDATA EventData function MISSILETRAINER:OnEventShot( EVentData ) self:F( { EVentData } ) local TrainerSourceDCSUnit = EVentData.IniDCSUnit local TrainerSourceDCSUnitName = EVentData.IniDCSUnitName local TrainerWeapon = EVentData.Weapon -- Identify the weapon fired local TrainerWeaponName = EVentData.WeaponName -- return weapon type self:T( "Missile Launched = " .. TrainerWeaponName ) local TrainerTargetDCSUnit = TrainerWeapon:getTarget() -- Identify target if TrainerTargetDCSUnit then local TrainerTargetDCSUnitName = Unit.getName( TrainerTargetDCSUnit ) local TrainerTargetSkill = _DATABASE.Templates.Units[TrainerTargetDCSUnitName].Template.skill self:T(TrainerTargetDCSUnitName ) local Client = self.DBClients:FindClient( TrainerTargetDCSUnitName ) if Client then local TrainerSourceUnit = UNIT:Find( TrainerSourceDCSUnit ) local TrainerTargetUnit = UNIT:Find( TrainerTargetDCSUnit ) if self.MessagesOnOff == true and self.AlertsLaunchesOnOff == true then local Message = MESSAGE:New( string.format( "%s launched a %s", TrainerSourceUnit:GetTypeName(), TrainerWeaponName ) .. self:_AddRange( Client, TrainerWeapon ) .. self:_AddBearing( Client, TrainerWeapon ), 5, "Launch Alert" ) if self.AlertsToAll then Message:ToAll() else Message:ToClient( Client ) end end local ClientID = Client:GetID() self:T( ClientID ) local MissileData = {} MissileData.TrainerSourceUnit = TrainerSourceUnit MissileData.TrainerWeapon = TrainerWeapon MissileData.TrainerTargetUnit = TrainerTargetUnit MissileData.TrainerWeaponTypeName = TrainerWeapon:getTypeName() MissileData.TrainerWeaponLaunched = true table.insert( self.TrackingMissiles[ClientID].MissileData, MissileData ) --self:T( self.TrackingMissiles ) end else -- TODO: some weapons don't know the target unit... Need to develop a workaround for this. if ( TrainerWeapon:getTypeName() == "9M311" ) then SCHEDULER:New( TrainerWeapon, TrainerWeapon.destroy, {}, 1 ) else end end end function MISSILETRAINER:_AddRange( Client, TrainerWeapon ) local RangeText = "" if self.DetailsRangeOnOff then local PositionMissile = TrainerWeapon:getPoint() local TargetVec3 = Client:GetVec3() local Range = ( ( PositionMissile.x - TargetVec3.x )^2 + ( PositionMissile.y - TargetVec3.y )^2 + ( PositionMissile.z - TargetVec3.z )^2 ) ^ 0.5 / 1000 RangeText = string.format( ", at %4.2fkm", Range ) end return RangeText end function MISSILETRAINER:_AddBearing( Client, TrainerWeapon ) local BearingText = "" if self.DetailsBearingOnOff then local PositionMissile = TrainerWeapon:getPoint() local TargetVec3 = Client:GetVec3() self:T2( { TargetVec3, PositionMissile }) local DirectionVector = { x = PositionMissile.x - TargetVec3.x, y = PositionMissile.y - TargetVec3.y, z = PositionMissile.z - TargetVec3.z } local DirectionRadians = math.atan2( DirectionVector.z, DirectionVector.x ) --DirectionRadians = DirectionRadians + routines.getNorthCorrection( PositionTarget ) if DirectionRadians < 0 then DirectionRadians = DirectionRadians + 2 * math.pi end local DirectionDegrees = DirectionRadians * 180 / math.pi BearingText = string.format( ", %d degrees", DirectionDegrees ) end return BearingText end function MISSILETRAINER:_TrackMissiles() self:F2() local ShowMessages = false if self.MessagesOnOff and self.MessageLastTime + self.TrackingFrequency <= timer.getTime() then self.MessageLastTime = timer.getTime() ShowMessages = true end -- ALERTS PART -- Loop for all Player Clients to check the alerts and deletion of missiles. for ClientDataID, ClientData in pairs( self.TrackingMissiles ) do local Client = ClientData.Client if Client and Client:IsAlive() then for MissileDataID, MissileData in pairs( ClientData.MissileData ) do self:T3( MissileDataID ) local TrainerSourceUnit = MissileData.TrainerSourceUnit local TrainerWeapon = MissileData.TrainerWeapon local TrainerTargetUnit = MissileData.TrainerTargetUnit local TrainerWeaponTypeName = MissileData.TrainerWeaponTypeName local TrainerWeaponLaunched = MissileData.TrainerWeaponLaunched if Client and Client:IsAlive() and TrainerSourceUnit and TrainerSourceUnit:IsAlive() and TrainerWeapon and TrainerWeapon:isExist() and TrainerTargetUnit and TrainerTargetUnit:IsAlive() then local PositionMissile = TrainerWeapon:getPosition().p local TargetVec3 = Client:GetVec3() local Distance = ( ( PositionMissile.x - TargetVec3.x )^2 + ( PositionMissile.y - TargetVec3.y )^2 + ( PositionMissile.z - TargetVec3.z )^2 ) ^ 0.5 / 1000 if Distance <= self.Distance then -- Hit alert TrainerWeapon:destroy() if self.MessagesOnOff == true and self.AlertsHitsOnOff == true then self:T( "killed" ) local Message = MESSAGE:New( string.format( "%s launched by %s killed %s", TrainerWeapon:getTypeName(), TrainerSourceUnit:GetTypeName(), TrainerTargetUnit:GetPlayerName() ), 15, "Hit Alert" ) if self.AlertsToAll == true then Message:ToAll() else Message:ToClient( Client ) end MissileData = nil table.remove( ClientData.MissileData, MissileDataID ) self:T(ClientData.MissileData) end end else if not ( TrainerWeapon and TrainerWeapon:isExist() ) then if self.MessagesOnOff == true and self.AlertsLaunchesOnOff == true then -- Weapon does not exist anymore. Delete from Table local Message = MESSAGE:New( string.format( "%s launched by %s self destructed!", TrainerWeaponTypeName, TrainerSourceUnit:GetTypeName() ), 5, "Tracking" ) if self.AlertsToAll == true then Message:ToAll() else Message:ToClient( Client ) end end MissileData = nil table.remove( ClientData.MissileData, MissileDataID ) self:T( ClientData.MissileData ) end end end else self.TrackingMissiles[ClientDataID] = nil end end if ShowMessages == true and self.MessagesOnOff == true and self.TrackingOnOff == true then -- Only do this when tracking information needs to be displayed. -- TRACKING PART -- For the current client, the missile range and bearing details are displayed To the Player Client. -- For the other clients, the missile range and bearing details are displayed To the other Player Clients. -- To achieve this, a cross loop is done for each Player Client <-> Other Player Client missile information. -- Main Player Client loop for ClientDataID, ClientData in pairs( self.TrackingMissiles ) do local Client = ClientData.Client --self:T2( { Client:GetName() } ) ClientData.MessageToClient = "" ClientData.MessageToAll = "" -- Other Players Client loop for TrackingDataID, TrackingData in pairs( self.TrackingMissiles ) do for MissileDataID, MissileData in pairs( TrackingData.MissileData ) do --self:T3( MissileDataID ) local TrainerSourceUnit = MissileData.TrainerSourceUnit local TrainerWeapon = MissileData.TrainerWeapon local TrainerTargetUnit = MissileData.TrainerTargetUnit local TrainerWeaponTypeName = MissileData.TrainerWeaponTypeName local TrainerWeaponLaunched = MissileData.TrainerWeaponLaunched if Client and Client:IsAlive() and TrainerSourceUnit and TrainerSourceUnit:IsAlive() and TrainerWeapon and TrainerWeapon:isExist() and TrainerTargetUnit and TrainerTargetUnit:IsAlive() then if ShowMessages == true then local TrackingTo TrackingTo = string.format( " -> %s", TrainerWeaponTypeName ) if ClientDataID == TrackingDataID then if ClientData.MessageToClient == "" then ClientData.MessageToClient = "Missiles to You:\n" end ClientData.MessageToClient = ClientData.MessageToClient .. TrackingTo .. self:_AddRange( ClientData.Client, TrainerWeapon ) .. self:_AddBearing( ClientData.Client, TrainerWeapon ) .. "\n" else if self.TrackingToAll == true then if ClientData.MessageToAll == "" then ClientData.MessageToAll = "Missiles to other Players:\n" end ClientData.MessageToAll = ClientData.MessageToAll .. TrackingTo .. self:_AddRange( ClientData.Client, TrainerWeapon ) .. self:_AddBearing( ClientData.Client, TrainerWeapon ) .. " ( " .. TrainerTargetUnit:GetPlayerName() .. " )\n" end end end end end end -- Once the Player Client and the Other Player Client tracking messages are prepared, show them. if ClientData.MessageToClient ~= "" or ClientData.MessageToAll ~= "" then local Message = MESSAGE:New( ClientData.MessageToClient .. ClientData.MessageToAll, 1, "Tracking" ):ToClient( Client ) end end end return true end --- **Functional** -- This module monitors airbases traffic. -- -- === -- -- 1) @{AirbasePolice#AIRBASEPOLICE_BASE} class, extends @{Base#BASE} -- ================================================================== -- The @{AirbasePolice#AIRBASEPOLICE_BASE} class provides the main methods to monitor CLIENT behaviour at airbases. -- CLIENTS should not be allowed to: -- -- * Don't taxi faster than 40 km/h. -- * Don't take-off on taxiways. -- * Avoid to hit other planes on the airbase. -- * Obey ground control orders. -- -- 2) @{AirbasePolice#AIRBASEPOLICE_CAUCASUS} class, extends @{AirbasePolice#AIRBASEPOLICE_BASE} -- ============================================================================================= -- All the airbases on the caucasus map can be monitored using this class. -- If you want to monitor specific airbases, you need to use the @{#AIRBASEPOLICE_BASE.Monitor}() method, which takes a table or airbase names. -- The following names can be given: -- * AnapaVityazevo -- * Batumi -- * Beslan -- * Gelendzhik -- * Gudauta -- * Kobuleti -- * KrasnodarCenter -- * KrasnodarPashkovsky -- * Krymsk -- * Kutaisi -- * MaykopKhanskaya -- * MineralnyeVody -- * Mozdok -- * Nalchik -- * Novorossiysk -- * SenakiKolkhi -- * SochiAdler -- * Soganlug -- * SukhumiBabushara -- * TbilisiLochini -- * Vaziani -- -- 3) @{AirbasePolice#AIRBASEPOLICE_NEVADA} class, extends @{AirbasePolice#AIRBASEPOLICE_BASE} -- ============================================================================================= -- All the airbases on the NEVADA map can be monitored using this class. -- If you want to monitor specific airbases, you need to use the @{#AIRBASEPOLICE_BASE.Monitor}() method, which takes a table or airbase names. -- The following names can be given: -- * Nellis -- * McCarran -- * Creech -- * Groom Lake -- -- ### Contributions: Dutch Baron - Concept & Testing -- ### Author: FlightControl - Framework Design & Programming -- -- @module AirbasePolice --- @type AIRBASEPOLICE_BASE -- @field Core.Set#SET_CLIENT SetClient -- @extends Core.Base#BASE AIRBASEPOLICE_BASE = { ClassName = "AIRBASEPOLICE_BASE", SetClient = nil, Airbases = nil, AirbaseNames = nil, } --- Creates a new AIRBASEPOLICE_BASE object. -- @param #AIRBASEPOLICE_BASE self -- @param SetClient A SET_CLIENT object that will contain the CLIENT objects to be monitored if they follow the rules of the airbase. -- @param Airbases A table of Airbase Names. -- @return #AIRBASEPOLICE_BASE self function AIRBASEPOLICE_BASE:New( SetClient, Airbases ) -- Inherits from BASE local self = BASE:Inherit( self, BASE:New() ) self:E( { self.ClassName, SetClient, Airbases } ) self.SetClient = SetClient self.Airbases = Airbases for AirbaseID, Airbase in pairs( self.Airbases ) do Airbase.ZoneBoundary = ZONE_POLYGON_BASE:New( "Boundary", Airbase.PointsBoundary ):SmokeZone(SMOKECOLOR.White):Flush() for PointsRunwayID, PointsRunway in pairs( Airbase.PointsRunways ) do Airbase.ZoneRunways[PointsRunwayID] = ZONE_POLYGON_BASE:New( "Runway " .. PointsRunwayID, PointsRunway ):SmokeZone(SMOKECOLOR.Red):Flush() end end -- -- Template -- local TemplateBoundary = GROUP:FindByName( "Template Boundary" ) -- self.Airbases.Template.ZoneBoundary = ZONE_POLYGON:New( "Template Boundary", TemplateBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local TemplateRunway1 = GROUP:FindByName( "Template Runway 1" ) -- self.Airbases.Template.ZoneRunways[1] = ZONE_POLYGON:New( "Template Runway 1", TemplateRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() self.SetClient:ForEachClient( --- @param Wrapper.Client#CLIENT Client function( Client ) Client:SetState( self, "Speeding", false ) Client:SetState( self, "Warnings", 0) Client:SetState( self, "Taxi", false ) end ) self.AirbaseMonitor = SCHEDULER:New( self, self._AirbaseMonitor, {}, 0, 2, 0.05 ) return self end --- @type AIRBASEPOLICE_BASE.AirbaseNames -- @list <#string> --- Monitor a table of airbase names. -- @param #AIRBASEPOLICE_BASE self -- @param #AIRBASEPOLICE_BASE.AirbaseNames AirbaseNames A list of AirbaseNames to monitor. If this parameters is nil, then all airbases will be monitored. -- @return #AIRBASEPOLICE_BASE self function AIRBASEPOLICE_BASE:Monitor( AirbaseNames ) if AirbaseNames then if type( AirbaseNames ) == "table" then self.AirbaseNames = AirbaseNames else self.AirbaseNames = { AirbaseNames } end end end --- @param #AIRBASEPOLICE_BASE self function AIRBASEPOLICE_BASE:_AirbaseMonitor() for AirbaseID, Airbase in pairs( self.Airbases ) do if not self.AirbaseNames or self.AirbaseNames[AirbaseID] then self:E( AirbaseID ) self.SetClient:ForEachClientInZone( Airbase.ZoneBoundary, --- @param Wrapper.Client#CLIENT Client function( Client ) self:E( Client.UnitName ) if Client:IsAlive() then local NotInRunwayZone = true for ZoneRunwayID, ZoneRunway in pairs( Airbase.ZoneRunways ) do NotInRunwayZone = ( Client:IsNotInZone( ZoneRunway ) == true ) and NotInRunwayZone or false end if NotInRunwayZone then local Taxi = self:GetState( self, "Taxi" ) self:E( Taxi ) if Taxi == false then Client:Message( "Welcome at " .. AirbaseID .. ". The maximum taxiing speed is " .. Airbase.MaximumSpeed " km/h.", 20, "ATC" ) self:SetState( self, "Taxi", true ) end -- TODO: GetVelocityKMH function usage local VelocityVec3 = Client:GetVelocity() local Velocity = ( VelocityVec3.x ^ 2 + VelocityVec3.y ^ 2 + VelocityVec3.z ^ 2 ) ^ 0.5 -- in meters / sec local Velocity = Velocity * 3.6 -- now it is in km/h. -- MESSAGE:New( "Velocity = " .. Velocity, 1 ):ToAll() local IsAboveRunway = Client:IsAboveRunway() local IsOnGround = Client:InAir() == false self:T( IsAboveRunway, IsOnGround ) if IsAboveRunway and IsOnGround then if Velocity > Airbase.MaximumSpeed then local IsSpeeding = Client:GetState( self, "Speeding" ) if IsSpeeding == true then local SpeedingWarnings = Client:GetState( self, "Warnings" ) self:T( SpeedingWarnings ) if SpeedingWarnings <= 3 then Client:Message( "You are speeding on the taxiway! Slow down or you will be removed from this airbase! Your current velocity is " .. string.format( "%2.0f km/h", Velocity ), 5, "Warning " .. SpeedingWarnings .. " / 3" ) Client:SetState( self, "Warnings", SpeedingWarnings + 1 ) else MESSAGE:New( "Player " .. Client:GetPlayerName() .. " is being damaged at the airbase, due to a speeding violation ...", 10, "Airbase Police" ):ToAll() --- @param Wrapper.Client#CLIENT Client local function DestroyUntilHeavilyDamaged( Client ) local ClientCoord = Client:GetCoordinate() ClientCoord:Explosion( 100 ) local Damage = Client:GetLife() local InitialLife = Client:GetLife0() MESSAGE:New( "Player " .. Client:GetPlayerName() .. " Damage ... " .. Damage, 5, "Airbase Police" ):ToAll() if ( Damage / InitialLife ) * 100 < 80 then Client:ScheduleStop( DestroyUntilHeavilyDamaged ) end end Client:ScheduleOnce( 1, DestroyUntilHeavilyDamaged, Client ) --Client:ScheduleRepeat( 1, 1, 0, nil, DestroyUntilHeavilyDamaged, Client ) --Client:Destroy() trigger.action.setUserFlag( "AIRCRAFT_"..Client:GetID(), 100) Client:SetState( self, "Speeding", false ) Client:SetState( self, "Warnings", 0 ) end else Client:Message( "You are speeding on the taxiway, slow down now! Your current velocity is " .. string.format( "%2.0f km/h", Velocity ), 5, "Attention! " ) Client:SetState( self, "Speeding", true ) Client:SetState( self, "Warnings", 1 ) end else Client:SetState( self, "Speeding", false ) Client:SetState( self, "Warnings", 0 ) end end else Client:SetState( self, "Speeding", false ) Client:SetState( self, "Warnings", 0 ) local Taxi = self:GetState( self, "Taxi" ) if Taxi == true then Client:Message( "You have progressed to the runway ... Await take-off clearance ...", 20, "ATC" ) self:SetState( self, "Taxi", false ) end end end end ) end end return true end --- @type AIRBASEPOLICE_CAUCASUS -- @field Core.Set#SET_CLIENT SetClient -- @extends #AIRBASEPOLICE_BASE AIRBASEPOLICE_CAUCASUS = { ClassName = "AIRBASEPOLICE_CAUCASUS", Airbases = { AnapaVityazevo = { PointsBoundary = { [1]={["y"]=242234.85714287,["x"]=-6616.5714285726,}, [2]={["y"]=241060.57142858,["x"]=-5585.142857144,}, [3]={["y"]=243806.2857143,["x"]=-3962.2857142868,}, [4]={["y"]=245240.57142858,["x"]=-4816.5714285726,}, [5]={["y"]=244783.42857144,["x"]=-5630.8571428583,}, [6]={["y"]=243800.57142858,["x"]=-5065.142857144,}, [7]={["y"]=242232.00000001,["x"]=-6622.2857142868,}, }, PointsRunways = { [1] = { [1]={["y"]=242140.57142858,["x"]=-6478.8571428583,}, [2]={["y"]=242188.57142858,["x"]=-6522.0000000011,}, [3]={["y"]=244124.2857143,["x"]=-4344.0000000011,}, [4]={["y"]=244068.2857143,["x"]=-4296.5714285726,}, [5]={["y"]=242140.57142858,["x"]=-6480.0000000011,} }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Batumi = { PointsBoundary = { [1]={["y"]=617567.14285714,["x"]=-355313.14285715,}, [2]={["y"]=616181.42857142,["x"]=-354800.28571429,}, [3]={["y"]=616007.14285714,["x"]=-355128.85714286,}, [4]={["y"]=618230,["x"]=-356914.57142858,}, [5]={["y"]=618727.14285714,["x"]=-356166,}, [6]={["y"]=617572.85714285,["x"]=-355308.85714286,}, }, PointsRunways = { [1] = { [1]={["y"]=616442.28571429,["x"]=-355090.28571429,}, [2]={["y"]=618450.57142857,["x"]=-356522,}, [3]={["y"]=618407.71428571,["x"]=-356584.85714286,}, [4]={["y"]=618361.99999999,["x"]=-356554.85714286,}, [5]={["y"]=618324.85714285,["x"]=-356599.14285715,}, [6]={["y"]=618250.57142856,["x"]=-356543.42857143,}, [7]={["y"]=618257.7142857,["x"]=-356496.28571429,}, [8]={["y"]=618237.7142857,["x"]=-356459.14285715,}, [9]={["y"]=616555.71428571,["x"]=-355258.85714286,}, [10]={["y"]=616486.28571428,["x"]=-355280.57142858,}, [11]={["y"]=616410.57142856,["x"]=-355227.71428572,}, [12]={["y"]=616441.99999999,["x"]=-355179.14285715,}, [13]={["y"]=616401.99999999,["x"]=-355147.71428572,}, [14]={["y"]=616441.42857142,["x"]=-355092.57142858,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Beslan = { PointsBoundary = { [1]={["y"]=842082.57142857,["x"]=-148445.14285715,}, [2]={["y"]=845237.71428572,["x"]=-148639.71428572,}, [3]={["y"]=845232,["x"]=-148765.42857143,}, [4]={["y"]=844220.57142857,["x"]=-149168.28571429,}, [5]={["y"]=843274.85714286,["x"]=-149125.42857143,}, [6]={["y"]=842077.71428572,["x"]=-148554,}, [7]={["y"]=842083.42857143,["x"]=-148445.42857143,}, }, PointsRunways = { [1] = { [1]={["y"]=842104.57142857,["x"]=-148460.57142857,}, [2]={["y"]=845225.71428572,["x"]=-148656,}, [3]={["y"]=845220.57142858,["x"]=-148750,}, [4]={["y"]=842098.85714286,["x"]=-148556.28571429,}, [5]={["y"]=842104,["x"]=-148460.28571429,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Gelendzhik = { PointsBoundary = { [1]={["y"]=297856.00000001,["x"]=-51151.428571429,}, [2]={["y"]=299044.57142858,["x"]=-49720.000000001,}, [3]={["y"]=298861.71428572,["x"]=-49580.000000001,}, [4]={["y"]=298198.85714286,["x"]=-49842.857142858,}, [5]={["y"]=297990.28571429,["x"]=-50151.428571429,}, [6]={["y"]=297696.00000001,["x"]=-51054.285714286,}, [7]={["y"]=297850.28571429,["x"]=-51160.000000001,}, }, PointsRunways = { [1] = { [1]={["y"]=297834.00000001,["x"]=-51107.428571429,}, [2]={["y"]=297786.57142858,["x"]=-51068.857142858,}, [3]={["y"]=298946.57142858,["x"]=-49686.000000001,}, [4]={["y"]=298993.14285715,["x"]=-49725.714285715,}, [5]={["y"]=297835.14285715,["x"]=-51107.714285715,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Gudauta = { PointsBoundary = { [1]={["y"]=517246.57142857,["x"]=-197850.28571429,}, [2]={["y"]=516749.42857142,["x"]=-198070.28571429,}, [3]={["y"]=515755.14285714,["x"]=-197598.85714286,}, [4]={["y"]=515369.42857142,["x"]=-196538.85714286,}, [5]={["y"]=515623.71428571,["x"]=-195618.85714286,}, [6]={["y"]=515946.57142857,["x"]=-195510.28571429,}, [7]={["y"]=517243.71428571,["x"]=-197858.85714286,}, }, PointsRunways = { [1] = { [1]={["y"]=517096.57142857,["x"]=-197804.57142857,}, [2]={["y"]=515880.85714285,["x"]=-195590.28571429,}, [3]={["y"]=515812.28571428,["x"]=-195628.85714286,}, [4]={["y"]=517036.57142857,["x"]=-197834.57142857,}, [5]={["y"]=517097.99999999,["x"]=-197807.42857143,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Kobuleti = { PointsBoundary = { [1]={["y"]=634427.71428571,["x"]=-318290.28571429,}, [2]={["y"]=635033.42857143,["x"]=-317550.2857143,}, [3]={["y"]=635864.85714286,["x"]=-317333.14285715,}, [4]={["y"]=636967.71428571,["x"]=-317261.71428572,}, [5]={["y"]=637144.85714286,["x"]=-317913.14285715,}, [6]={["y"]=634630.57142857,["x"]=-318687.42857144,}, [7]={["y"]=634424.85714286,["x"]=-318290.2857143,}, }, PointsRunways = { [1] = { [1]={["y"]=634509.71428571,["x"]=-318339.42857144,}, [2]={["y"]=636767.42857143,["x"]=-317516.57142858,}, [3]={["y"]=636790,["x"]=-317575.71428572,}, [4]={["y"]=634531.42857143,["x"]=-318398.00000001,}, [5]={["y"]=634510.28571429,["x"]=-318339.71428572,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, KrasnodarCenter = { PointsBoundary = { [1]={["y"]=366680.28571429,["x"]=11699.142857142,}, [2]={["y"]=366654.28571429,["x"]=11225.142857142,}, [3]={["y"]=367497.14285715,["x"]=11082.285714285,}, [4]={["y"]=368025.71428572,["x"]=10396.57142857,}, [5]={["y"]=369854.28571429,["x"]=11367.999999999,}, [6]={["y"]=369840.00000001,["x"]=11910.857142856,}, [7]={["y"]=366682.57142858,["x"]=11697.999999999,}, }, PointsRunways = { [1] = { [1]={["y"]=369205.42857144,["x"]=11789.142857142,}, [2]={["y"]=369209.71428572,["x"]=11714.857142856,}, [3]={["y"]=366699.71428572,["x"]=11581.714285713,}, [4]={["y"]=366698.28571429,["x"]=11659.142857142,}, [5]={["y"]=369208.85714286,["x"]=11788.57142857,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, KrasnodarPashkovsky = { PointsBoundary = { [1]={["y"]=386754,["x"]=6476.5714285703,}, [2]={["y"]=389182.57142858,["x"]=8722.2857142846,}, [3]={["y"]=388832.57142858,["x"]=9086.5714285703,}, [4]={["y"]=386961.14285715,["x"]=7707.9999999989,}, [5]={["y"]=385404,["x"]=9179.4285714274,}, [6]={["y"]=383239.71428572,["x"]=7386.5714285703,}, [7]={["y"]=383954,["x"]=6486.5714285703,}, [8]={["y"]=385775.42857143,["x"]=8097.9999999989,}, [9]={["y"]=386804,["x"]=7319.4285714274,}, [10]={["y"]=386375.42857143,["x"]=6797.9999999989,}, [11]={["y"]=386746.85714286,["x"]=6472.2857142846,}, }, PointsRunways = { [1] = { [1]={["y"]=385891.14285715,["x"]=8416.5714285703,}, [2]={["y"]=385842.28571429,["x"]=8467.9999999989,}, [3]={["y"]=384180.85714286,["x"]=6917.1428571417,}, [4]={["y"]=384228.57142858,["x"]=6867.7142857132,}, [5]={["y"]=385891.14285715,["x"]=8416.5714285703,}, }, [2] = { [1]={["y"]=386714.85714286,["x"]=6674.857142856,}, [2]={["y"]=386757.71428572,["x"]=6627.7142857132,}, [3]={["y"]=389028.57142858,["x"]=8741.4285714275,}, [4]={["y"]=388981.71428572,["x"]=8790.5714285703,}, [5]={["y"]=386714.57142858,["x"]=6674.5714285703,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Krymsk = { PointsBoundary = { [1]={["y"]=293338.00000001,["x"]=-7575.4285714297,}, [2]={["y"]=295199.42857144,["x"]=-5434.0000000011,}, [3]={["y"]=295595.14285715,["x"]=-6239.7142857154,}, [4]={["y"]=294152.2857143,["x"]=-8325.4285714297,}, [5]={["y"]=293345.14285715,["x"]=-7596.8571428582,}, }, PointsRunways = { [1] = { [1]={["y"]=293522.00000001,["x"]=-7567.4285714297,}, [2]={["y"]=293578.57142858,["x"]=-7616.0000000011,}, [3]={["y"]=295246.00000001,["x"]=-5591.142857144,}, [4]={["y"]=295187.71428573,["x"]=-5546.0000000011,}, [5]={["y"]=293523.14285715,["x"]=-7568.2857142868,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Kutaisi = { PointsBoundary = { [1]={["y"]=682087.42857143,["x"]=-284512.85714286,}, [2]={["y"]=685387.42857143,["x"]=-283662.85714286,}, [3]={["y"]=685294.57142857,["x"]=-284977.14285715,}, [4]={["y"]=682744.57142857,["x"]=-286505.71428572,}, [5]={["y"]=682094.57142857,["x"]=-284527.14285715,}, }, PointsRunways = { [1] = { [1]={["y"]=682638,["x"]=-285202.28571429,}, [2]={["y"]=685050.28571429,["x"]=-284507.42857144,}, [3]={["y"]=685068.85714286,["x"]=-284578.85714286,}, [4]={["y"]=682657.42857143,["x"]=-285264.28571429,}, [5]={["y"]=682638.28571429,["x"]=-285202.85714286,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, MaykopKhanskaya = { PointsBoundary = { [1]={["y"]=456876.28571429,["x"]=-27665.42857143,}, [2]={["y"]=457800,["x"]=-28392.857142858,}, [3]={["y"]=459368.57142857,["x"]=-26378.571428573,}, [4]={["y"]=459425.71428572,["x"]=-25242.857142858,}, [5]={["y"]=458961.42857143,["x"]=-24964.285714287,}, [6]={["y"]=456878.57142857,["x"]=-27667.714285715,}, }, PointsRunways = { [1] = { [1]={["y"]=457005.42857143,["x"]=-27668.000000001,}, [2]={["y"]=459028.85714286,["x"]=-25168.857142858,}, [3]={["y"]=459082.57142857,["x"]=-25216.857142858,}, [4]={["y"]=457060,["x"]=-27714.285714287,}, [5]={["y"]=457004.57142857,["x"]=-27669.714285715,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, MineralnyeVody = { PointsBoundary = { [1]={["y"]=703857.14285714,["x"]=-50226.000000002,}, [2]={["y"]=707385.71428571,["x"]=-51911.714285716,}, [3]={["y"]=707595.71428571,["x"]=-51434.857142859,}, [4]={["y"]=707900,["x"]=-51568.857142859,}, [5]={["y"]=707542.85714286,["x"]=-52326.000000002,}, [6]={["y"]=706628.57142857,["x"]=-52568.857142859,}, [7]={["y"]=705142.85714286,["x"]=-51790.285714288,}, [8]={["y"]=703678.57142857,["x"]=-50611.714285716,}, [9]={["y"]=703857.42857143,["x"]=-50226.857142859,}, }, PointsRunways = { [1] = { [1]={["y"]=703904,["x"]=-50352.571428573,}, [2]={["y"]=707596.28571429,["x"]=-52094.571428573,}, [3]={["y"]=707560.57142858,["x"]=-52161.714285716,}, [4]={["y"]=703871.71428572,["x"]=-50420.571428573,}, [5]={["y"]=703902,["x"]=-50352.000000002,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Mozdok = { PointsBoundary = { [1]={["y"]=832123.42857143,["x"]=-83608.571428573,}, [2]={["y"]=835916.28571429,["x"]=-83144.285714288,}, [3]={["y"]=835474.28571429,["x"]=-84170.571428573,}, [4]={["y"]=832911.42857143,["x"]=-84470.571428573,}, [5]={["y"]=832487.71428572,["x"]=-85565.714285716,}, [6]={["y"]=831573.42857143,["x"]=-85351.42857143,}, [7]={["y"]=832123.71428572,["x"]=-83610.285714288,}, }, PointsRunways = { [1] = { [1]={["y"]=832201.14285715,["x"]=-83699.428571431,}, [2]={["y"]=832212.57142857,["x"]=-83780.571428574,}, [3]={["y"]=835730.28571429,["x"]=-83335.714285717,}, [4]={["y"]=835718.85714286,["x"]=-83246.571428574,}, [5]={["y"]=832200.57142857,["x"]=-83700.000000002,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Nalchik = { PointsBoundary = { [1]={["y"]=759370,["x"]=-125502.85714286,}, [2]={["y"]=761384.28571429,["x"]=-124177.14285714,}, [3]={["y"]=761472.85714286,["x"]=-124325.71428572,}, [4]={["y"]=761092.85714286,["x"]=-125048.57142857,}, [5]={["y"]=760295.71428572,["x"]=-125685.71428572,}, [6]={["y"]=759444.28571429,["x"]=-125734.28571429,}, [7]={["y"]=759375.71428572,["x"]=-125511.42857143,}, }, PointsRunways = { [1] = { [1]={["y"]=759454.28571429,["x"]=-125551.42857143,}, [2]={["y"]=759492.85714286,["x"]=-125610.85714286,}, [3]={["y"]=761406.28571429,["x"]=-124304.28571429,}, [4]={["y"]=761361.14285714,["x"]=-124239.71428572,}, [5]={["y"]=759456,["x"]=-125552.57142857,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Novorossiysk = { PointsBoundary = { [1]={["y"]=278677.71428573,["x"]=-41656.571428572,}, [2]={["y"]=278446.2857143,["x"]=-41453.714285715,}, [3]={["y"]=278989.14285716,["x"]=-40188.000000001,}, [4]={["y"]=279717.71428573,["x"]=-39968.000000001,}, [5]={["y"]=280020.57142859,["x"]=-40208.000000001,}, [6]={["y"]=278674.85714287,["x"]=-41660.857142858,}, }, PointsRunways = { [1] = { [1]={["y"]=278673.14285716,["x"]=-41615.142857144,}, [2]={["y"]=278625.42857144,["x"]=-41570.571428572,}, [3]={["y"]=279835.42857144,["x"]=-40226.000000001,}, [4]={["y"]=279882.2857143,["x"]=-40270.000000001,}, [5]={["y"]=278672.00000001,["x"]=-41614.857142858,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, SenakiKolkhi = { PointsBoundary = { [1]={["y"]=646036.57142857,["x"]=-281778.85714286,}, [2]={["y"]=646045.14285714,["x"]=-281191.71428571,}, [3]={["y"]=647032.28571429,["x"]=-280598.85714285,}, [4]={["y"]=647669.42857143,["x"]=-281273.14285714,}, [5]={["y"]=648323.71428571,["x"]=-281370.28571428,}, [6]={["y"]=648520.85714286,["x"]=-281978.85714285,}, [7]={["y"]=646039.42857143,["x"]=-281783.14285714,}, }, PointsRunways = { [1] = { [1]={["y"]=646060.85714285,["x"]=-281736,}, [2]={["y"]=646056.57142857,["x"]=-281631.71428571,}, [3]={["y"]=648442.28571428,["x"]=-281840.28571428,}, [4]={["y"]=648432.28571428,["x"]=-281918.85714286,}, [5]={["y"]=646063.71428571,["x"]=-281738.85714286,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, SochiAdler = { PointsBoundary = { [1]={["y"]=460642.28571428,["x"]=-164861.71428571,}, [2]={["y"]=462820.85714285,["x"]=-163368.85714286,}, [3]={["y"]=463649.42857142,["x"]=-163340.28571429,}, [4]={["y"]=463835.14285714,["x"]=-164040.28571429,}, [5]={["y"]=462535.14285714,["x"]=-165654.57142857,}, [6]={["y"]=460678,["x"]=-165247.42857143,}, [7]={["y"]=460635.14285714,["x"]=-164876,}, }, PointsRunways = { [1] = { [1]={["y"]=460831.42857143,["x"]=-165180,}, [2]={["y"]=460878.57142857,["x"]=-165257.14285714,}, [3]={["y"]=463663.71428571,["x"]=-163793.14285714,}, [4]={["y"]=463612.28571428,["x"]=-163697.42857143,}, [5]={["y"]=460831.42857143,["x"]=-165177.14285714,}, }, [2] = { [1]={["y"]=460831.42857143,["x"]=-165180,}, [2]={["y"]=460878.57142857,["x"]=-165257.14285714,}, [3]={["y"]=463663.71428571,["x"]=-163793.14285714,}, [4]={["y"]=463612.28571428,["x"]=-163697.42857143,}, [5]={["y"]=460831.42857143,["x"]=-165177.14285714,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Soganlug = { PointsBoundary = { [1]={["y"]=894530.85714286,["x"]=-316928.28571428,}, [2]={["y"]=896422.28571428,["x"]=-318622.57142857,}, [3]={["y"]=896090.85714286,["x"]=-318934,}, [4]={["y"]=894019.42857143,["x"]=-317119.71428571,}, [5]={["y"]=894533.71428571,["x"]=-316925.42857143,}, }, PointsRunways = { [1] = { [1]={["y"]=894525.71428571,["x"]=-316964,}, [2]={["y"]=896363.14285714,["x"]=-318634.28571428,}, [3]={["y"]=896299.14285714,["x"]=-318702.85714286,}, [4]={["y"]=894464,["x"]=-317031.71428571,}, [5]={["y"]=894524.57142857,["x"]=-316963.71428571,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, SukhumiBabushara = { PointsBoundary = { [1]={["y"]=562541.14285714,["x"]=-219852.28571429,}, [2]={["y"]=562691.14285714,["x"]=-219395.14285714,}, [3]={["y"]=564326.85714286,["x"]=-219523.71428571,}, [4]={["y"]=566262.57142857,["x"]=-221166.57142857,}, [5]={["y"]=566069.71428571,["x"]=-221580.85714286,}, [6]={["y"]=562534,["x"]=-219873.71428571,}, }, PointsRunways = { [1] = { [1]={["y"]=562684,["x"]=-219779.71428571,}, [2]={["y"]=562717.71428571,["x"]=-219718,}, [3]={["y"]=566046.85714286,["x"]=-221376.57142857,}, [4]={["y"]=566012.28571428,["x"]=-221446.57142857,}, [5]={["y"]=562684.57142857,["x"]=-219782.57142857,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, TbilisiLochini = { PointsBoundary = { [1]={["y"]=895172.85714286,["x"]=-314667.42857143,}, [2]={["y"]=895337.42857143,["x"]=-314143.14285714,}, [3]={["y"]=895990.28571429,["x"]=-314036,}, [4]={["y"]=897730.28571429,["x"]=-315284.57142857,}, [5]={["y"]=897901.71428571,["x"]=-316284.57142857,}, [6]={["y"]=897684.57142857,["x"]=-316618.85714286,}, [7]={["y"]=895173.14285714,["x"]=-314667.42857143,}, }, PointsRunways = { [1] = { [1]={["y"]=895261.14285715,["x"]=-314652.28571428,}, [2]={["y"]=897654.57142857,["x"]=-316523.14285714,}, [3]={["y"]=897711.71428571,["x"]=-316450.28571429,}, [4]={["y"]=895327.42857143,["x"]=-314568.85714286,}, [5]={["y"]=895261.71428572,["x"]=-314656,}, }, [2] = { [1]={["y"]=895605.71428572,["x"]=-314724.57142857,}, [2]={["y"]=897639.71428572,["x"]=-316148,}, [3]={["y"]=897683.42857143,["x"]=-316087.14285714,}, [4]={["y"]=895650,["x"]=-314660,}, [5]={["y"]=895606,["x"]=-314724.85714286,} }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Vaziani = { PointsBoundary = { [1]={["y"]=902122,["x"]=-318163.71428572,}, [2]={["y"]=902678.57142857,["x"]=-317594,}, [3]={["y"]=903275.71428571,["x"]=-317405.42857143,}, [4]={["y"]=903418.57142857,["x"]=-317891.14285714,}, [5]={["y"]=904292.85714286,["x"]=-318748.28571429,}, [6]={["y"]=904542,["x"]=-319740.85714286,}, [7]={["y"]=904042,["x"]=-320166.57142857,}, [8]={["y"]=902121.42857143,["x"]=-318164.85714286,}, }, PointsRunways = { [1] = { [1]={["y"]=902239.14285714,["x"]=-318190.85714286,}, [2]={["y"]=904014.28571428,["x"]=-319994.57142857,}, [3]={["y"]=904064.85714285,["x"]=-319945.14285715,}, [4]={["y"]=902294.57142857,["x"]=-318146,}, [5]={["y"]=902247.71428571,["x"]=-318190.85714286,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, }, } --- Creates a new AIRBASEPOLICE_CAUCASUS object. -- @param #AIRBASEPOLICE_CAUCASUS self -- @param SetClient A SET_CLIENT object that will contain the CLIENT objects to be monitored if they follow the rules of the airbase. -- @return #AIRBASEPOLICE_CAUCASUS self function AIRBASEPOLICE_CAUCASUS:New( SetClient ) -- Inherits from BASE local self = BASE:Inherit( self, AIRBASEPOLICE_BASE:New( SetClient, self.Airbases ) ) -- -- AnapaVityazevo -- local AnapaVityazevoBoundary = GROUP:FindByName( "AnapaVityazevo Boundary" ) -- self.Airbases.AnapaVityazevo.ZoneBoundary = ZONE_POLYGON:New( "AnapaVityazevo Boundary", AnapaVityazevoBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local AnapaVityazevoRunway1 = GROUP:FindByName( "AnapaVityazevo Runway 1" ) -- self.Airbases.AnapaVityazevo.ZoneRunways[1] = ZONE_POLYGON:New( "AnapaVityazevo Runway 1", AnapaVityazevoRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Batumi -- local BatumiBoundary = GROUP:FindByName( "Batumi Boundary" ) -- self.Airbases.Batumi.ZoneBoundary = ZONE_POLYGON:New( "Batumi Boundary", BatumiBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local BatumiRunway1 = GROUP:FindByName( "Batumi Runway 1" ) -- self.Airbases.Batumi.ZoneRunways[1] = ZONE_POLYGON:New( "Batumi Runway 1", BatumiRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Beslan -- local BeslanBoundary = GROUP:FindByName( "Beslan Boundary" ) -- self.Airbases.Beslan.ZoneBoundary = ZONE_POLYGON:New( "Beslan Boundary", BeslanBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local BeslanRunway1 = GROUP:FindByName( "Beslan Runway 1" ) -- self.Airbases.Beslan.ZoneRunways[1] = ZONE_POLYGON:New( "Beslan Runway 1", BeslanRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Gelendzhik -- local GelendzhikBoundary = GROUP:FindByName( "Gelendzhik Boundary" ) -- self.Airbases.Gelendzhik.ZoneBoundary = ZONE_POLYGON:New( "Gelendzhik Boundary", GelendzhikBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local GelendzhikRunway1 = GROUP:FindByName( "Gelendzhik Runway 1" ) -- self.Airbases.Gelendzhik.ZoneRunways[1] = ZONE_POLYGON:New( "Gelendzhik Runway 1", GelendzhikRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Gudauta -- local GudautaBoundary = GROUP:FindByName( "Gudauta Boundary" ) -- self.Airbases.Gudauta.ZoneBoundary = ZONE_POLYGON:New( "Gudauta Boundary", GudautaBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local GudautaRunway1 = GROUP:FindByName( "Gudauta Runway 1" ) -- self.Airbases.Gudauta.ZoneRunways[1] = ZONE_POLYGON:New( "Gudauta Runway 1", GudautaRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Kobuleti -- local KobuletiBoundary = GROUP:FindByName( "Kobuleti Boundary" ) -- self.Airbases.Kobuleti.ZoneBoundary = ZONE_POLYGON:New( "Kobuleti Boundary", KobuletiBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local KobuletiRunway1 = GROUP:FindByName( "Kobuleti Runway 1" ) -- self.Airbases.Kobuleti.ZoneRunways[1] = ZONE_POLYGON:New( "Kobuleti Runway 1", KobuletiRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- KrasnodarCenter -- local KrasnodarCenterBoundary = GROUP:FindByName( "KrasnodarCenter Boundary" ) -- self.Airbases.KrasnodarCenter.ZoneBoundary = ZONE_POLYGON:New( "KrasnodarCenter Boundary", KrasnodarCenterBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local KrasnodarCenterRunway1 = GROUP:FindByName( "KrasnodarCenter Runway 1" ) -- self.Airbases.KrasnodarCenter.ZoneRunways[1] = ZONE_POLYGON:New( "KrasnodarCenter Runway 1", KrasnodarCenterRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- KrasnodarPashkovsky -- local KrasnodarPashkovskyBoundary = GROUP:FindByName( "KrasnodarPashkovsky Boundary" ) -- self.Airbases.KrasnodarPashkovsky.ZoneBoundary = ZONE_POLYGON:New( "KrasnodarPashkovsky Boundary", KrasnodarPashkovskyBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local KrasnodarPashkovskyRunway1 = GROUP:FindByName( "KrasnodarPashkovsky Runway 1" ) -- self.Airbases.KrasnodarPashkovsky.ZoneRunways[1] = ZONE_POLYGON:New( "KrasnodarPashkovsky Runway 1", KrasnodarPashkovskyRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- local KrasnodarPashkovskyRunway2 = GROUP:FindByName( "KrasnodarPashkovsky Runway 2" ) -- self.Airbases.KrasnodarPashkovsky.ZoneRunways[2] = ZONE_POLYGON:New( "KrasnodarPashkovsky Runway 2", KrasnodarPashkovskyRunway2 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Krymsk -- local KrymskBoundary = GROUP:FindByName( "Krymsk Boundary" ) -- self.Airbases.Krymsk.ZoneBoundary = ZONE_POLYGON:New( "Krymsk Boundary", KrymskBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local KrymskRunway1 = GROUP:FindByName( "Krymsk Runway 1" ) -- self.Airbases.Krymsk.ZoneRunways[1] = ZONE_POLYGON:New( "Krymsk Runway 1", KrymskRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Kutaisi -- local KutaisiBoundary = GROUP:FindByName( "Kutaisi Boundary" ) -- self.Airbases.Kutaisi.ZoneBoundary = ZONE_POLYGON:New( "Kutaisi Boundary", KutaisiBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local KutaisiRunway1 = GROUP:FindByName( "Kutaisi Runway 1" ) -- self.Airbases.Kutaisi.ZoneRunways[1] = ZONE_POLYGON:New( "Kutaisi Runway 1", KutaisiRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- MaykopKhanskaya -- local MaykopKhanskayaBoundary = GROUP:FindByName( "MaykopKhanskaya Boundary" ) -- self.Airbases.MaykopKhanskaya.ZoneBoundary = ZONE_POLYGON:New( "MaykopKhanskaya Boundary", MaykopKhanskayaBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local MaykopKhanskayaRunway1 = GROUP:FindByName( "MaykopKhanskaya Runway 1" ) -- self.Airbases.MaykopKhanskaya.ZoneRunways[1] = ZONE_POLYGON:New( "MaykopKhanskaya Runway 1", MaykopKhanskayaRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- MineralnyeVody -- local MineralnyeVodyBoundary = GROUP:FindByName( "MineralnyeVody Boundary" ) -- self.Airbases.MineralnyeVody.ZoneBoundary = ZONE_POLYGON:New( "MineralnyeVody Boundary", MineralnyeVodyBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local MineralnyeVodyRunway1 = GROUP:FindByName( "MineralnyeVody Runway 1" ) -- self.Airbases.MineralnyeVody.ZoneRunways[1] = ZONE_POLYGON:New( "MineralnyeVody Runway 1", MineralnyeVodyRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Mozdok -- local MozdokBoundary = GROUP:FindByName( "Mozdok Boundary" ) -- self.Airbases.Mozdok.ZoneBoundary = ZONE_POLYGON:New( "Mozdok Boundary", MozdokBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local MozdokRunway1 = GROUP:FindByName( "Mozdok Runway 1" ) -- self.Airbases.Mozdok.ZoneRunways[1] = ZONE_POLYGON:New( "Mozdok Runway 1", MozdokRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Nalchik -- local NalchikBoundary = GROUP:FindByName( "Nalchik Boundary" ) -- self.Airbases.Nalchik.ZoneBoundary = ZONE_POLYGON:New( "Nalchik Boundary", NalchikBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local NalchikRunway1 = GROUP:FindByName( "Nalchik Runway 1" ) -- self.Airbases.Nalchik.ZoneRunways[1] = ZONE_POLYGON:New( "Nalchik Runway 1", NalchikRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Novorossiysk -- local NovorossiyskBoundary = GROUP:FindByName( "Novorossiysk Boundary" ) -- self.Airbases.Novorossiysk.ZoneBoundary = ZONE_POLYGON:New( "Novorossiysk Boundary", NovorossiyskBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local NovorossiyskRunway1 = GROUP:FindByName( "Novorossiysk Runway 1" ) -- self.Airbases.Novorossiysk.ZoneRunways[1] = ZONE_POLYGON:New( "Novorossiysk Runway 1", NovorossiyskRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- SenakiKolkhi -- local SenakiKolkhiBoundary = GROUP:FindByName( "SenakiKolkhi Boundary" ) -- self.Airbases.SenakiKolkhi.ZoneBoundary = ZONE_POLYGON:New( "SenakiKolkhi Boundary", SenakiKolkhiBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local SenakiKolkhiRunway1 = GROUP:FindByName( "SenakiKolkhi Runway 1" ) -- self.Airbases.SenakiKolkhi.ZoneRunways[1] = ZONE_POLYGON:New( "SenakiKolkhi Runway 1", SenakiKolkhiRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- SochiAdler -- local SochiAdlerBoundary = GROUP:FindByName( "SochiAdler Boundary" ) -- self.Airbases.SochiAdler.ZoneBoundary = ZONE_POLYGON:New( "SochiAdler Boundary", SochiAdlerBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local SochiAdlerRunway1 = GROUP:FindByName( "SochiAdler Runway 1" ) -- self.Airbases.SochiAdler.ZoneRunways[1] = ZONE_POLYGON:New( "SochiAdler Runway 1", SochiAdlerRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- local SochiAdlerRunway2 = GROUP:FindByName( "SochiAdler Runway 2" ) -- self.Airbases.SochiAdler.ZoneRunways[2] = ZONE_POLYGON:New( "SochiAdler Runway 2", SochiAdlerRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Soganlug -- local SoganlugBoundary = GROUP:FindByName( "Soganlug Boundary" ) -- self.Airbases.Soganlug.ZoneBoundary = ZONE_POLYGON:New( "Soganlug Boundary", SoganlugBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local SoganlugRunway1 = GROUP:FindByName( "Soganlug Runway 1" ) -- self.Airbases.Soganlug.ZoneRunways[1] = ZONE_POLYGON:New( "Soganlug Runway 1", SoganlugRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- SukhumiBabushara -- local SukhumiBabusharaBoundary = GROUP:FindByName( "SukhumiBabushara Boundary" ) -- self.Airbases.SukhumiBabushara.ZoneBoundary = ZONE_POLYGON:New( "SukhumiBabushara Boundary", SukhumiBabusharaBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local SukhumiBabusharaRunway1 = GROUP:FindByName( "SukhumiBabushara Runway 1" ) -- self.Airbases.SukhumiBabushara.ZoneRunways[1] = ZONE_POLYGON:New( "SukhumiBabushara Runway 1", SukhumiBabusharaRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- TbilisiLochini -- local TbilisiLochiniBoundary = GROUP:FindByName( "TbilisiLochini Boundary" ) -- self.Airbases.TbilisiLochini.ZoneBoundary = ZONE_POLYGON:New( "TbilisiLochini Boundary", TbilisiLochiniBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local TbilisiLochiniRunway1 = GROUP:FindByName( "TbilisiLochini Runway 1" ) -- self.Airbases.TbilisiLochini.ZoneRunways[1] = ZONE_POLYGON:New( "TbilisiLochini Runway 1", TbilisiLochiniRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- local TbilisiLochiniRunway2 = GROUP:FindByName( "TbilisiLochini Runway 2" ) -- self.Airbases.TbilisiLochini.ZoneRunways[2] = ZONE_POLYGON:New( "TbilisiLochini Runway 2", TbilisiLochiniRunway2 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- -- Vaziani -- local VazianiBoundary = GROUP:FindByName( "Vaziani Boundary" ) -- self.Airbases.Vaziani.ZoneBoundary = ZONE_POLYGON:New( "Vaziani Boundary", VazianiBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local VazianiRunway1 = GROUP:FindByName( "Vaziani Runway 1" ) -- self.Airbases.Vaziani.ZoneRunways[1] = ZONE_POLYGON:New( "Vaziani Runway 1", VazianiRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- -- Template -- local TemplateBoundary = GROUP:FindByName( "Template Boundary" ) -- self.Airbases.Template.ZoneBoundary = ZONE_POLYGON:New( "Template Boundary", TemplateBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local TemplateRunway1 = GROUP:FindByName( "Template Runway 1" ) -- self.Airbases.Template.ZoneRunways[1] = ZONE_POLYGON:New( "Template Runway 1", TemplateRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() return self end --- @type AIRBASEPOLICE_NEVADA -- @extends Functional.AirbasePolice#AIRBASEPOLICE_BASE AIRBASEPOLICE_NEVADA = { ClassName = "AIRBASEPOLICE_NEVADA", Airbases = { Nellis = { PointsBoundary = { [1]={["y"]=-17814.714285714,["x"]=-399823.14285714,}, [2]={["y"]=-16875.857142857,["x"]=-398763.14285714,}, [3]={["y"]=-16251.571428571,["x"]=-398988.85714286,}, [4]={["y"]=-16163,["x"]=-398693.14285714,}, [5]={["y"]=-16328.714285714,["x"]=-398034.57142857,}, [6]={["y"]=-15943,["x"]=-397571.71428571,}, [7]={["y"]=-15711.571428571,["x"]=-397551.71428571,}, [8]={["y"]=-15748.714285714,["x"]=-396806,}, [9]={["y"]=-16288.714285714,["x"]=-396517.42857143,}, [10]={["y"]=-16751.571428571,["x"]=-396308.85714286,}, [11]={["y"]=-17263,["x"]=-396234.57142857,}, [12]={["y"]=-17577.285714286,["x"]=-396640.28571429,}, [13]={["y"]=-17614.428571429,["x"]=-397400.28571429,}, [14]={["y"]=-19405.857142857,["x"]=-399428.85714286,}, [15]={["y"]=-19234.428571429,["x"]=-399683.14285714,}, [16]={["y"]=-18708.714285714,["x"]=-399408.85714286,}, [17]={["y"]=-18397.285714286,["x"]=-399657.42857143,}, [18]={["y"]=-17814.428571429,["x"]=-399823.42857143,}, }, PointsRunways = { [1] = { [1]={["y"]=-18687,["x"]=-399380.28571429,}, [2]={["y"]=-18620.714285714,["x"]=-399436.85714286,}, [3]={["y"]=-16217.857142857,["x"]=-396596.85714286,}, [4]={["y"]=-16300.142857143,["x"]=-396530,}, [5]={["y"]=-18687,["x"]=-399380.85714286,}, }, [2] = { [1]={["y"]=-18451.571428572,["x"]=-399580.57142857,}, [2]={["y"]=-18392.142857143,["x"]=-399628.57142857,}, [3]={["y"]=-16011,["x"]=-396806.85714286,}, [4]={["y"]=-16074.714285714,["x"]=-396751.71428572,}, [5]={["y"]=-18451.571428572,["x"]=-399580.85714285,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, McCarran = { PointsBoundary = { [1]={["y"]=-29455.285714286,["x"]=-416277.42857142,}, [2]={["y"]=-28860.142857143,["x"]=-416492,}, [3]={["y"]=-25044.428571429,["x"]=-416344.85714285,}, [4]={["y"]=-24580.142857143,["x"]=-415959.14285714,}, [5]={["y"]=-25073,["x"]=-415630.57142857,}, [6]={["y"]=-25087.285714286,["x"]=-415130.57142857,}, [7]={["y"]=-25830.142857143,["x"]=-414866.28571428,}, [8]={["y"]=-26658.714285715,["x"]=-414880.57142857,}, [9]={["y"]=-26973,["x"]=-415273.42857142,}, [10]={["y"]=-27380.142857143,["x"]=-415187.71428571,}, [11]={["y"]=-27715.857142857,["x"]=-414144.85714285,}, [12]={["y"]=-27551.571428572,["x"]=-413473.42857142,}, [13]={["y"]=-28630.142857143,["x"]=-413201.99999999,}, [14]={["y"]=-29494.428571429,["x"]=-415437.71428571,}, [15]={["y"]=-29455.571428572,["x"]=-416277.71428571,}, }, PointsRunways = { [1] = { [1]={["y"]=-29408.428571429,["x"]=-416016.28571428,}, [2]={["y"]=-29408.142857144,["x"]=-416105.42857142,}, [3]={["y"]=-24680.714285715,["x"]=-416003.14285713,}, [4]={["y"]=-24681.857142858,["x"]=-415926.57142856,}, [5]={["y"]=-29408.42857143,["x"]=-416016.57142856,}, }, [2] = { [1]={["y"]=-28575.571428572,["x"]=-416303.14285713,}, [2]={["y"]=-28575.571428572,["x"]=-416382.57142856,}, [3]={["y"]=-25111.000000001,["x"]=-416309.7142857,}, [4]={["y"]=-25111.000000001,["x"]=-416249.14285713,}, [5]={["y"]=-28575.571428572,["x"]=-416303.7142857,}, }, [3] = { [1]={["y"]=-29331.000000001,["x"]=-416275.42857141,}, [2]={["y"]=-29259.000000001,["x"]=-416306.85714284,}, [3]={["y"]=-28005.571428572,["x"]=-413449.7142857,}, [4]={["y"]=-28068.714285715,["x"]=-413422.85714284,}, [5]={["y"]=-29331.000000001,["x"]=-416275.7142857,}, }, [4] = { [1]={["y"]=-29073.285714286,["x"]=-416386.57142856,}, [2]={["y"]=-28997.285714286,["x"]=-416417.42857141,}, [3]={["y"]=-27697.571428572,["x"]=-413464.57142856,}, [4]={["y"]=-27767.857142858,["x"]=-413434.28571427,}, [5]={["y"]=-29073.000000001,["x"]=-416386.85714284,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, Creech = { PointsBoundary = { [1]={["y"]=-74522.714285715,["x"]=-360887.99999998,}, [2]={["y"]=-74197,["x"]=-360556.57142855,}, [3]={["y"]=-74402.714285715,["x"]=-359639.42857141,}, [4]={["y"]=-74637,["x"]=-359279.42857141,}, [5]={["y"]=-75759.857142857,["x"]=-359005.14285712,}, [6]={["y"]=-75834.142857143,["x"]=-359045.14285712,}, [7]={["y"]=-75902.714285714,["x"]=-359782.28571427,}, [8]={["y"]=-76099.857142857,["x"]=-360399.42857141,}, [9]={["y"]=-77314.142857143,["x"]=-360219.42857141,}, [10]={["y"]=-77728.428571429,["x"]=-360445.14285713,}, [11]={["y"]=-77585.571428571,["x"]=-360585.14285713,}, [12]={["y"]=-76471.285714286,["x"]=-360819.42857141,}, [13]={["y"]=-76325.571428571,["x"]=-360942.28571427,}, [14]={["y"]=-74671.857142857,["x"]=-360927.7142857,}, [15]={["y"]=-74522.714285714,["x"]=-360888.85714284,}, }, PointsRunways = { [1] = { [1]={["y"]=-74237.571428571,["x"]=-360591.7142857,}, [2]={["y"]=-74234.428571429,["x"]=-360493.71428571,}, [3]={["y"]=-77605.285714286,["x"]=-360399.14285713,}, [4]={["y"]=-77608.714285715,["x"]=-360498.85714285,}, [5]={["y"]=-74237.857142857,["x"]=-360591.7142857,}, }, [2] = { [1]={["y"]=-75807.571428572,["x"]=-359073.42857142,}, [2]={["y"]=-74770.142857144,["x"]=-360581.71428571,}, [3]={["y"]=-74641.285714287,["x"]=-360585.42857142,}, [4]={["y"]=-75734.142857144,["x"]=-359023.14285714,}, [5]={["y"]=-75807.285714287,["x"]=-359073.42857142,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, GroomLake = { PointsBoundary = { [1]={["y"]=-88916.714285714,["x"]=-289102.28571425,}, [2]={["y"]=-87023.571428572,["x"]=-290388.57142857,}, [3]={["y"]=-85916.428571429,["x"]=-290674.28571428,}, [4]={["y"]=-87645.000000001,["x"]=-286567.14285714,}, [5]={["y"]=-88380.714285715,["x"]=-286388.57142857,}, [6]={["y"]=-89670.714285715,["x"]=-283524.28571428,}, [7]={["y"]=-89797.857142858,["x"]=-283567.14285714,}, [8]={["y"]=-88635.000000001,["x"]=-286749.99999999,}, [9]={["y"]=-89177.857142858,["x"]=-287207.14285714,}, [10]={["y"]=-89092.142857144,["x"]=-288892.85714285,}, [11]={["y"]=-88917.000000001,["x"]=-289102.85714285,}, }, PointsRunways = { [1] = { [1]={["y"]=-86039.000000001,["x"]=-290606.28571428,}, [2]={["y"]=-85965.285714287,["x"]=-290573.99999999,}, [3]={["y"]=-87692.714285715,["x"]=-286634.85714285,}, [4]={["y"]=-87756.714285715,["x"]=-286663.99999999,}, [5]={["y"]=-86038.714285715,["x"]=-290606.85714285,}, }, [2] = { [1]={["y"]=-86808.428571429,["x"]=-290375.7142857,}, [2]={["y"]=-86732.714285715,["x"]=-290344.28571427,}, [3]={["y"]=-89672.714285714,["x"]=-283546.57142855,}, [4]={["y"]=-89772.142857143,["x"]=-283587.71428569,}, [5]={["y"]=-86808.142857143,["x"]=-290375.7142857,}, }, }, ZoneBoundary = {}, ZoneRunways = {}, MaximumSpeed = 50, }, }, } --- Creates a new AIRBASEPOLICE_NEVADA object. -- @param #AIRBASEPOLICE_NEVADA self -- @param SetClient A SET_CLIENT object that will contain the CLIENT objects to be monitored if they follow the rules of the airbase. -- @return #AIRBASEPOLICE_NEVADA self function AIRBASEPOLICE_NEVADA:New( SetClient ) -- Inherits from BASE local self = BASE:Inherit( self, AIRBASEPOLICE_BASE:New( SetClient, self.Airbases ) ) -- -- Nellis -- local NellisBoundary = GROUP:FindByName( "Nellis Boundary" ) -- self.Airbases.Nellis.ZoneBoundary = ZONE_POLYGON:New( "Nellis Boundary", NellisBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local NellisRunway1 = GROUP:FindByName( "Nellis Runway 1" ) -- self.Airbases.Nellis.ZoneRunways[1] = ZONE_POLYGON:New( "Nellis Runway 1", NellisRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- local NellisRunway2 = GROUP:FindByName( "Nellis Runway 2" ) -- self.Airbases.Nellis.ZoneRunways[2] = ZONE_POLYGON:New( "Nellis Runway 2", NellisRunway2 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- McCarran -- local McCarranBoundary = GROUP:FindByName( "McCarran Boundary" ) -- self.Airbases.McCarran.ZoneBoundary = ZONE_POLYGON:New( "McCarran Boundary", McCarranBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local McCarranRunway1 = GROUP:FindByName( "McCarran Runway 1" ) -- self.Airbases.McCarran.ZoneRunways[1] = ZONE_POLYGON:New( "McCarran Runway 1", McCarranRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- local McCarranRunway2 = GROUP:FindByName( "McCarran Runway 2" ) -- self.Airbases.McCarran.ZoneRunways[2] = ZONE_POLYGON:New( "McCarran Runway 2", McCarranRunway2 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- local McCarranRunway3 = GROUP:FindByName( "McCarran Runway 3" ) -- self.Airbases.McCarran.ZoneRunways[3] = ZONE_POLYGON:New( "McCarran Runway 3", McCarranRunway3 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- local McCarranRunway4 = GROUP:FindByName( "McCarran Runway 4" ) -- self.Airbases.McCarran.ZoneRunways[4] = ZONE_POLYGON:New( "McCarran Runway 4", McCarranRunway4 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- Creech -- local CreechBoundary = GROUP:FindByName( "Creech Boundary" ) -- self.Airbases.Creech.ZoneBoundary = ZONE_POLYGON:New( "Creech Boundary", CreechBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local CreechRunway1 = GROUP:FindByName( "Creech Runway 1" ) -- self.Airbases.Creech.ZoneRunways[1] = ZONE_POLYGON:New( "Creech Runway 1", CreechRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- local CreechRunway2 = GROUP:FindByName( "Creech Runway 2" ) -- self.Airbases.Creech.ZoneRunways[2] = ZONE_POLYGON:New( "Creech Runway 2", CreechRunway2 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- -- Groom Lake -- local GroomLakeBoundary = GROUP:FindByName( "GroomLake Boundary" ) -- self.Airbases.GroomLake.ZoneBoundary = ZONE_POLYGON:New( "GroomLake Boundary", GroomLakeBoundary ):SmokeZone(SMOKECOLOR.White):Flush() -- -- local GroomLakeRunway1 = GROUP:FindByName( "GroomLake Runway 1" ) -- self.Airbases.GroomLake.ZoneRunways[1] = ZONE_POLYGON:New( "GroomLake Runway 1", GroomLakeRunway1 ):SmokeZone(SMOKECOLOR.Red):Flush() -- -- local GroomLakeRunway2 = GROUP:FindByName( "GroomLake Runway 2" ) -- self.Airbases.GroomLake.ZoneRunways[2] = ZONE_POLYGON:New( "GroomLake Runway 2", GroomLakeRunway2 ):SmokeZone(SMOKECOLOR.Red):Flush() end --- **Functional** -- DETECTION_ classes model the detection of enemy units by FACs or RECCEs and group them according various methods. -- -- ![Banner Image](..\Presentations\DETECTION\Dia1.JPG) -- -- === -- -- DETECTION classes facilitate the detection of enemy units within the battle zone executed by FACs (Forward Air Controllers) or RECCEs (Reconnassance Units). -- DETECTION uses the in-built detection capabilities of DCS World, but adds new functionalities. -- -- Find the DETECTION classes documentation further in this document in the globals section. -- -- ==== -- -- # Demo Missions -- -- ### [DETECTION Demo Missions and Source Code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/DET%20-%20Detection) -- -- ### [DETECTION Demo Missions, only for Beta Testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/DET%20-%20Detection) -- -- ### [ALL Demo Missions pack of the Latest Release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [DETECTION YouTube Channel](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl3Cf5jpI6BS0sBOVWK__tji) -- -- ==== -- -- ### Contributions: -- -- * Mechanist : Early concept of DETECTION_AREAS. -- -- ### Authors: -- -- * FlightControl : Analysis, Design, Programming, Testing -- -- @module Detection ----BASE:TraceClass("DETECTION_BASE") ----BASE:TraceClass("DETECTION_AREAS") ----BASE:TraceClass("DETECTION_UNITS") ----BASE:TraceClass("DETECTION_TYPES") do -- DETECTION_BASE --- @type DETECTION_BASE -- @field Core.Set#SET_GROUP DetectionSetGroup The @{Set} of GROUPs in the Forward Air Controller role. -- @field Dcs.DCSTypes#Distance DetectionRange The range till which targets are accepted to be detected. -- @field #DETECTION_BASE.DetectedObjects DetectedObjects The list of detected objects. -- @field #table DetectedObjectsIdentified Map of the DetectedObjects identified. -- @field #number DetectionRun -- @extends Core.Fsm#FSM --- DETECTION_BASE class, extends @{Fsm#FSM} -- -- The DETECTION_BASE class defines the core functions to administer detected objects. -- The DETECTION_BASE class will detect objects within the battle zone for a list of @{Group}s detecting targets following (a) detection method(s). -- -- ## DETECTION_BASE constructor -- -- Construct a new DETECTION_BASE instance using the @{#DETECTION_BASE.New}() method. -- -- ## Initialization -- -- By default, detection will return detected objects with all the detection sensors available. -- However, you can ask how the objects were found with specific detection methods. -- If you use one of the below methods, the detection will work with the detection method specified. -- You can specify to apply multiple detection methods. -- -- Use the following functions to report the objects it detected using the methods Visual, Optical, Radar, IRST, RWR, DLINK: -- -- * @{#DETECTION_BASE.InitDetectVisual}(): Detected using Visual. -- * @{#DETECTION_BASE.InitDetectOptical}(): Detected using Optical. -- * @{#DETECTION_BASE.InitDetectRadar}(): Detected using Radar. -- * @{#DETECTION_BASE.InitDetectIRST}(): Detected using IRST. -- * @{#DETECTION_BASE.InitDetectRWR}(): Detected using RWR. -- * @{#DETECTION_BASE.InitDetectDLINK}(): Detected using DLINK. -- -- ## **Filter** detected units based on **category of the unit** -- -- Filter the detected units based on Unit.Category using the method @{#DETECTION_BASE.FilterCategories}(). -- The different values of Unit.Category can be: -- -- * Unit.Category.AIRPLANE -- * Unit.Category.GROUND_UNIT -- * Unit.Category.HELICOPTER -- * Unit.Category.SHIP -- * Unit.Category.STRUCTURE -- -- Multiple Unit.Category entries can be given as a table and then these will be evaluated as an OR expression. -- -- Example to filter a single category (Unit.Category.AIRPLANE). -- -- DetectionObject:FilterCategories( Unit.Category.AIRPLANE ) -- -- Example to filter multiple categories (Unit.Category.AIRPLANE, Unit.Category.HELICOPTER). Note the {}. -- -- DetectionObject:FilterCategories( { Unit.Category.AIRPLANE, Unit.Category.HELICOPTER } ) -- -- -- ## **DETECTION_ derived classes** group the detected units into a **DetectedItems[]** list -- -- DETECTION_BASE derived classes build a list called DetectedItems[], which is essentially a first later -- of grouping of detected units. Each DetectedItem within the DetectedItems[] list contains -- a SET_UNIT object that contains the detected units that belong to that group. -- -- Derived classes will apply different methods to group the detected units. -- Examples are per area, per quadrant, per distance, per type. -- See further the derived DETECTION classes on which grouping methods are currently supported. -- -- Various methods exist how to retrieve the grouped items from a DETECTION_BASE derived class: -- -- * The method @{Detection#DETECTION_BASE.GetDetectedItems}() retrieves the DetectedItems[] list. -- * A DetectedItem from the DetectedItems[] list can be retrieved using the method @{Detection#DETECTION_BASE.GetDetectedItem}( DetectedItemIndex ). -- Note that this method returns a DetectedItem element from the list, that contains a Set variable and further information -- about the DetectedItem that is set by the DETECTION_BASE derived classes, used to group the DetectedItem. -- * A DetectedSet from the DetectedItems[] list can be retrieved using the method @{Detection#DETECTION_BASE.GetDetectedSet}( DetectedItemIndex ). -- This method retrieves the Set from a DetectedItem element from the DetectedItem list (DetectedItems[ DetectedItemIndex ].Set ). -- -- ## **Visual filters** to fine-tune the probability of the detected objects -- -- By default, DCS World will return any object that is in LOS and within "visual reach", or detectable through one of the electronic detection means. -- That being said, the DCS World detection algorithm can sometimes be unrealistic. -- Especially for a visual detection, DCS World is able to report within 1 second a detailed detection of a group of 20 units (including types of the units) that are 10 kilometers away, using only visual capabilities. -- Additionally, trees and other obstacles are not accounted during the DCS World detection. -- -- Therefore, an additional (optional) filtering has been built into the DETECTION_BASE class, that can be set for visual detected units. -- For electronic detection, this filtering is not applied, only for visually detected targets. -- -- The following additional filtering can be applied for visual filtering: -- -- * A probability factor per kilometer distance. -- * A probability factor based on the alpha angle between the detected object and the unit detecting. -- A detection from a higher altitude allows for better detection than when on the ground. -- * Define a probability factor for "cloudy zones", which are zones where forests or villages are located. In these zones, detection will be much more difficult. -- The mission designer needs to define these cloudy zones within the mission, and needs to register these zones in the DETECTION_ objects additing a probability factor per zone. -- -- I advise however, that, when you first use the DETECTION derived classes, that you don't use these filters. -- Only when you experience unrealistic behaviour in your missions, these filters could be applied. -- -- -- ### Distance visual detection probability -- -- Upon a **visual** detection, the further away a detected object is, the less likely it is to be detected properly. -- Also, the speed of accurate detection plays a role. -- -- A distance probability factor between 0 and 1 can be given, that will model a linear extrapolated probability over 10 km distance. -- -- For example, if a probability factor of 0.6 (60%) is given, the extrapolated probabilities over 15 kilometers would like like: -- 1 km: 96%, 2 km: 92%, 3 km: 88%, 4 km: 84%, 5 km: 80%, 6 km: 76%, 7 km: 72%, 8 km: 68%, 9 km: 64%, 10 km: 60%, 11 km: 56%, 12 km: 52%, 13 km: 48%, 14 km: 44%, 15 km: 40%. -- -- Note that based on this probability factor, not only the detection but also the **type** of the unit will be applied! -- -- Use the method @{Detection#DETECTION_BASE.SetDistanceProbability}() to set the probability factor upon a 10 km distance. -- -- ### Alpha Angle visual detection probability -- -- Upon a **visual** detection, the higher the unit is during the detecting process, the more likely the detected unit is to be detected properly. -- A detection at a 90% alpha angle is the most optimal, a detection at 10% is less and a detection at 0% is less likely to be correct. -- -- A probability factor between 0 and 1 can be given, that will model a progressive extrapolated probability if the target would be detected at a 0° angle. -- -- For example, if a alpha angle probability factor of 0.7 is given, the extrapolated probabilities of the different angles would look like: -- 0°: 70%, 10°: 75,21%, 20°: 80,26%, 30°: 85%, 40°: 89,28%, 50°: 92,98%, 60°: 95,98%, 70°: 98,19%, 80°: 99,54%, 90°: 100% -- -- Use the method @{Detection#DETECTION_BASE.SetAlphaAngleProbability}() to set the probability factor if 0°. -- -- ### Cloudy Zones detection probability -- -- Upon a **visual** detection, the more a detected unit is within a cloudy zone, the less likely the detected unit is to be detected successfully. -- The Cloudy Zones work with the ZONE_BASE derived classes. The mission designer can define within the mission -- zones that reflect cloudy areas where detected units may not be so easily visually detected. -- -- Use the method @{Detection#DETECTION_BASE.SetZoneProbability}() to set for a defined number of zones, the probability factors. -- -- Note however, that the more zones are defined to be "cloudy" within a detection, the more performance it will take -- from the DETECTION_BASE to calculate the presence of the detected unit within each zone. -- Expecially for ZONE_POLYGON, try to limit the amount of nodes of the polygon! -- -- Typically, this kind of filter would be applied for very specific areas were a detection needs to be very realisting for -- AI not to detect so easily targets within a forrest or village rich area. -- -- ## Accept / Reject detected units -- -- DETECTION_BASE can accept or reject successful detections based on the location of the detected object, -- if it is located in range or located inside or outside of specific zones. -- -- ### Detection acceptance of within range limit -- -- A range can be set that will limit a successful detection for a unit. -- Use the method @{Detection#DETECTION_BASE.SetAcceptRange}() to apply a range in meters till where detected units will be accepted. -- -- local SetGroup = SET_GROUP:New():FilterPrefixes( "FAC" ):FilterStart() -- Build a SetGroup of Forward Air Controllers. -- -- -- Build a detect object. -- local Detection = DETECTION_UNITS:New( SetGroup ) -- -- -- This will accept detected units if the range is below 5000 meters. -- Detection:SetAcceptRange( 5000 ) -- -- -- Start the Detection. -- Detection:Start() -- -- -- ### Detection acceptance if within zone(s). -- -- Specific ZONE_BASE object(s) can be given as a parameter, which will only accept a detection if the unit is within the specified ZONE_BASE object(s). -- Use the method @{Detection#DETECTION_BASE.SetAcceptZones}() will accept detected units if they are within the specified zones. -- -- local SetGroup = SET_GROUP:New():FilterPrefixes( "FAC" ):FilterStart() -- Build a SetGroup of Forward Air Controllers. -- -- -- Search fo the zones where units are to be accepted. -- local ZoneAccept1 = ZONE:New( "AcceptZone1" ) -- local ZoneAccept2 = ZONE:New( "AcceptZone2" ) -- -- -- Build a detect object. -- local Detection = DETECTION_UNITS:New( SetGroup ) -- -- -- This will accept detected units by Detection when the unit is within ZoneAccept1 OR ZoneAccept2. -- Detection:SetAcceptZones( { ZoneAccept1, ZoneAccept2 } ) -- -- -- Start the Detection. -- Detection:Start() -- -- ### Detection rejectance if within zone(s). -- -- Specific ZONE_BASE object(s) can be given as a parameter, which will reject detection if the unit is within the specified ZONE_BASE object(s). -- Use the method @{Detection#DETECTION_BASE.SetRejectZones}() will reject detected units if they are within the specified zones. -- An example of how to use the method is shown below. -- -- local SetGroup = SET_GROUP:New():FilterPrefixes( "FAC" ):FilterStart() -- Build a SetGroup of Forward Air Controllers. -- -- -- Search fo the zones where units are to be rejected. -- local ZoneReject1 = ZONE:New( "RejectZone1" ) -- local ZoneReject2 = ZONE:New( "RejectZone2" ) -- -- -- Build a detect object. -- local Detection = DETECTION_UNITS:New( SetGroup ) -- -- -- This will reject detected units by Detection when the unit is within ZoneReject1 OR ZoneReject2. -- Detection:SetRejectZones( { ZoneReject1, ZoneReject2 } ) -- -- -- Start the Detection. -- Detection:Start() -- -- ## Detection of Friendlies Nearby -- -- Use the method @{Detection#DETECTION_BASE.SetFriendliesRange}() to set the range what will indicate when friendlies are nearby -- a DetectedItem. The default range is 6000 meters. For air detections, it is advisory to use about 30.000 meters. -- -- ## DETECTION_BASE is a Finite State Machine -- -- Various Events and State Transitions can be tailored using DETECTION_BASE. -- -- ### DETECTION_BASE States -- -- * **Detecting**: The detection is running. -- * **Stopped**: The detection is stopped. -- -- ### DETECTION_BASE Events -- -- * **Start**: Start the detection process. -- * **Detect**: Detect new units. -- * **Detected**: New units have been detected. -- * **Stop**: Stop the detection process. -- -- @field #DETECTION_BASE DETECTION_BASE -- DETECTION_BASE = { ClassName = "DETECTION_BASE", DetectionSetGroup = nil, DetectionRange = nil, DetectedObjects = {}, DetectionRun = 0, DetectedObjectsIdentified = {}, DetectedItems = {}, } --- @type DETECTION_BASE.DetectedObjects -- @list <#DETECTION_BASE.DetectedObject> --- @type DETECTION_BASE.DetectedObject -- @field #string Name -- @field #boolean IsVisible -- @field #boolean KnowType -- @field #boolean KnowDistance -- @field #string Type -- @field #number Distance -- @field #boolean Identified -- @field #number LastTime -- @field #boolean LastPos -- @field #number LastVelocity --- @type DETECTION_BASE.DetectedItems -- @list <#DETECTION_BASE.DetectedItem> --- @type DETECTION_BASE.DetectedItem -- @field Core.Set#SET_UNIT Set -- @field Core.Set#SET_UNIT Set -- The Set of Units in the detected area. -- @field Core.Zone#ZONE_UNIT Zone -- The Zone of the detected area. -- @field #boolean Changed Documents if the detected area has changes. -- @field #table Changes A list of the changes reported on the detected area. (It is up to the user of the detected area to consume those changes). -- @field #number ID -- The identifier of the detected area. -- @field #boolean FriendliesNearBy Indicates if there are friendlies within the detected area. -- @field Wrapper.Unit#UNIT NearestFAC The nearest FAC near the Area. -- @field Core.Point#COORDINATE Coordinate The last known coordinate of the DetectedItem. --- DETECTION constructor. -- @param #DETECTION_BASE self -- @param Core.Set#SET_GROUP DetectionSetGroup The @{Set} of GROUPs in the Forward Air Controller role. -- @return #DETECTION_BASE self function DETECTION_BASE:New( DetectionSetGroup ) -- Inherits from BASE local self = BASE:Inherit( self, FSM:New() ) -- #DETECTION_BASE self.DetectedItemCount = 0 self.DetectedItemMax = 0 self.DetectedItems = {} self.DetectionSetGroup = DetectionSetGroup self.RefreshTimeInterval = 30 self:InitDetectVisual( nil ) self:InitDetectOptical( nil ) self:InitDetectRadar( nil ) self:InitDetectRWR( nil ) self:InitDetectIRST( nil ) self:InitDetectDLINK( nil ) self:FilterCategories( { Unit.Category.AIRPLANE, Unit.Category.GROUND_UNIT, Unit.Category.HELICOPTER, Unit.Category.SHIP, Unit.Category.STRUCTURE } ) self:SetFriendliesRange( 6000 ) -- Create FSM transitions. self:SetStartState( "Stopped" ) self:AddTransition( "Stopped", "Start", "Detecting") --- OnLeave Transition Handler for State Stopped. -- @function [parent=#DETECTION_BASE] OnLeaveStopped -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Stopped. -- @function [parent=#DETECTION_BASE] OnEnterStopped -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- OnBefore Transition Handler for Event Start. -- @function [parent=#DETECTION_BASE] OnBeforeStart -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Start. -- @function [parent=#DETECTION_BASE] OnAfterStart -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Start. -- @function [parent=#DETECTION_BASE] Start -- @param #DETECTION_BASE self --- Asynchronous Event Trigger for Event Start. -- @function [parent=#DETECTION_BASE] __Start -- @param #DETECTION_BASE self -- @param #number Delay The delay in seconds. --- OnLeave Transition Handler for State Detecting. -- @function [parent=#DETECTION_BASE] OnLeaveDetecting -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Detecting. -- @function [parent=#DETECTION_BASE] OnEnterDetecting -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. self:AddTransition( "Detecting", "Detect", "Detecting" ) self:AddTransition( "Detecting", "DetectionGroup", "Detecting" ) --- OnBefore Transition Handler for Event Detect. -- @function [parent=#DETECTION_BASE] OnBeforeDetect -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Detect. -- @function [parent=#DETECTION_BASE] OnAfterDetect -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Detect. -- @function [parent=#DETECTION_BASE] Detect -- @param #DETECTION_BASE self --- Asynchronous Event Trigger for Event Detect. -- @function [parent=#DETECTION_BASE] __Detect -- @param #DETECTION_BASE self -- @param #number Delay The delay in seconds. self:AddTransition( "Detecting", "Detected", "Detecting" ) --- OnBefore Transition Handler for Event Detected. -- @function [parent=#DETECTION_BASE] OnBeforeDetected -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Detected. -- @function [parent=#DETECTION_BASE] OnAfterDetected -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Detected. -- @function [parent=#DETECTION_BASE] Detected -- @param #DETECTION_BASE self --- Asynchronous Event Trigger for Event Detected. -- @function [parent=#DETECTION_BASE] __Detected -- @param #DETECTION_BASE self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Stop", "Stopped" ) --- OnBefore Transition Handler for Event Stop. -- @function [parent=#DETECTION_BASE] OnBeforeStop -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Stop. -- @function [parent=#DETECTION_BASE] OnAfterStop -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Stop. -- @function [parent=#DETECTION_BASE] Stop -- @param #DETECTION_BASE self --- Asynchronous Event Trigger for Event Stop. -- @function [parent=#DETECTION_BASE] __Stop -- @param #DETECTION_BASE self -- @param #number Delay The delay in seconds. --- OnLeave Transition Handler for State Stopped. -- @function [parent=#DETECTION_BASE] OnLeaveStopped -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Stopped. -- @function [parent=#DETECTION_BASE] OnEnterStopped -- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. return self end do -- State Transition Handling --- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function DETECTION_BASE:onafterStart(From,Event,To) self:__Detect( 1 ) end --- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function DETECTION_BASE:onafterDetect(From,Event,To) self:E( { From, Event, To } ) local DetectDelay = 0.1 self.DetectionCount = 0 self.DetectionRun = 0 self:UnIdentifyAllDetectedObjects() -- Resets the DetectedObjectsIdentified table local DetectionTimeStamp = timer.getTime() for DetectionGroupID, DetectionGroupData in pairs( self.DetectionSetGroup:GetSet() ) do --self:E( { DetectionGroupData } ) self:__DetectionGroup( DetectDelay, DetectionGroupData, DetectionTimeStamp ) -- Process each detection asynchronously. self.DetectionCount = self.DetectionCount + 1 DetectDelay = DetectDelay + 1 end end --- @param #DETECTION_BASE self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Wrapper.Group#GROUP DetectionGroup The Group detecting. function DETECTION_BASE:onafterDetectionGroup( From, Event, To, DetectionGroup, DetectionTimeStamp ) self:E( { From, Event, To } ) self.DetectionRun = self.DetectionRun + 1 local HasDetectedObjects = false if DetectionGroup:IsAlive() then self:T( { "DetectionGroup is Alive", DetectionGroup:GetName() } ) local DetectionGroupName = DetectionGroup:GetName() local DetectionUnit = DetectionGroup:GetUnit(1) local DetectedUnits = {} local DetectedTargets = DetectionGroup:GetDetectedTargets( self.DetectVisual, self.DetectOptical, self.DetectRadar, self.DetectIRST, self.DetectRWR, self.DetectDLINK ) self:F( DetectedTargets ) for DetectionObjectID, Detection in pairs( DetectedTargets ) do local DetectedObject = Detection.object -- Dcs.DCSWrapper.Object#Object if DetectedObject and DetectedObject:isExist() and DetectedObject.id_ < 50000000 then -- and ( DetectedObject:getCategory() == Object.Category.UNIT or DetectedObject:getCategory() == Object.Category.STATIC ) then local TargetIsDetected, TargetIsVisible, TargetLastTime, TargetKnowType, TargetKnowDistance, TargetLastPos, TargetLastVelocity = DetectionUnit:IsTargetDetected( DetectedObject, self.DetectVisual, self.DetectOptical, self.DetectRadar, self.DetectIRST, self.DetectRWR, self.DetectDLINK ) self:T2( { TargetIsDetected = TargetIsDetected, TargetIsVisible = TargetIsVisible, TargetLastTime = TargetLastTime, TargetKnowType = TargetKnowType, TargetKnowDistance = TargetKnowDistance, TargetLastPos = TargetLastPos, TargetLastVelocity = TargetLastVelocity } ) local DetectionAccepted = true local DetectedObjectName = DetectedObject:getName() local DetectedObjectType = DetectedObject:getTypeName() local DetectedObjectVec3 = DetectedObject:getPoint() local DetectedObjectVec2 = { x = DetectedObjectVec3.x, y = DetectedObjectVec3.z } local DetectionGroupVec3 = DetectionGroup:GetVec3() local DetectionGroupVec2 = { x = DetectionGroupVec3.x, y = DetectionGroupVec3.z } local Distance = ( ( DetectedObjectVec3.x - DetectionGroupVec3.x )^2 + ( DetectedObjectVec3.y - DetectionGroupVec3.y )^2 + ( DetectedObjectVec3.z - DetectionGroupVec3.z )^2 ) ^ 0.5 / 1000 local DetectedUnitCategory = DetectedObject:getDesc().category self:F( { "Detected Target:", DetectionGroupName, DetectedObjectName, DetectedObjectType, Distance, DetectedUnitCategory } ) -- Calculate Acceptance DetectionAccepted = self._.FilterCategories[DetectedUnitCategory] ~= nil and DetectionAccepted or false -- if Distance > 15000 then -- if DetectedUnitCategory == Unit.Category.GROUND_UNIT or DetectedUnitCategory == Unit.Category.SHIP then -- if DetectedObject:hasSensors( Unit.SensorType.RADAR, Unit.RadarType.AS ) == false then -- DetectionAccepted = false -- end -- end -- end if self.AcceptRange and Distance > self.AcceptRange then DetectionAccepted = false end if self.AcceptZones then for AcceptZoneID, AcceptZone in pairs( self.AcceptZones ) do local AcceptZone = AcceptZone -- Core.Zone#ZONE_BASE if AcceptZone:IsVec2InZone( DetectedObjectVec2 ) == false then DetectionAccepted = false end end end if self.RejectZones then for RejectZoneID, RejectZone in pairs( self.RejectZones ) do local RejectZone = RejectZone -- Core.Zone#ZONE_BASE if RejectZone:IsPointVec2InZone( DetectedObjectVec2 ) == true then DetectionAccepted = false end end end -- Calculate additional probabilities if not self.DetectedObjects[DetectedObjectName] and Detection.visible and self.DistanceProbability then local DistanceFactor = Distance / 4 local DistanceProbabilityReversed = ( 1 - self.DistanceProbability ) * DistanceFactor local DistanceProbability = 1 - DistanceProbabilityReversed DistanceProbability = DistanceProbability * 30 / 300 local Probability = math.random() -- Selects a number between 0 and 1 self:T( { Probability, DistanceProbability } ) if Probability > DistanceProbability then DetectionAccepted = false end end if not self.DetectedObjects[DetectedObjectName] and Detection.visible and self.AlphaAngleProbability then local NormalVec2 = { x = DetectedObjectVec2.x - DetectionGroupVec2.x, y = DetectedObjectVec2.y - DetectionGroupVec2.y } local AlphaAngle = math.atan2( NormalVec2.y, NormalVec2.x ) local Sinus = math.sin( AlphaAngle ) local AlphaAngleProbabilityReversed = ( 1 - self.AlphaAngleProbability ) * ( 1 - Sinus ) local AlphaAngleProbability = 1 - AlphaAngleProbabilityReversed AlphaAngleProbability = AlphaAngleProbability * 30 / 300 local Probability = math.random() -- Selects a number between 0 and 1 self:T( { Probability, AlphaAngleProbability } ) if Probability > AlphaAngleProbability then DetectionAccepted = false end end if not self.DetectedObjects[DetectedObjectName] and Detection.visible and self.ZoneProbability then for ZoneDataID, ZoneData in pairs( self.ZoneProbability ) do self:E({ZoneData}) local ZoneObject = ZoneData[1] -- Core.Zone#ZONE_BASE local ZoneProbability = ZoneData[2] -- #number ZoneProbability = ZoneProbability * 30 / 300 if ZoneObject:IsPointVec2InZone( DetectedObjectVec2 ) == true then local Probability = math.random() -- Selects a number between 0 and 1 self:T( { Probability, ZoneProbability } ) if Probability > ZoneProbability then DetectionAccepted = false break end end end end if DetectionAccepted then HasDetectedObjects = true self.DetectedObjects[DetectedObjectName] = self.DetectedObjects[DetectedObjectName] or {} self.DetectedObjects[DetectedObjectName].Name = DetectedObjectName self.DetectedObjects[DetectedObjectName].IsDetected = TargetIsDetected self.DetectedObjects[DetectedObjectName].IsVisible = TargetIsVisible self.DetectedObjects[DetectedObjectName].LastTime = TargetLastTime self.DetectedObjects[DetectedObjectName].LastPos = TargetLastPos self.DetectedObjects[DetectedObjectName].LastVelocity = TargetLastVelocity self.DetectedObjects[DetectedObjectName].KnowType = TargetKnowType self.DetectedObjects[DetectedObjectName].KnowDistance = Detection.distance -- TargetKnowDistance self.DetectedObjects[DetectedObjectName].Distance = Distance self.DetectedObjects[DetectedObjectName].DetectionTimeStamp = DetectionTimeStamp self:F( { DetectedObject = self.DetectedObjects[DetectedObjectName] } ) local DetectedUnit = UNIT:FindByName( DetectedObjectName ) DetectedUnits[DetectedObjectName] = DetectedUnit else -- if beyond the DetectionRange then nullify... if self.DetectedObjects[DetectedObjectName] then self.DetectedObjects[DetectedObjectName] = nil end end end self:T2( self.DetectedObjects ) end if HasDetectedObjects then self:__Detected( 0.1, DetectedUnits ) end end if self.DetectionCount > 0 and self.DetectionRun == self.DetectionCount then self:T( "--> Create Detection Sets" ) -- First check if all DetectedObjects were detected. -- This is important. When there are DetectedObjects in the list, but were not detected, -- And these remain undetected for more than 60 seconds, then these DetectedObjects will be flagged as not Detected. -- IsDetected = false! -- This is used in A2A_TASK_DISPATCHER to initiate fighter sweeping! The TASK_A2A_INTERCEPT tasks will be replaced with TASK_A2A_SWEEP tasks. for DetectedObjectName, DetectedObject in pairs( self.DetectedObjects ) do if self.DetectedObjects[DetectedObjectName].IsDetected == true and self.DetectedObjects[DetectedObjectName].DetectionTimeStamp + 60 <= DetectionTimeStamp then self.DetectedObjects[DetectedObjectName].IsDetected = false end end self:CreateDetectionItems() -- Polymorphic call to Create/Update the DetectionItems list for the DETECTION_ class grouping method. for DetectedItemID, DetectedItem in pairs( self.DetectedItems ) do self:UpdateDetectedItemDetection( DetectedItem ) self:CleanDetectionItem( DetectedItem, DetectedItemID ) -- Any DetectionItem that has a Set with zero elements in it, must be removed from the DetectionItems list. end self:__Detect( self.RefreshTimeInterval ) end end end do -- DetectionItems Creation -- Clean the DetectedItem table. -- @param #DETECTION_BASE self -- @return #DETECTION_BASE function DETECTION_BASE:CleanDetectionItem( DetectedItem, DetectedItemID ) self:F2() -- We clean all DetectedItems. -- if there are any remaining DetectedItems with no Set Objects then the Item in the DetectedItems must be deleted. local DetectedSet = DetectedItem.Set if DetectedSet:Count() == 0 then self:RemoveDetectedItem( DetectedItemID ) end return self end --- Forget a Unit from a DetectionItem -- @param #DETECTION_BASE self -- @param #string UnitName The UnitName that needs to be forgotten from the DetectionItem Sets. -- @return #DETECTION_BASE function DETECTION_BASE:ForgetDetectedUnit( UnitName ) self:F2() local DetectedItems = self:GetDetectedItems() for DetectedItemIndex, DetectedItem in pairs( DetectedItems ) do local DetectedSet = self:GetDetectedSet( DetectedItemIndex ) if DetectedSet then DetectedSet:RemoveUnitsByName( UnitName ) end end return self end --- Make a DetectionSet table. This function will be overridden in the derived clsses. -- @param #DETECTION_BASE self -- @return #DETECTION_BASE function DETECTION_BASE:CreateDetectionItems() self:F2() self:E( "Error, in DETECTION_BASE class..." ) return self end end do -- Initialization methods --- Detect Visual. -- @param #DETECTION_BASE self -- @param #boolean DetectVisual -- @return #DETECTION_BASE self function DETECTION_BASE:InitDetectVisual( DetectVisual ) self.DetectVisual = DetectVisual return self end --- Detect Optical. -- @param #DETECTION_BASE self -- @param #boolean DetectOptical -- @return #DETECTION_BASE self function DETECTION_BASE:InitDetectOptical( DetectOptical ) self:F2() self.DetectOptical = DetectOptical return self end --- Detect Radar. -- @param #DETECTION_BASE self -- @param #boolean DetectRadar -- @return #DETECTION_BASE self function DETECTION_BASE:InitDetectRadar( DetectRadar ) self:F2() self.DetectRadar = DetectRadar return self end --- Detect IRST. -- @param #DETECTION_BASE self -- @param #boolean DetectIRST -- @return #DETECTION_BASE self function DETECTION_BASE:InitDetectIRST( DetectIRST ) self:F2() self.DetectIRST = DetectIRST return self end --- Detect RWR. -- @param #DETECTION_BASE self -- @param #boolean DetectRWR -- @return #DETECTION_BASE self function DETECTION_BASE:InitDetectRWR( DetectRWR ) self:F2() self.DetectRWR = DetectRWR return self end --- Detect DLINK. -- @param #DETECTION_BASE self -- @param #boolean DetectDLINK -- @return #DETECTION_BASE self function DETECTION_BASE:InitDetectDLINK( DetectDLINK ) self:F2() self.DetectDLINK = DetectDLINK return self end end do -- Filter methods --- Filter the detected units based on Unit.Category -- The different values of Unit.Category can be: -- -- * Unit.Category.AIRPLANE -- * Unit.Category.GROUND_UNIT -- * Unit.Category.HELICOPTER -- * Unit.Category.SHIP -- * Unit.Category.STRUCTURE -- -- Multiple Unit.Category entries can be given as a table and then these will be evaluated as an OR expression. -- -- Example to filter a single category (Unit.Category.AIRPLANE). -- -- DetectionObject:FilterCategories( Unit.Category.AIRPLANE ) -- -- Example to filter multiple categories (Unit.Category.AIRPLANE, Unit.Category.HELICOPTER). Note the {}. -- -- DetectionObject:FilterCategories( { Unit.Category.AIRPLANE, Unit.Category.HELICOPTER } ) -- -- @param #DETECTION_BASE self -- @param #list FilterCategories The Categories entries -- @return #DETECTION_BASE self function DETECTION_BASE:FilterCategories( FilterCategories ) self:F2() self._.FilterCategories = {} if type( FilterCategories ) == "table" then for CategoryID, Category in pairs( FilterCategories ) do self._.FilterCategories[Category] = Category end else self._.FilterCategories[FilterCategories] = FilterCategories end return self end end do --- Set the detection interval time in seconds. -- @param #DETECTION_BASE self -- @param #number RefreshTimeInterval Interval in seconds. -- @return #DETECTION_BASE self function DETECTION_BASE:SetRefreshTimeInterval( RefreshTimeInterval ) self:F2() self.RefreshTimeInterval = RefreshTimeInterval return self end end do -- Friendlies Radius --- Set the radius in meters to validate if friendlies are nearby. -- @param #DETECTION_BASE self -- @param #number FriendliesRange Radius to use when checking if Friendlies are nearby. -- @return #DETECTION_BASE self function DETECTION_BASE:SetFriendliesRange( FriendliesRange ) --R2.2 Friendlies range self:F2() self.FriendliesRange = FriendliesRange return self end end do -- Intercept Point --- Set the parameters to calculate to optimal intercept point. -- @param #DETECTION_BASE self -- @param #boolean Intercept Intercept is true if an intercept point is calculated. Intercept is false if it is disabled. The default Intercept is false. -- @param #number IntereptDelay If Intercept is true, then InterceptDelay is the average time it takes to get airplanes airborne. -- @return #DETECTION_BASE self function DETECTION_BASE:SetIntercept( Intercept, InterceptDelay ) self:F2() self.Intercept = Intercept self.InterceptDelay = InterceptDelay return self end end do -- Accept / Reject detected units --- Accept detections if within a range in meters. -- @param #DETECTION_BASE self -- @param #number AcceptRange Accept a detection if the unit is within the AcceptRange in meters. -- @return #DETECTION_BASE self function DETECTION_BASE:SetAcceptRange( AcceptRange ) self:F2() self.AcceptRange = AcceptRange return self end --- Accept detections if within the specified zone(s). -- @param #DETECTION_BASE self -- @param Core.Zone#ZONE_BASE AcceptZones Can be a list or ZONE_BASE objects, or a single ZONE_BASE object. -- @return #DETECTION_BASE self function DETECTION_BASE:SetAcceptZones( AcceptZones ) self:F2() if type( AcceptZones ) == "table" then if AcceptZones.ClassName and AcceptZones:IsInstanceOf( ZONE_BASE ) then self.AcceptZones = { AcceptZones } else self.AcceptZones = AcceptZones end else self:E( { "AcceptZones must be a list of ZONE_BASE derived objects or one ZONE_BASE derived object", AcceptZones } ) error() end return self end --- Reject detections if within the specified zone(s). -- @param #DETECTION_BASE self -- @param Core.Zone#ZONE_BASE RejectZones Can be a list or ZONE_BASE objects, or a single ZONE_BASE object. -- @return #DETECTION_BASE self function DETECTION_BASE:SetRejectZones( RejectZones ) self:F2() if type( RejectZones ) == "table" then if RejectZones.ClassName and RejectZones:IsInstanceOf( ZONE_BASE ) then self.RejectZones = { RejectZones } else self.RejectZones = RejectZones end else self:E( { "RejectZones must be a list of ZONE_BASE derived objects or one ZONE_BASE derived object", RejectZones } ) error() end return self end end do -- Probability methods --- Upon a **visual** detection, the further away a detected object is, the less likely it is to be detected properly. -- Also, the speed of accurate detection plays a role. -- A distance probability factor between 0 and 1 can be given, that will model a linear extrapolated probability over 10 km distance. -- For example, if a probability factor of 0.6 (60%) is given, the extrapolated probabilities over 15 kilometers would like like: -- 1 km: 96%, 2 km: 92%, 3 km: 88%, 4 km: 84%, 5 km: 80%, 6 km: 76%, 7 km: 72%, 8 km: 68%, 9 km: 64%, 10 km: 60%, 11 km: 56%, 12 km: 52%, 13 km: 48%, 14 km: 44%, 15 km: 40%. -- @param #DETECTION_BASE self -- @param DistanceProbability The probability factor. -- @return #DETECTION_BASE self function DETECTION_BASE:SetDistanceProbability( DistanceProbability ) self:F2() self.DistanceProbability = DistanceProbability return self end --- Upon a **visual** detection, the higher the unit is during the detecting process, the more likely the detected unit is to be detected properly. -- A detection at a 90% alpha angle is the most optimal, a detection at 10% is less and a detection at 0% is less likely to be correct. -- -- A probability factor between 0 and 1 can be given, that will model a progressive extrapolated probability if the target would be detected at a 0° angle. -- -- For example, if a alpha angle probability factor of 0.7 is given, the extrapolated probabilities of the different angles would look like: -- 0°: 70%, 10°: 75,21%, 20°: 80,26%, 30°: 85%, 40°: 89,28%, 50°: 92,98%, 60°: 95,98%, 70°: 98,19%, 80°: 99,54%, 90°: 100% -- @param #DETECTION_BASE self -- @param AlphaAngleProbability The probability factor. -- @return #DETECTION_BASE self function DETECTION_BASE:SetAlphaAngleProbability( AlphaAngleProbability ) self:F2() self.AlphaAngleProbability = AlphaAngleProbability return self end --- Upon a **visual** detection, the more a detected unit is within a cloudy zone, the less likely the detected unit is to be detected successfully. -- The Cloudy Zones work with the ZONE_BASE derived classes. The mission designer can define within the mission -- zones that reflect cloudy areas where detected units may not be so easily visually detected. -- @param #DETECTION_BASE self -- @param ZoneArray Aray of a The ZONE_BASE object and a ZoneProbability pair.. -- @return #DETECTION_BASE self function DETECTION_BASE:SetZoneProbability( ZoneArray ) self:F2() self.ZoneProbability = ZoneArray return self end end do -- Change processing --- Accepts changes from the detected item. -- @param #DETECTION_BASE self -- @param #DETECTION_BASE.DetectedItem DetectedItem -- @return #DETECTION_BASE self function DETECTION_BASE:AcceptChanges( DetectedItem ) DetectedItem.Changed = false DetectedItem.Changes = {} return self end --- Add a change to the detected zone. -- @param #DETECTION_BASE self -- @param #DETECTION_BASE.DetectedItem DetectedItem -- @param #string ChangeCode -- @return #DETECTION_BASE self function DETECTION_BASE:AddChangeItem( DetectedItem, ChangeCode, ItemUnitType ) DetectedItem.Changed = true local ID = DetectedItem.ID DetectedItem.Changes = DetectedItem.Changes or {} DetectedItem.Changes[ChangeCode] = DetectedItem.Changes[ChangeCode] or {} DetectedItem.Changes[ChangeCode].ID = ID DetectedItem.Changes[ChangeCode].ItemUnitType = ItemUnitType self:E( { "Change on Detection Item:", DetectedItem.ID, ChangeCode, ItemUnitType } ) return self end --- Add a change to the detected zone. -- @param #DETECTION_BASE self -- @param #DETECTION_BASE.DetectedItem DetectedItem -- @param #string ChangeCode -- @param #string ChangeUnitType -- @return #DETECTION_BASE self function DETECTION_BASE:AddChangeUnit( DetectedItem, ChangeCode, ChangeUnitType ) DetectedItem.Changed = true local ID = DetectedItem.ID DetectedItem.Changes = DetectedItem.Changes or {} DetectedItem.Changes[ChangeCode] = DetectedItem.Changes[ChangeCode] or {} DetectedItem.Changes[ChangeCode][ChangeUnitType] = DetectedItem.Changes[ChangeCode][ChangeUnitType] or 0 DetectedItem.Changes[ChangeCode][ChangeUnitType] = DetectedItem.Changes[ChangeCode][ChangeUnitType] + 1 DetectedItem.Changes[ChangeCode].ID = ID self:E( { "Change on Detection Item:", DetectedItem.ID, ChangeCode, ChangeUnitType } ) return self end end do -- Friendly calculations --- This will allow during friendly search any recce or detection unit to be also considered as a friendly. -- By default, recce aren't considered friendly, because that would mean that a recce would be also an attacking friendly, -- and this is wrong. -- However, in a CAP situation, when the CAP is part of an EWR network, the CAP is also an attacker. -- This, this method allows to register for a detection the CAP unit name prefixes to be considered CAP. -- @param #DETECTION_BASE self -- @param #string FriendlyPrefixes A string or a list of prefixes. -- @return #DETECTION_BASE function DETECTION_BASE:SetFriendlyPrefixes( FriendlyPrefixes ) self.FriendlyPrefixes = self.FriendlyPrefixes or {} if type( FriendlyPrefixes ) ~= "table" then FriendlyPrefixes = { FriendlyPrefixes } end for PrefixID, Prefix in pairs( FriendlyPrefixes ) do self:F( { FriendlyPrefix = Prefix } ) self.FriendlyPrefixes[Prefix] = Prefix end return self end --- Returns if there are friendlies nearby the FAC units ... -- @param #DETECTION_BASE self -- @return #boolean true if there are friendlies nearby function DETECTION_BASE:IsFriendliesNearBy( DetectedItem ) return DetectedItem.FriendliesNearBy ~= nil or false end --- Returns friendly units nearby the FAC units ... -- @param #DETECTION_BASE self -- @return #map<#string,Wrapper.Unit#UNIT> The map of Friendly UNITs. function DETECTION_BASE:GetFriendliesNearBy( DetectedItem ) return DetectedItem.FriendliesNearBy end --- Filters friendly units by unit category. -- @param #DETECTION_BASE self -- @param FriendliesCategory -- @return #DETECTION_BASE function DETECTION_BASE:FilterFriendliesCategory( FriendliesCategory ) self.FriendliesCategory = FriendliesCategory return self end --- Returns if there are friendlies nearby the intercept ... -- @param #DETECTION_BASE self -- @return #boolean trhe if there are friendlies near the intercept. function DETECTION_BASE:IsFriendliesNearIntercept( DetectedItem ) return DetectedItem.FriendliesNearIntercept ~= nil or false end --- Returns friendly units nearby the intercept point ... -- @param #DETECTION_BASE self -- @return #map<#string,Wrapper.Unit#UNIT> The map of Friendly UNITs. function DETECTION_BASE:GetFriendliesNearIntercept( DetectedItem ) return DetectedItem.FriendliesNearIntercept end --- Returns the distance used to identify friendlies near the deteted item ... -- @param #DETECTION_BASE self -- @return #number The distance. function DETECTION_BASE:GetFriendliesDistance( DetectedItem ) return DetectedItem.FriendliesDistance end --- Returns if there are friendlies nearby the FAC units ... -- @param #DETECTION_BASE self -- @return #boolean trhe if there are friendlies nearby function DETECTION_BASE:IsPlayersNearBy( DetectedItem ) return DetectedItem.PlayersNearBy ~= nil end --- Returns friendly units nearby the FAC units ... -- @param #DETECTION_BASE self -- @return #map<#string,Wrapper.Unit#UNIT> The map of Friendly UNITs. function DETECTION_BASE:GetPlayersNearBy( DetectedItem ) return DetectedItem.PlayersNearBy end --- Background worker function to determine if there are friendlies nearby ... -- @param #DETECTION_BASE self function DETECTION_BASE:ReportFriendliesNearBy( ReportGroupData ) self:F2() local DetectedItem = ReportGroupData.DetectedItem -- Functional.Detection#DETECTION_BASE.DetectedItem local DetectedSet = ReportGroupData.DetectedItem.Set local DetectedUnit = DetectedSet:GetFirst() -- Wrapper.Unit#UNIT DetectedItem.FriendliesNearBy = nil -- We need to ensure that the DetectedUnit is alive! if DetectedUnit and DetectedUnit:IsAlive() then local DetectedUnitCoord = DetectedUnit:GetCoordinate() local InterceptCoord = ReportGroupData.InterceptCoord or DetectedUnitCoord local SphereSearch = { id = world.VolumeType.SPHERE, params = { point = InterceptCoord:GetVec3(), radius = self.FriendliesRange, } } --- @param Dcs.DCSWrapper.Unit#Unit FoundDCSUnit -- @param Wrapper.Group#GROUP ReportGroup -- @param Set#SET_GROUP ReportSetGroup local FindNearByFriendlies = function( FoundDCSUnit, ReportGroupData ) local DetectedItem = ReportGroupData.DetectedItem -- Functional.Detection#DETECTION_BASE.DetectedItem local DetectedSet = ReportGroupData.DetectedItem.Set local DetectedUnit = DetectedSet:GetFirst() -- Wrapper.Unit#UNIT local DetectedUnitCoord = DetectedUnit:GetCoordinate() local InterceptCoord = ReportGroupData.InterceptCoord or DetectedUnitCoord local ReportSetGroup = ReportGroupData.ReportSetGroup local EnemyCoalition = DetectedUnit:GetCoalition() local FoundUnitCoalition = FoundDCSUnit:getCoalition() local FoundUnitName = FoundDCSUnit:getName() local FoundUnitGroupName = FoundDCSUnit:getGroup():getName() local EnemyUnitName = DetectedUnit:GetName() local FoundUnitInReportSetGroup = ReportSetGroup:FindGroup( FoundUnitGroupName ) ~= nil self:T( { "Friendlies search:", FoundUnitName, FoundUnitCoalition, EnemyUnitName, EnemyCoalition, FoundUnitInReportSetGroup } ) if FoundUnitInReportSetGroup == true then -- If the recce was part of the friendlies found, then check if the recce is part of the allowed friendly unit prefixes. for PrefixID, Prefix in pairs( self.FriendlyPrefixes or {} ) do self:F( { "FriendlyPrefix:", Prefix } ) -- In case a match is found (so a recce unit name is part of the friendly prefixes), then report that recce to be part of the friendlies. -- This is important if CAP planes (so planes using their own radar) to be scanning for targets as part of the EWR network. -- But CAP planes are also attackers, so they need to be considered friendlies too! -- I chose to use prefixes because it is the fastest way to check. if string.find( FoundUnitName, Prefix:gsub ("-", "%%-"), 1 ) then FoundUnitInReportSetGroup = false break end end end self:F( { "Friendlies search:", FoundUnitName, FoundUnitCoalition, EnemyUnitName, EnemyCoalition, FoundUnitInReportSetGroup } ) if FoundUnitCoalition ~= EnemyCoalition and FoundUnitInReportSetGroup == false then local FriendlyUnit = UNIT:Find( FoundDCSUnit ) local FriendlyUnitName = FriendlyUnit:GetName() local FriendlyUnitCategory = FriendlyUnit:GetDesc().category self:T( { FriendlyUnitCategory = FriendlyUnitCategory, FriendliesCategory = self.FriendliesCategory } ) --if ( not self.FriendliesCategory ) or ( self.FriendliesCategory and ( self.FriendliesCategory == FriendlyUnitCategory ) ) then DetectedItem.FriendliesNearBy = DetectedItem.FriendliesNearBy or {} DetectedItem.FriendliesNearBy[FriendlyUnitName] = FriendlyUnit local Distance = DetectedUnitCoord:Get2DDistance( FriendlyUnit:GetCoordinate() ) DetectedItem.FriendliesDistance = DetectedItem.FriendliesDistance or {} DetectedItem.FriendliesDistance[Distance] = FriendlyUnit self:T( { FriendlyUnitName = FriendlyUnitName, Distance = Distance } ) --end return true end return true end world.searchObjects( Object.Category.UNIT, SphereSearch, FindNearByFriendlies, ReportGroupData ) DetectedItem.PlayersNearBy = nil local DetectionZone = ZONE_UNIT:New( "DetectionPlayers", DetectedUnit, self.FriendliesRange ) _DATABASE:ForEachPlayer( --- @param Wrapper.Unit#UNIT PlayerUnit function( PlayerUnitName ) local PlayerUnit = UNIT:FindByName( PlayerUnitName ) if PlayerUnit and PlayerUnit:IsInZone(DetectionZone) then local PlayerUnitCategory = PlayerUnit:GetDesc().category if ( not self.FriendliesCategory ) or ( self.FriendliesCategory and ( self.FriendliesCategory == PlayerUnitCategory ) ) then DetectedItem.FriendliesNearBy = DetectedItem.FriendliesNearBy or {} local PlayerUnitName = PlayerUnit:GetName() DetectedItem.PlayersNearBy = DetectedItem.PlayersNearBy or {} DetectedItem.PlayersNearBy[PlayerUnitName] = PlayerUnit DetectedItem.FriendliesNearBy = DetectedItem.FriendliesNearBy or {} DetectedItem.FriendliesNearBy[PlayerUnitName] = PlayerUnit local Distance = DetectedUnitCoord:Get2DDistance( PlayerUnit:GetCoordinate() ) DetectedItem.FriendliesDistance = DetectedItem.FriendliesDistance or {} DetectedItem.FriendliesDistance[Distance] = PlayerUnit end end end ) end end end --- Determines if a detected object has already been identified during detection processing. -- @param #DETECTION_BASE self -- @param #DETECTION_BASE.DetectedObject DetectedObject -- @return #boolean true if already identified. function DETECTION_BASE:IsDetectedObjectIdentified( DetectedObject ) --self:F3( DetectedObject.Name ) local DetectedObjectName = DetectedObject.Name if DetectedObjectName then local DetectedObjectIdentified = self.DetectedObjectsIdentified[DetectedObjectName] == true self:T3( DetectedObjectIdentified ) return DetectedObjectIdentified else return nil end end --- Identifies a detected object during detection processing. -- @param #DETECTION_BASE self -- @param #DETECTION_BASE.DetectedObject DetectedObject function DETECTION_BASE:IdentifyDetectedObject( DetectedObject ) --self:F( { "Identified:", DetectedObject.Name } ) local DetectedObjectName = DetectedObject.Name self.DetectedObjectsIdentified[DetectedObjectName] = true end --- UnIdentify a detected object during detection processing. -- @param #DETECTION_BASE self -- @param #DETECTION_BASE.DetectedObject DetectedObject function DETECTION_BASE:UnIdentifyDetectedObject( DetectedObject ) local DetectedObjectName = DetectedObject.Name self.DetectedObjectsIdentified[DetectedObjectName] = false end --- UnIdentify all detected objects during detection processing. -- @param #DETECTION_BASE self function DETECTION_BASE:UnIdentifyAllDetectedObjects() self.DetectedObjectsIdentified = {} -- Table will be garbage collected. end --- Gets a detected object with a given name. -- @param #DETECTION_BASE self -- @param #string ObjectName -- @return #DETECTION_BASE.DetectedObject function DETECTION_BASE:GetDetectedObject( ObjectName ) --self:F2( ObjectName ) if ObjectName then local DetectedObject = self.DetectedObjects[ObjectName] if DetectedObject then -- Only return detected objects that are alive! local DetectedUnit = UNIT:FindByName( ObjectName ) if DetectedUnit and DetectedUnit:IsAlive() then if self:IsDetectedObjectIdentified( DetectedObject ) == false then return DetectedObject end end end end return nil end --- Gets a detected unit type name, taking into account the detection results. -- @param #DETECTION_BASE self -- @param Wrapper.Unit#UNIT DetectedUnit -- @return #string The type name function DETECTION_BASE:GetDetectedUnitTypeName( DetectedUnit ) --self:F2( ObjectName ) if DetectedUnit and DetectedUnit:IsAlive() then local DetectedUnitName = DetectedUnit:GetName() local DetectedObject = self.DetectedObjects[DetectedUnitName] if DetectedObject then if DetectedObject.KnowType then return DetectedUnit:GetTypeName() else return "Unknown" end else return "Unknown" end else return "Dead:" .. DetectedUnit:GetName() end return "Undetected:" .. DetectedUnit:GetName() end --- Adds a new DetectedItem to the DetectedItems list. -- The DetectedItem is a table and contains a SET_UNIT in the field Set. -- @param #DETECTION_BASE self -- @param ItemPrefix -- @param #string DetectedItemIndex The index of the DetectedItem. -- @param Core.Set#SET_UNIT Set (optional) The Set of Units to be added. -- @return #DETECTION_BASE.DetectedItem function DETECTION_BASE:AddDetectedItem( ItemPrefix, DetectedItemIndex, Set ) local DetectedItem = {} self.DetectedItemCount = self.DetectedItemCount + 1 self.DetectedItemMax = self.DetectedItemMax + 1 if DetectedItemIndex then self.DetectedItems[DetectedItemIndex] = DetectedItem else self.DetectedItems[self.DetectedItemCount] = DetectedItem end DetectedItem.Set = Set or SET_UNIT:New():FilterDeads():FilterCrashes() DetectedItem.Index = DetectedItemIndex or self.DetectedItemCount DetectedItem.ItemID = ItemPrefix .. "." .. self.DetectedItemMax DetectedItem.ID = self.DetectedItemMax DetectedItem.Removed = false return DetectedItem end --- Adds a new DetectedItem to the DetectedItems list. -- The DetectedItem is a table and contains a SET_UNIT in the field Set. -- @param #DETECTION_BASE self -- @param #string DetectedItemIndex The index of the DetectedItem. -- @param Core.Set#SET_UNIT Set (optional) The Set of Units to be added. -- @param Core.Zone#ZONE_UNIT Zone (optional) The Zone to be added where the Units are located. -- @return #DETECTION_BASE.DetectedItem function DETECTION_BASE:AddDetectedItemZone( DetectedItemIndex, Set, Zone ) local DetectedItem = self:AddDetectedItem( "AREA", DetectedItemIndex, Set ) DetectedItem.Zone = Zone return DetectedItem end --- Removes an existing DetectedItem from the DetectedItems list. -- The DetectedItem is a table and contains a SET_UNIT in the field Set. -- @param #DETECTION_BASE self -- @param #number DetectedItemIndex The index or position in the DetectedItems list where the item needs to be removed. function DETECTION_BASE:RemoveDetectedItem( DetectedItemIndex ) if self.DetectedItems[DetectedItemIndex] then self.DetectedItemCount = self.DetectedItemCount - 1 self.DetectedItems[DetectedItemIndex] = nil end end --- Get the detected @{Set#SET_BASE}s. -- @param #DETECTION_BASE self -- @return #DETECTION_BASE.DetectedItems function DETECTION_BASE:GetDetectedItems() return self.DetectedItems end --- Get the amount of SETs with detected objects. -- @param #DETECTION_BASE self -- @return #number The amount of detected items. Note that the amount of detected items can differ with the reality, because detections are not real-time but doen in intervals! function DETECTION_BASE:GetDetectedItemsCount() local DetectedCount = self.DetectedItemCount return DetectedCount end --- Get a detected item using a given numeric index. -- @param #DETECTION_BASE self -- @param #number Index -- @return #DETECTION_BASE.DetectedItem function DETECTION_BASE:GetDetectedItem( Index ) local DetectedItem = self.DetectedItems[Index] if DetectedItem then return DetectedItem end return nil end --- Get a detected ItemID using a given numeric index. -- @param #DETECTION_BASE self -- @param #number Index -- @return #string DetectedItemID function DETECTION_BASE:GetDetectedItemID( Index ) --R2.1 local DetectedItem = self.DetectedItems[Index] if DetectedItem then return DetectedItem.ItemID end return "" end --- Get a detected ID using a given numeric index. -- @param #DETECTION_BASE self -- @param #number Index -- @return #string DetectedItemID function DETECTION_BASE:GetDetectedID( Index ) --R2.1 local DetectedItem = self.DetectedItems[Index] if DetectedItem then return DetectedItem.ID end return "" end --- Get the @{Set#SET_UNIT} of a detecttion area using a given numeric index. -- @param #DETECTION_BASE self -- @param #number Index -- @return Core.Set#SET_UNIT DetectedSet function DETECTION_BASE:GetDetectedSet( Index ) local DetectedItem = self:GetDetectedItem( Index ) local DetectedSetUnit = DetectedItem.Set if DetectedSetUnit then return DetectedSetUnit end return nil end --- Set IsDetected flag for all DetectedItems. -- @param #DETECTION_BASE self -- @return #DETECTION_BASE.DetectedItem DetectedItem -- @return #boolean true if at least one UNIT is detected from the DetectedSet, false if no UNIT was detected from the DetectedSet. function DETECTION_BASE:UpdateDetectedItemDetection( DetectedItem ) local IsDetected = false for UnitName, UnitData in pairs( DetectedItem.Set:GetSet() ) do local DetectedObject = self.DetectedObjects[UnitName] self:F({UnitName = UnitName, IsDetected = DetectedObject.IsDetected}) if DetectedObject.IsDetected then IsDetected = true break end end self:F( { IsDetected = DetectedItem.IsDetected } ) DetectedItem.IsDetected = IsDetected return IsDetected end --- Checks if there is at least one UNIT detected in the Set of the the DetectedItem. -- @param #DETECTION_BASE self -- @return #boolean true if at least one UNIT is detected from the DetectedSet, false if no UNIT was detected from the DetectedSet. function DETECTION_BASE:IsDetectedItemDetected( DetectedItem ) return DetectedItem.IsDetected end do -- Zones --- Get the @{Zone#ZONE_UNIT} of a detection area using a given numeric index. -- @param #DETECTION_BASE self -- @param #number Index -- @return Core.Zone#ZONE_UNIT DetectedZone function DETECTION_BASE:GetDetectedItemZone( Index ) local DetectedZone = self.DetectedItems[Index].Zone if DetectedZone then return DetectedZone end local Detected return nil end end --- Set the detected item coordinate. -- @param #DETECTION_BASE self -- @param #DETECTION_BASE.DetectedItem The DetectedItem to set the coordinate at. -- @param Core.Point#COORDINATE Coordinate The coordinate to set the last know detected position at. -- @param Wrapper.Unit#UNIT DetectedItemUnit The unit to set the heading and altitude from. -- @return #DETECTION_BASE function DETECTION_BASE:SetDetectedItemCoordinate( DetectedItem, Coordinate, DetectedItemUnit ) self:F( { Coordinate = Coordinate } ) if DetectedItem then if DetectedItemUnit then DetectedItem.Coordinate = Coordinate DetectedItem.Coordinate:SetHeading( DetectedItemUnit:GetHeading() ) DetectedItem.Coordinate.y = DetectedItemUnit:GetAltitude() DetectedItem.Coordinate:SetVelocity( DetectedItemUnit:GetVelocityMPS() ) end end end --- Get the detected item coordinate. -- @param #DETECTION_BASE self -- @param #number Index -- @return Core.Point#COORDINATE function DETECTION_BASE:GetDetectedItemCoordinate( Index ) self:F( { Index = Index } ) local DetectedItem = self:GetDetectedItem( Index ) if DetectedItem then return DetectedItem.Coordinate end return nil end --- Set the detected item threatlevel. -- @param #DETECTION_BASE self -- @param #DETECTION_BASE.DetectedItem The DetectedItem to calculate the threatlevel for. -- @return #DETECTION_BASE function DETECTION_BASE:SetDetectedItemThreatLevel( DetectedItem ) local DetectedSet = DetectedItem.Set if DetectedItem then DetectedItem.ThreatLevel, DetectedItem.ThreatText = DetectedSet:CalculateThreatLevelA2G() end end --- Get the detected item coordinate. -- @param #DETECTION_BASE self -- @param #number Index -- @return #number ThreatLevel function DETECTION_BASE:GetDetectedItemThreatLevel( Index ) self:F( { Index = Index } ) local DetectedItem = self:GetDetectedItem( Index ) if DetectedItem then return DetectedItem.ThreatLevel or 0, DetectedItem.ThreatText or "" end return nil, "" end --- Menu of a detected item using a given numeric index. -- @param #DETECTION_BASE self -- @param Index -- @return #string function DETECTION_BASE:DetectedItemMenu( Index, AttackGroup ) self:F( Index ) return nil end --- Report summary of a detected item using a given numeric index. -- @param #DETECTION_BASE self -- @param Index -- @param Wrapper.Group#GROUP AttackGroup The group to generate the report for. -- @param Core.Settings#SETTINGS Settings Message formatting settings to use. -- @return Core.Report#REPORT function DETECTION_BASE:DetectedItemReportSummary( Index, AttackGroup, Settings ) self:F( Index ) return nil end --- Report detailed of a detectedion result. -- @param #DETECTION_BASE self -- @param Wrapper.Group#GROUP AttackGroup The group to generate the report for. -- @return #string function DETECTION_BASE:DetectedReportDetailed( AttackGroup ) self:F() return nil end --- Get the detection Groups. -- @param #DETECTION_BASE self -- @return Core.Set#SET_GROUP function DETECTION_BASE:GetDetectionSetGroup() local DetectionSetGroup = self.DetectionSetGroup return DetectionSetGroup end --- Schedule the DETECTION construction. -- @param #DETECTION_BASE self -- @param #number DelayTime The delay in seconds to wait the reporting. -- @param #number RepeatInterval The repeat interval in seconds for the reporting to happen repeatedly. -- @return #DETECTION_BASE self function DETECTION_BASE:Schedule( DelayTime, RepeatInterval ) self:F2() self.ScheduleDelayTime = DelayTime self.ScheduleRepeatInterval = RepeatInterval self.DetectionScheduler = SCHEDULER:New( self, self._DetectionScheduler, { self, "Detection" }, DelayTime, RepeatInterval ) return self end end do -- DETECTION_UNITS --- # DETECTION_UNITS class, extends @{Detection#DETECTION_BASE} -- -- The DETECTION_UNITS class will detect units within the battle zone. -- It will build a DetectedItems list filled with DetectedItems. Each DetectedItem will contain a field Set, which contains a @{Set#SET_UNIT} containing ONE @{UNIT} object reference. -- Beware that when the amount of units detected is large, the DetectedItems list will be large also. -- -- @type DETECTION_UNITS -- @field Dcs.DCSTypes#Distance DetectionRange The range till which targets are detected. -- @extends #DETECTION_BASE DETECTION_UNITS = { ClassName = "DETECTION_UNITS", DetectionRange = nil, } --- DETECTION_UNITS constructor. -- @param Functional.Detection#DETECTION_UNITS self -- @param Core.Set#SET_GROUP DetectionSetGroup The @{Set} of GROUPs in the Forward Air Controller role. -- @return Functional.Detection#DETECTION_UNITS self function DETECTION_UNITS:New( DetectionSetGroup ) -- Inherits from DETECTION_BASE local self = BASE:Inherit( self, DETECTION_BASE:New( DetectionSetGroup ) ) -- #DETECTION_UNITS self._SmokeDetectedUnits = false self._FlareDetectedUnits = false self._SmokeDetectedZones = false self._FlareDetectedZones = false self._BoundDetectedZones = false return self end --- Make text documenting the changes of the detected zone. -- @param #DETECTION_UNITS self -- @param #DETECTION_UNITS.DetectedItem DetectedItem -- @return #string The Changes text function DETECTION_UNITS:GetChangeText( DetectedItem ) self:F( DetectedItem ) local MT = {} for ChangeCode, ChangeData in pairs( DetectedItem.Changes ) do if ChangeCode == "AU" then local MTUT = {} for ChangeUnitType, ChangeUnitCount in pairs( ChangeData ) do if ChangeUnitType ~= "ID" then MTUT[#MTUT+1] = ChangeUnitCount .. " of " .. ChangeUnitType end end MT[#MT+1] = " New target(s) detected: " .. table.concat( MTUT, ", " ) .. "." end if ChangeCode == "RU" then local MTUT = {} for ChangeUnitType, ChangeUnitCount in pairs( ChangeData ) do if ChangeUnitType ~= "ID" then MTUT[#MTUT+1] = ChangeUnitCount .. " of " .. ChangeUnitType end end MT[#MT+1] = " Invisible or destroyed target(s): " .. table.concat( MTUT, ", " ) .. "." end end return table.concat( MT, "\n" ) end --- Create the DetectedItems list from the DetectedObjects table. -- For each DetectedItem, a one field array is created containing the Unit detected. -- @param #DETECTION_UNITS self -- @return #DETECTION_UNITS self function DETECTION_UNITS:CreateDetectionItems() self:F2( #self.DetectedObjects ) -- Loop the current detected items, and check if each object still exists and is detected. for DetectedItemID, DetectedItem in pairs( self.DetectedItems ) do local DetectedItemSet = DetectedItem.Set -- Core.Set#SET_UNIT for DetectedUnitName, DetectedUnitData in pairs( DetectedItemSet:GetSet() ) do local DetectedUnit = DetectedUnitData -- Wrapper.Unit#UNIT local DetectedObject = nil --self:E( DetectedUnit ) if DetectedUnit:IsAlive() then --self:E(DetectedUnit:GetName()) DetectedObject = self:GetDetectedObject( DetectedUnit:GetName() ) end if DetectedObject then -- Yes, the DetectedUnit is still detected or exists. Flag as identified. self:IdentifyDetectedObject( DetectedObject ) -- Update the detection with the new data provided. DetectedItem.TypeName = DetectedUnit:GetTypeName() DetectedItem.CategoryName = DetectedUnit:GetCategoryName() DetectedItem.Name = DetectedObject.Name DetectedItem.IsVisible = DetectedObject.IsVisible DetectedItem.LastTime = DetectedObject.LastTime DetectedItem.LastPos = DetectedObject.LastPos DetectedItem.LastVelocity = DetectedObject.LastVelocity DetectedItem.KnowType = DetectedObject.KnowType DetectedItem.KnowDistance = DetectedObject.KnowDistance DetectedItem.Distance = DetectedObject.Distance else -- There was no DetectedObject, remove DetectedUnit from the Set. self:AddChangeUnit( DetectedItem, "RU", DetectedUnitName ) DetectedItemSet:Remove( DetectedUnitName ) end end end -- Now we need to loop through the unidentified detected units and add these... These are all new items. for DetectedUnitName, DetectedObjectData in pairs( self.DetectedObjects ) do local DetectedObject = self:GetDetectedObject( DetectedUnitName ) if DetectedObject then self:T( { "Detected Unit #", DetectedUnitName } ) local DetectedUnit = UNIT:FindByName( DetectedUnitName ) -- Wrapper.Unit#UNIT if DetectedUnit then local DetectedTypeName = DetectedUnit:GetTypeName() local DetectedItem = self:GetDetectedItem( DetectedUnitName ) if not DetectedItem then self:T( "Added new DetectedItem" ) DetectedItem = self:AddDetectedItem( "UNIT", DetectedUnitName ) DetectedItem.TypeName = DetectedUnit:GetTypeName() DetectedItem.Name = DetectedObject.Name DetectedItem.IsVisible = DetectedObject.IsVisible DetectedItem.LastTime = DetectedObject.LastTime DetectedItem.LastPos = DetectedObject.LastPos DetectedItem.LastVelocity = DetectedObject.LastVelocity DetectedItem.KnowType = DetectedObject.KnowType DetectedItem.KnowDistance = DetectedObject.KnowDistance DetectedItem.Distance = DetectedObject.Distance end DetectedItem.Set:AddUnit( DetectedUnit ) self:AddChangeUnit( DetectedItem, "AU", DetectedTypeName ) end end end for DetectedItemID, DetectedItemData in pairs( self.DetectedItems ) do local DetectedItem = DetectedItemData -- #DETECTION_BASE.DetectedItem local DetectedSet = DetectedItem.Set -- Set the last known coordinate. local DetectedFirstUnit = DetectedSet:GetFirst() local DetectedFirstUnitCoord = DetectedFirstUnit:GetCoordinate() self:SetDetectedItemCoordinate( DetectedItem, DetectedFirstUnitCoord, DetectedFirstUnit ) self:ReportFriendliesNearBy( { DetectedItem = DetectedItem, ReportSetGroup = self.DetectionSetGroup } ) -- Fill the Friendlies table --self:NearestFAC( DetectedItem ) end end --- Menu of a DetectedItem using a given numeric index. -- @param #DETECTION_UNITS self -- @param Index -- @return #string function DETECTION_UNITS:DetectedItemMenu( Index, AttackGroup ) self:F( Index ) local DetectedItem = self:GetDetectedItem( Index ) local DetectedSet = self:GetDetectedSet( Index ) local DetectedItemID = self:GetDetectedItemID( Index ) self:T( DetectedSet ) if DetectedSet then local ReportSummary = "" local UnitDistanceText = "" local UnitCategoryText = "" local DetectedItemCoordinate = self:GetDetectedItemCoordinate( Index ) local DetectedItemCoordText = DetectedItemCoordinate:ToString( AttackGroup ) ReportSummary = string.format( "%s - %s", DetectedItemID, DetectedItemCoordText ) self:T( ReportSummary ) return ReportSummary end end --- Report summary of a DetectedItem using a given numeric index. -- @param #DETECTION_UNITS self -- @param Index -- @param Wrapper.Group#GROUP AttackGroup The group to generate the report for. -- @param Core.Settings#SETTINGS Settings Message formatting settings to use. -- @return Core.Report#REPORT The report of the detection items. function DETECTION_UNITS:DetectedItemReportSummary( Index, AttackGroup, Settings ) self:F( { Index, self.DetectedItems } ) local DetectedItem = self:GetDetectedItem( Index ) local DetectedItemID = self:GetDetectedItemID( Index ) if DetectedItem then local ReportSummary = "" local UnitDistanceText = "" local UnitCategoryText = "" if DetectedItem.KnowType then local UnitCategoryName = DetectedItem.CategoryName if UnitCategoryName then UnitCategoryText = UnitCategoryName end if DetectedItem.TypeName then UnitCategoryText = UnitCategoryText .. " (" .. DetectedItem.TypeName .. ")" end else UnitCategoryText = "Unknown" end if DetectedItem.KnowDistance then if DetectedItem.IsVisible then UnitDistanceText = " at " .. string.format( "%.2f", DetectedItem.Distance ) .. " km" end else if DetectedItem.IsVisible then UnitDistanceText = " at +/- " .. string.format( "%.0f", DetectedItem.Distance ) .. " km" end end --TODO: solve Index reference local DetectedItemCoordinate = self:GetDetectedItemCoordinate( Index ) local DetectedItemCoordText = DetectedItemCoordinate:ToString( AttackGroup, Settings ) local ThreatLevelA2G = self:GetDetectedItemThreatLevel( Index ) local Report = REPORT:New() Report:Add(DetectedItemID .. ", " .. DetectedItemCoordText) Report:Add( string.format( "Threat: [%s]", string.rep( "■", ThreatLevelA2G ) ) ) Report:Add( string.format("Type: %s%s", UnitCategoryText, UnitDistanceText ) ) return Report end return nil end --- Report detailed of a detection result. -- @param #DETECTION_UNITS self -- @param Wrapper.Group#GROUP AttackGroup The group to generate the report for. -- @return #string function DETECTION_UNITS:DetectedReportDetailed( AttackGroup ) self:F() local Report = REPORT:New() for DetectedItemID, DetectedItem in pairs( self.DetectedItems ) do local DetectedItem = DetectedItem -- #DETECTION_BASE.DetectedItem local ReportSummary = self:DetectedItemReportSummary( DetectedItemID, AttackGroup ) Report:SetTitle( "Detected units:" ) Report:Add( ReportSummary:Text() ) end local ReportText = Report:Text() return ReportText end end do -- DETECTION_TYPES --- # 3) DETECTION_TYPES class, extends @{Detection#DETECTION_BASE} -- -- The DETECTION_TYPES class will detect units within the battle zone. -- It will build a DetectedItems[] list filled with DetectedItems, grouped by the type of units detected. -- Each DetectedItem will contain a field Set, which contains a @{Set#SET_UNIT} containing ONE @{UNIT} object reference. -- Beware that when the amount of different types detected is large, the DetectedItems[] list will be large also. -- -- @type DETECTION_TYPES -- @extends #DETECTION_BASE DETECTION_TYPES = { ClassName = "DETECTION_TYPES", DetectionRange = nil, } --- DETECTION_TYPES constructor. -- @param Functional.Detection#DETECTION_TYPES self -- @param Core.Set#SET_GROUP DetectionSetGroup The @{Set} of GROUPs in the Recce role. -- @return Functional.Detection#DETECTION_TYPES self function DETECTION_TYPES:New( DetectionSetGroup ) -- Inherits from DETECTION_BASE local self = BASE:Inherit( self, DETECTION_BASE:New( DetectionSetGroup ) ) -- #DETECTION_TYPES self._SmokeDetectedUnits = false self._FlareDetectedUnits = false self._SmokeDetectedZones = false self._FlareDetectedZones = false self._BoundDetectedZones = false return self end --- Make text documenting the changes of the detected zone. -- @param #DETECTION_TYPES self -- @param #DETECTION_TYPES.DetectedItem DetectedItem -- @return #string The Changes text function DETECTION_TYPES:GetChangeText( DetectedItem ) self:F( DetectedItem ) local MT = {} for ChangeCode, ChangeData in pairs( DetectedItem.Changes ) do if ChangeCode == "AU" then local MTUT = {} for ChangeUnitType, ChangeUnitCount in pairs( ChangeData ) do if ChangeUnitType ~= "ID" then MTUT[#MTUT+1] = ChangeUnitCount .. " of " .. ChangeUnitType end end MT[#MT+1] = " New target(s) detected: " .. table.concat( MTUT, ", " ) .. "." end if ChangeCode == "RU" then local MTUT = {} for ChangeUnitType, ChangeUnitCount in pairs( ChangeData ) do if ChangeUnitType ~= "ID" then MTUT[#MTUT+1] = ChangeUnitCount .. " of " .. ChangeUnitType end end MT[#MT+1] = " Invisible or destroyed target(s): " .. table.concat( MTUT, ", " ) .. "." end end return table.concat( MT, "\n" ) end --- Create the DetectedItems list from the DetectedObjects table. -- For each DetectedItem, a one field array is created containing the Unit detected. -- @param #DETECTION_TYPES self -- @return #DETECTION_TYPES self function DETECTION_TYPES:CreateDetectionItems() self:F2( #self.DetectedObjects ) -- Loop the current detected items, and check if each object still exists and is detected. for DetectedItemID, DetectedItem in pairs( self.DetectedItems ) do local DetectedItemSet = DetectedItem.Set -- Core.Set#SET_UNIT local DetectedTypeName = DetectedItem.TypeName for DetectedUnitName, DetectedUnitData in pairs( DetectedItemSet:GetSet() ) do local DetectedUnit = DetectedUnitData -- Wrapper.Unit#UNIT local DetectedObject = nil if DetectedUnit:IsAlive() then --self:E(DetectedUnit:GetName()) DetectedObject = self:GetDetectedObject( DetectedUnit:GetName() ) end if DetectedObject then -- Yes, the DetectedUnit is still detected or exists. Flag as identified. self:IdentifyDetectedObject( DetectedObject ) else -- There was no DetectedObject, remove DetectedUnit from the Set. self:AddChangeUnit( DetectedItem, "RU", DetectedUnitName ) DetectedItemSet:Remove( DetectedUnitName ) end end end -- Now we need to loop through the unidentified detected units and add these... These are all new items. for DetectedUnitName, DetectedObjectData in pairs( self.DetectedObjects ) do local DetectedObject = self:GetDetectedObject( DetectedUnitName ) if DetectedObject then self:T( { "Detected Unit #", DetectedUnitName } ) local DetectedUnit = UNIT:FindByName( DetectedUnitName ) -- Wrapper.Unit#UNIT if DetectedUnit then local DetectedTypeName = DetectedUnit:GetTypeName() local DetectedItem = self:GetDetectedItem( DetectedTypeName ) if not DetectedItem then DetectedItem = self:AddDetectedItem( "TYPE", DetectedTypeName ) DetectedItem.TypeName = DetectedUnit:GetTypeName() end DetectedItem.Set:AddUnit( DetectedUnit ) self:AddChangeUnit( DetectedItem, "AU", DetectedTypeName ) end end end -- Check if there are any friendlies nearby. for DetectedItemID, DetectedItemData in pairs( self.DetectedItems ) do local DetectedItem = DetectedItemData -- #DETECTION_BASE.DetectedItem local DetectedSet = DetectedItem.Set -- Set the last known coordinate. local DetectedFirstUnit = DetectedSet:GetFirst() local DetectedUnitCoord = DetectedFirstUnit:GetCoordinate() self:SetDetectedItemCoordinate( DetectedItem, DetectedUnitCoord, DetectedFirstUnit ) self:ReportFriendliesNearBy( { DetectedItem = DetectedItem, ReportSetGroup = self.DetectionSetGroup } ) -- Fill the Friendlies table --self:NearestFAC( DetectedItem ) end end --- Menu of a DetectedItem using a given numeric index. -- @param #DETECTION_TYPES self -- @param Index -- @return #string function DETECTION_TYPES:DetectedItemMenu( DetectedTypeName, AttackGroup ) self:F( DetectedTypeName ) local DetectedItem = self:GetDetectedItem( DetectedTypeName ) local DetectedItemID = self:GetDetectedItemID( DetectedTypeName ) if DetectedItem then local DetectedItemCoordinate = self:GetDetectedItemCoordinate( DetectedTypeName ) local DetectedItemCoordText = DetectedItemCoordinate:ToString( AttackGroup ) local ReportSummary = string.format( "%s - %s", DetectedItemID, DetectedItemCoordText ) self:T( ReportSummary ) return ReportSummary end end --- Report summary of a DetectedItem using a given numeric index. -- @param #DETECTION_TYPES self -- @param Index -- @param Wrapper.Group#GROUP AttackGroup The group to generate the report for. -- @param Core.Settings#SETTINGS Settings Message formatting settings to use. -- @return Core.Report#REPORT The report of the detection items. function DETECTION_TYPES:DetectedItemReportSummary( DetectedTypeName, AttackGroup, Settings ) self:F( DetectedTypeName ) local DetectedItem = self:GetDetectedItem( DetectedTypeName ) local DetectedSet = self:GetDetectedSet( DetectedTypeName ) local DetectedItemID = self:GetDetectedItemID( DetectedTypeName ) self:T( DetectedItem ) if DetectedItem then local ThreatLevelA2G = self:GetDetectedItemThreatLevel( DetectedTypeName ) local DetectedItemsCount = DetectedSet:Count() local DetectedItemType = DetectedItem.TypeName local DetectedItemCoordinate = self:GetDetectedItemCoordinate( DetectedTypeName ) local DetectedItemCoordText = DetectedItemCoordinate:ToString( AttackGroup, Settings ) local Report = REPORT:New() Report:Add(DetectedItemID .. ", " .. DetectedItemCoordText) Report:Add( string.format( "Threat: [%s]", string.rep( "■", ThreatLevelA2G ) ) ) Report:Add( string.format("Type: %2d of %s", DetectedItemsCount, DetectedItemType ) ) return Report end end --- Report detailed of a detection result. -- @param #DETECTION_TYPES self -- @param Wrapper.Group#GROUP AttackGroup The group to generate the report for. -- @return #string function DETECTION_TYPES:DetectedReportDetailed( AttackGroup ) self:F() local Report = REPORT:New() for DetectedItemTypeName, DetectedItem in pairs( self.DetectedItems ) do local DetectedItem = DetectedItem -- #DETECTION_BASE.DetectedItem local ReportSummary = self:DetectedItemReportSummary( DetectedItemTypeName, AttackGroup ) Report:SetTitle( "Detected types:" ) Report:Add( ReportSummary:Text() ) end local ReportText = Report:Text() return ReportText end end do -- DETECTION_AREAS --- # 4) DETECTION_AREAS class, extends @{Detection#DETECTION_BASE} -- -- The DETECTION_AREAS class will detect units within the battle zone for a list of @{Group}s detecting targets following (a) detection method(s), -- and will build a list (table) of @{Set#SET_UNIT}s containing the @{Unit#UNIT}s detected. -- The class is group the detected units within zones given a DetectedZoneRange parameter. -- A set with multiple detected zones will be created as there are groups of units detected. -- -- ## 4.1) Retrieve the Detected Unit Sets and Detected Zones -- -- The methods to manage the DetectedItems[].Set(s) are implemented in @{Detection#DECTECTION_BASE} and -- the methods to manage the DetectedItems[].Zone(s) is implemented in @{Detection#DETECTION_AREAS}. -- -- Retrieve the DetectedItems[].Set with the method @{Detection#DETECTION_BASE.GetDetectedSet}(). A @{Set#SET_UNIT} object will be returned. -- -- Retrieve the formed @{Zone@ZONE_UNIT}s as a result of the grouping the detected units within the DetectionZoneRange, use the method @{Detection#DETECTION_BASE.GetDetectionZones}(). -- To understand the amount of zones created, use the method @{Detection#DETECTION_BASE.GetDetectionZoneCount}(). -- If you want to obtain a specific zone from the DetectedZones, use the method @{Detection#DETECTION_BASE.GetDetectionZone}() with a given index. -- -- ## 4.4) Flare or Smoke detected units -- -- Use the methods @{Detection#DETECTION_AREAS.FlareDetectedUnits}() or @{Detection#DETECTION_AREAS.SmokeDetectedUnits}() to flare or smoke the detected units when a new detection has taken place. -- -- ## 4.5) Flare or Smoke or Bound detected zones -- -- Use the methods: -- -- * @{Detection#DETECTION_AREAS.FlareDetectedZones}() to flare in a color -- * @{Detection#DETECTION_AREAS.SmokeDetectedZones}() to smoke in a color -- * @{Detection#DETECTION_AREAS.SmokeDetectedZones}() to bound with a tire with a white flag -- -- the detected zones when a new detection has taken place. -- -- @type DETECTION_AREAS -- @field Dcs.DCSTypes#Distance DetectionZoneRange The range till which targets are grouped upon the first detected target. -- @field #DETECTION_BASE.DetectedItems DetectedItems A list of areas containing the set of @{Unit}s, @{Zone}s, the center @{Unit} within the zone, and ID of each area that was detected within a DetectionZoneRange. -- @extends #DETECTION_BASE DETECTION_AREAS = { ClassName = "DETECTION_AREAS", DetectionZoneRange = nil, } --- DETECTION_AREAS constructor. -- @param #DETECTION_AREAS self -- @param Core.Set#SET_GROUP DetectionSetGroup The @{Set} of GROUPs in the Forward Air Controller role. -- @param Dcs.DCSTypes#Distance DetectionZoneRange The range till which targets are grouped upon the first detected target. -- @return #DETECTION_AREAS function DETECTION_AREAS:New( DetectionSetGroup, DetectionZoneRange ) -- Inherits from DETECTION_BASE local self = BASE:Inherit( self, DETECTION_BASE:New( DetectionSetGroup ) ) self.DetectionZoneRange = DetectionZoneRange self._SmokeDetectedUnits = false self._FlareDetectedUnits = false self._SmokeDetectedZones = false self._FlareDetectedZones = false self._BoundDetectedZones = false return self end --- Menu of a detected item using a given numeric index. -- @param #DETECTION_AREAS self -- @param Index -- @return #string function DETECTION_AREAS:DetectedItemMenu( Index, AttackGroup ) self:F( Index ) local DetectedItem = self:GetDetectedItem( Index ) local DetectedItemID = self:GetDetectedItemID( Index ) if DetectedItem then local DetectedSet = self:GetDetectedSet( Index ) local ReportSummaryItem local DetectedZone = self:GetDetectedItemZone( Index ) local DetectedItemCoordinate = DetectedZone:GetCoordinate() local DetectedItemCoordText = DetectedItemCoordinate:ToString( AttackGroup ) local ReportSummary = string.format( "%s - %s", DetectedItemID, DetectedItemCoordText ) return ReportSummary end return nil end --- Report summary of a detected item using a given numeric index. -- @param #DETECTION_AREAS self -- @param Index -- @param Wrapper.Group#GROUP AttackGroup The group to get the settings for. -- @param Core.Settings#SETTINGS Settings (Optional) Message formatting settings to use. -- @return Core.Report#REPORT The report of the detection items. function DETECTION_AREAS:DetectedItemReportSummary( Index, AttackGroup, Settings ) self:F( Index ) local DetectedItem = self:GetDetectedItem( Index ) local DetectedItemID = self:GetDetectedItemID( Index ) if DetectedItem then local DetectedSet = self:GetDetectedSet( Index ) local ReportSummaryItem local DetectedZone = self:GetDetectedItemZone( Index ) local DetectedItemCoordinate = DetectedZone:GetCoordinate() local DetectedItemCoordText = DetectedItemCoordinate:ToString( AttackGroup, Settings ) local ThreatLevelA2G = self:GetDetectedItemThreatLevel( Index ) local DetectedItemsCount = DetectedSet:Count() local DetectedItemsTypes = DetectedSet:GetTypeNames() local Report = REPORT:New() Report:Add(DetectedItemID .. ", " .. DetectedItemCoordText) Report:Add( string.format( "Threat: [%s]", string.rep( "■", ThreatLevelA2G ) ) ) Report:Add( string.format("Type: %2d of %s", DetectedItemsCount, DetectedItemsTypes ) ) return Report end return nil end --- Report detailed of a detection result. -- @param #DETECTION_AREAS self -- @param Wrapper.Group#GROUP AttackGroup The group to generate the report for. -- @return #string function DETECTION_AREAS:DetectedReportDetailed( AttackGroup ) --R2.1 Fixed missing report self:F() local Report = REPORT:New() for DetectedItemIndex, DetectedItem in pairs( self.DetectedItems ) do local DetectedItem = DetectedItem -- #DETECTION_BASE.DetectedItem local ReportSummary = self:DetectedItemReportSummary( DetectedItemIndex, AttackGroup ) Report:SetTitle( "Detected areas:" ) Report:Add( ReportSummary:Text() ) end local ReportText = Report:Text() return ReportText end --- Calculate the optimal intercept point of the DetectedItem. -- @param #DETECTION_AREAS self -- @param #DETECTION_BASE.DetectedItem DetectedItem function DETECTION_AREAS:CalculateIntercept( DetectedItem ) local DetectedCoord = DetectedItem.Coordinate local DetectedSpeed = DetectedCoord:GetVelocity() local DetectedHeading = DetectedCoord:GetHeading() if self.Intercept then local DetectedSet = DetectedItem.Set -- todo: speed local TranslateDistance = DetectedSpeed * self.InterceptDelay local InterceptCoord = DetectedCoord:Translate( TranslateDistance, DetectedHeading ) DetectedItem.InterceptCoord = InterceptCoord else DetectedItem.InterceptCoord = DetectedCoord end end --- Find the nearest FAC of the DetectedItem. -- @param #DETECTION_AREAS self -- @param #DETECTION_BASE.DetectedItem DetectedItem -- @return Wrapper.Unit#UNIT The nearest FAC unit function DETECTION_AREAS:NearestFAC( DetectedItem ) local NearestRecce = nil local DistanceRecce = 1000000000 -- Units are not further than 1000000 km away from an area :-) for RecceGroupName, RecceGroup in pairs( self.DetectionSetGroup:GetSet() ) do if RecceGroup and RecceGroup:IsAlive() then for RecceUnit, RecceUnit in pairs( RecceGroup:GetUnits() ) do if RecceUnit:IsActive() then local RecceUnitCoord = RecceUnit:GetCoordinate() local Distance = RecceUnitCoord:Get2DDistance( self:GetDetectedItemCoordinate( DetectedItem.Index ) ) if Distance < DistanceRecce then DistanceRecce = Distance NearestRecce = RecceUnit end end end end end DetectedItem.NearestFAC = NearestRecce DetectedItem.DistanceRecce = DistanceRecce end --- Smoke the detected units -- @param #DETECTION_AREAS self -- @return #DETECTION_AREAS self function DETECTION_AREAS:SmokeDetectedUnits() self:F2() self._SmokeDetectedUnits = true return self end --- Flare the detected units -- @param #DETECTION_AREAS self -- @return #DETECTION_AREAS self function DETECTION_AREAS:FlareDetectedUnits() self:F2() self._FlareDetectedUnits = true return self end --- Smoke the detected zones -- @param #DETECTION_AREAS self -- @return #DETECTION_AREAS self function DETECTION_AREAS:SmokeDetectedZones() self:F2() self._SmokeDetectedZones = true return self end --- Flare the detected zones -- @param #DETECTION_AREAS self -- @return #DETECTION_AREAS self function DETECTION_AREAS:FlareDetectedZones() self:F2() self._FlareDetectedZones = true return self end --- Bound the detected zones -- @param #DETECTION_AREAS self -- @return #DETECTION_AREAS self function DETECTION_AREAS:BoundDetectedZones() self:F2() self._BoundDetectedZones = true return self end --- Make text documenting the changes of the detected zone. -- @param #DETECTION_AREAS self -- @param #DETECTION_BASE.DetectedItem DetectedItem -- @return #string The Changes text function DETECTION_AREAS:GetChangeText( DetectedItem ) self:F( DetectedItem ) local MT = {} for ChangeCode, ChangeData in pairs( DetectedItem.Changes ) do if ChangeCode == "AA" then MT[#MT+1] = "Detected new area " .. ChangeData.ID .. ". The center target is a " .. ChangeData.ItemUnitType .. "." end if ChangeCode == "RAU" then MT[#MT+1] = "Changed area " .. ChangeData.ID .. ". Removed the center target." end if ChangeCode == "AAU" then MT[#MT+1] = "Changed area " .. ChangeData.ID .. ". The new center target is a " .. ChangeData.ItemUnitType .. "." end if ChangeCode == "RA" then MT[#MT+1] = "Removed old area " .. ChangeData.ID .. ". No more targets in this area." end if ChangeCode == "AU" then local MTUT = {} for ChangeUnitType, ChangeUnitCount in pairs( ChangeData ) do if ChangeUnitType ~= "ID" then MTUT[#MTUT+1] = ChangeUnitCount .. " of " .. ChangeUnitType end end MT[#MT+1] = "Detected for area " .. ChangeData.ID .. " new target(s) " .. table.concat( MTUT, ", " ) .. "." end if ChangeCode == "RU" then local MTUT = {} for ChangeUnitType, ChangeUnitCount in pairs( ChangeData ) do if ChangeUnitType ~= "ID" then MTUT[#MTUT+1] = ChangeUnitCount .. " of " .. ChangeUnitType end end MT[#MT+1] = "Removed for area " .. ChangeData.ID .. " invisible or destroyed target(s) " .. table.concat( MTUT, ", " ) .. "." end end return table.concat( MT, "\n" ) end --- Make a DetectionSet table. This function will be overridden in the derived clsses. -- @param #DETECTION_AREAS self -- @return #DETECTION_AREAS self function DETECTION_AREAS:CreateDetectionItems() self:F2() self:T( "Checking Detected Items for new Detected Units ..." ) -- First go through all detected sets, and check if there are new detected units, match all existing detected units and identify undetected units. -- Regroup when needed, split groups when needed. for DetectedItemID, DetectedItemData in pairs( self.DetectedItems ) do local DetectedItem = DetectedItemData -- #DETECTION_BASE.DetectedItem if DetectedItem then self:T( { "Detected Item ID:", DetectedItemID } ) local DetectedSet = DetectedItem.Set local AreaExists = false -- This flag will determine of the detected area is still existing. -- First test if the center unit is detected in the detection area. self:T3( { "Zone Center Unit:", DetectedItem.Zone.ZoneUNIT.UnitName } ) local DetectedZoneObject = self:GetDetectedObject( DetectedItem.Zone.ZoneUNIT.UnitName ) self:T3( { "Detected Zone Object:", DetectedItem.Zone:GetName(), DetectedZoneObject } ) if DetectedZoneObject then --self:IdentifyDetectedObject( DetectedZoneObject ) AreaExists = true else -- The center object of the detected area has not been detected. Find an other unit of the set to become the center of the area. -- First remove the center unit from the set. DetectedSet:RemoveUnitsByName( DetectedItem.Zone.ZoneUNIT.UnitName ) self:AddChangeItem( DetectedItem, 'RAU', self:GetDetectedUnitTypeName( DetectedItem.Zone.ZoneUNIT ) ) -- Then search for a new center area unit within the set. Note that the new area unit candidate must be within the area range. for DetectedUnitName, DetectedUnitData in pairs( DetectedSet:GetSet() ) do local DetectedUnit = DetectedUnitData -- Wrapper.Unit#UNIT local DetectedObject = self:GetDetectedObject( DetectedUnit.UnitName ) local DetectedUnitTypeName = self:GetDetectedUnitTypeName( DetectedUnit ) -- The DetectedObject can be nil when the DetectedUnit is not alive anymore or it is not in the DetectedObjects map. -- If the DetectedUnit was already identified, DetectedObject will be nil. if DetectedObject then self:IdentifyDetectedObject( DetectedObject ) AreaExists = true --DetectedItem.Zone:BoundZone( 12, self.CountryID, true) -- Assign the Unit as the new center unit of the detected area. DetectedItem.Zone = ZONE_UNIT:New( DetectedUnit:GetName(), DetectedUnit, self.DetectionZoneRange ) self:AddChangeItem( DetectedItem, "AAU", DetectedUnitTypeName ) -- We don't need to add the DetectedObject to the area set, because it is already there ... break else DetectedSet:Remove( DetectedUnitName ) self:AddChangeUnit( DetectedItem, "RU", DetectedUnitTypeName ) end end end -- Now we've determined the center unit of the area, now we can iterate the units in the detected area. -- Note that the position of the area may have moved due to the center unit repositioning. -- If no center unit was identified, then the detected area does not exist anymore and should be deleted, as there are no valid units that can be the center unit. if AreaExists then -- ok, we found the center unit of the area, now iterate through the detected area set and see which units are still within the center unit zone ... -- Those units within the zone are flagged as Identified. -- If a unit was not found in the set, remove it from the set. This may be added later to other existing or new sets. for DetectedUnitName, DetectedUnitData in pairs( DetectedSet:GetSet() ) do local DetectedUnit = DetectedUnitData -- Wrapper.Unit#UNIT local DetectedUnitTypeName = self:GetDetectedUnitTypeName( DetectedUnit ) local DetectedObject = nil if DetectedUnit:IsAlive() then --self:E(DetectedUnit:GetName()) DetectedObject = self:GetDetectedObject( DetectedUnit:GetName() ) end if DetectedObject then -- Check if the DetectedUnit is within the DetectedItem.Zone if DetectedUnit:IsInZone( DetectedItem.Zone ) then -- Yes, the DetectedUnit is within the DetectedItem.Zone, no changes, DetectedUnit can be kept within the Set. self:IdentifyDetectedObject( DetectedObject ) else -- No, the DetectedUnit is not within the DetectedItem.Zone, remove DetectedUnit from the Set. DetectedSet:Remove( DetectedUnitName ) self:AddChangeUnit( DetectedItem, "RU", DetectedUnitTypeName ) end else -- There was no DetectedObject, remove DetectedUnit from the Set. self:AddChangeUnit( DetectedItem, "RU", "destroyed target" ) DetectedSet:Remove( DetectedUnitName ) -- The DetectedObject has been identified, because it does not exist ... -- self:IdentifyDetectedObject( DetectedObject ) end end else --DetectedItem.Zone:BoundZone( 12, self.CountryID, true) self:RemoveDetectedItem( DetectedItemID ) self:AddChangeItem( DetectedItem, "RA" ) end end end -- We iterated through the existing detection areas and: -- - We checked which units are still detected in each detection area. Those units were flagged as Identified. -- - We recentered the detection area to new center units where it was needed. -- -- Now we need to loop through the unidentified detected units and see where they belong: -- - They can be added to a new detection area and become the new center unit. -- - They can be added to a new detection area. for DetectedUnitName, DetectedObjectData in pairs( self.DetectedObjects ) do local DetectedObject = self:GetDetectedObject( DetectedUnitName ) if DetectedObject then -- We found an unidentified unit outside of any existing detection area. local DetectedUnit = UNIT:FindByName( DetectedUnitName ) -- Wrapper.Unit#UNIT local DetectedUnitTypeName = self:GetDetectedUnitTypeName( DetectedUnit ) local AddedToDetectionArea = false for DetectedItemID, DetectedItemData in pairs( self.DetectedItems ) do local DetectedItem = DetectedItemData -- #DETECTION_BASE.DetectedItem if DetectedItem then self:T( "Detection Area #" .. DetectedItem.ID ) local DetectedSet = DetectedItem.Set if not self:IsDetectedObjectIdentified( DetectedObject ) and DetectedUnit:IsInZone( DetectedItem.Zone ) then self:IdentifyDetectedObject( DetectedObject ) DetectedSet:AddUnit( DetectedUnit ) AddedToDetectionArea = true self:AddChangeUnit( DetectedItem, "AU", DetectedUnitTypeName ) end end end if AddedToDetectionArea == false then -- New detection area local DetectedItem = self:AddDetectedItemZone( nil, SET_UNIT:New():FilterDeads():FilterCrashes(), ZONE_UNIT:New( DetectedUnitName, DetectedUnit, self.DetectionZoneRange ) ) --self:E( DetectedItem.Zone.ZoneUNIT.UnitName ) DetectedItem.Set:AddUnit( DetectedUnit ) self:AddChangeItem( DetectedItem, "AA", DetectedUnitTypeName ) end end end -- Now all the tests should have been build, now make some smoke and flares... -- We also report here the friendlies within the detected areas. for DetectedItemID, DetectedItemData in pairs( self.DetectedItems ) do local DetectedItem = DetectedItemData -- #DETECTION_BASE.DetectedItem local DetectedSet = DetectedItem.Set local DetectedFirstUnit = DetectedSet:GetFirst() local DetectedZone = DetectedItem.Zone -- Set the last known coordinate to the detection item. local DetectedZoneCoord = DetectedZone:GetCoordinate() self:SetDetectedItemCoordinate( DetectedItem, DetectedZoneCoord, DetectedFirstUnit ) self:CalculateIntercept( DetectedItem ) self:ReportFriendliesNearBy( { DetectedItem = DetectedItem, ReportSetGroup = self.DetectionSetGroup } ) -- Fill the Friendlies table self:SetDetectedItemThreatLevel( DetectedItem ) -- Calculate A2G threat level self:NearestFAC( DetectedItem ) if DETECTION_AREAS._SmokeDetectedUnits or self._SmokeDetectedUnits then DetectedZone.ZoneUNIT:SmokeRed() end --DetectedSet:Flush() DetectedSet:ForEachUnit( --- @param Wrapper.Unit#UNIT DetectedUnit function( DetectedUnit ) if DetectedUnit:IsAlive() then --self:T( "Detected Set #" .. DetectedItem.ID .. ":" .. DetectedUnit:GetName() ) if DETECTION_AREAS._FlareDetectedUnits or self._FlareDetectedUnits then DetectedUnit:FlareGreen() end if DETECTION_AREAS._SmokeDetectedUnits or self._SmokeDetectedUnits then DetectedUnit:SmokeGreen() end end end ) if DETECTION_AREAS._FlareDetectedZones or self._FlareDetectedZones then DetectedZone:FlareZone( SMOKECOLOR.White, 30, math.random( 0,90 ) ) end if DETECTION_AREAS._SmokeDetectedZones or self._SmokeDetectedZones then DetectedZone:SmokeZone( SMOKECOLOR.White, 30 ) end if DETECTION_AREAS._BoundDetectedZones or self._BoundDetectedZones then self.CountryID = DetectedSet:GetFirst():GetCountry() DetectedZone:BoundZone( 12, self.CountryID ) end end end end --- **Functional** -- Management of target **Designation**. Lase, smoke and illuminate targets. -- -- --![Banner Image](..\Presentations\DESIGNATE\Dia1.JPG) -- -- === -- -- DESIGNATE is orchestrating the designation of potential targets executed by a Recce group, -- and communicates these to a dedicated attacking group of players, -- so that following a dynamically generated menu system, -- each detected set of potential targets can be lased or smoked... -- -- Targets can be: -- -- * **Lased** for a period of time. -- * **Smoked**. Artillery or airplanes with Illuminatino ordonance need to be present. (WIP, but early demo ready.) -- * **Illuminated** through an illumination bomb. Artillery or airplanes with Illuminatino ordonance need to be present. (WIP, but early demo ready. -- -- === -- -- # **AUTHORS and CONTRIBUTIONS** -- -- ### Contributions: -- -- * [**Ciribob**](https://forums.eagle.ru/member.php?u=112175): Showing the way how to lase targets + how laser codes work!!! Explained the autolase script. -- * [**EasyEB**](https://forums.eagle.ru/member.php?u=112055): Ideas and Beta Testing -- * [**Wingthor**](https://forums.eagle.ru/member.php?u=123698): Beta Testing -- -- -- ### Authors: -- -- * **FlightControl**: Design & Programming -- -- @module Designate do -- DESIGNATE --- @type DESIGNATE -- @extends Core.Fsm#FSM_PROCESS --- # DESIGNATE class, extends @{Fsm#FSM} -- -- DESIGNATE is orchestrating the designation of potential targets executed by a Recce group, -- and communicates these to a dedicated attacking group of players, -- so that following a dynamically generated menu system, -- each detected set of potential targets can be lased or smoked... -- -- Targets can be: -- -- * **Lased** for a period of time. -- * **Smoked**. Artillery or airplanes with Illuminatino ordonance need to be present. (WIP, but early demo ready.) -- * **Illuminated** through an illumination bomb. Artillery or airplanes with Illuminatino ordonance need to be present. (WIP, but early demo ready. -- -- The following terminology is being used throughout this document: -- -- * The **DesignateObject** is the object of the DESIGNATE class, which is this class explained in the document. -- * The **DetectionObject** is the object of a DETECTION_ class (DETECTION_TYPES, DETECTION_AREAS, DETECTION_UNITS), which is executing the detection and grouping of Targets into _DetectionItems_. -- * **DetectionItems** is the list of detected target groupings by the _DetectionObject_. Each _DetectionItem_ contains a _TargetSet_. -- * **DetectionItem** is one element of the _DetectionItems_ list, and contains a _TargetSet_. -- * The **TargetSet** is a SET_UNITS collection of _Targets_, that have been detected by the _DetectionObject_. -- * A **Target** is a detected UNIT object by the _DetectionObject_. -- * A **Threat Level** is a number from 0 to 10 that is calculated based on the threat of the Target in an Air to Ground battle scenario. -- * The **RecceSet** is a SET_GROUP collection that contains the **RecceGroups**. -- * A **RecceGroup** is a GROUP object containing the **Recces**. -- * A **Recce** is a UNIT object executing the reconnaissance as part the _DetectionObject_. A Recce can be of any UNIT type. -- * An **AttackGroup** is a GROUP object that contain _Players_. -- * A **Player** is an active CLIENT object containing a human player. -- * A **Designate Menu** is the menu that is dynamically created during the designation process for each _AttackGroup_. -- -- The RecceSet is continuously detecting for potential Targets, executing its task as part of the DetectionObject. -- Once Targets have been detected, the DesignateObject will trigger the **Detect Event**. -- -- In order to prevent an overflow in the DesignateObject of detected targets, there is a maximum -- amount of DetectionItems that can be put in **scope** of the DesignateObject. -- We call this the **MaximumDesignations** term. -- -- As part of the Detect Event, the DetectionItems list is used by the DesignateObject to provide the Players with: -- -- * The RecceGroups are reporting to each AttackGroup, sending **Messages** containing the Threat Level and the TargetSet composition. -- * **Menu options** are created and updated for each AttackGroup, containing the Detection ID and the Coordinates. -- -- A Player can then select an action from the Designate Menu. -- -- **Note that each selected action will be executed for a TargetSet, thus the Target grouping done by the DetectionObject.** -- -- Each **Menu Option** in the Designate Menu has two modes: -- -- 1. If the TargetSet **is not being designated**, then the **Designate Menu** option for the target Set will provide options to **Lase** or **Smoke** the targets. -- 2. If the Target Set **is being designated**, then the **Designate Menu** option will provide an option to stop or cancel the designation. -- -- While designating, the RecceGroups will report any change in TargetSet composition or Target presence. -- -- The following logic is executed when a TargetSet is selected to be *lased* from the Designation Menu: -- -- * The RecceSet is searched for any Recce that is within *designation distance* from a Target in the TargetSet that is currently not being designated. -- * If there is a Recce found that is currently no designating a target, and is within designation distance from the Target, then that Target will be designated. -- * During designation, any Recce that does not have Line of Sight (LOS) and is not within disignation distance from the Target, will stop designating the Target, and a report is given. -- * When a Recce is designating a Target, and that Target is destroyed, then the Recce will stop designating the Target, and will report the event. -- * When a Recce is designating a Target, and that Recce is destroyed, then the Recce will be removed from the RecceSet and designation will stop without reporting. -- * When all RecceGroups are destroyed from the RecceSet, then the DesignationObject will stop functioning, and nothing will be reported. -- -- In this way, the DesignationObject assists players to designate ground targets for a coordinated attack! -- -- Have FUN! -- -- ## 1. DESIGNATE constructor -- -- * @{#DESIGNATE.New}(): Creates a new DESIGNATE object. -- -- ## 2. DESIGNATE is a FSM -- -- ![Process](..\Presentations\DESIGNATE\Dia2.JPG) -- -- ### 2.1 DESIGNATE States -- -- * **Designating** ( Group ): The designation process. -- -- ### 2.2 DESIGNATE Events -- -- * **@{#DESIGNATE.Detect}**: Detect targets. -- * **@{#DESIGNATE.LaseOn}**: Lase the targets with the specified Index. -- * **@{#DESIGNATE.LaseOff}**: Stop lasing the targets with the specified Index. -- * **@{#DESIGNATE.Smoke}**: Smoke the targets with the specified Index. -- * **@{#DESIGNATE.Status}**: Report designation status. -- -- ## 3. Maximum Designations -- -- In order to prevent an overflow of designations due to many Detected Targets, there is a -- Maximum Designations scope that is set in the DesignationObject. -- -- The method @{#DESIGNATE.SetMaximumDesignations}() will put a limit on the amount of designations put in scope of the DesignationObject. -- Using the menu system, the player can "forget" a designation, so that gradually a new designation can be put in scope when detected. -- -- ## 4. Laser codes -- -- ### 4.1. Set possible laser codes -- -- An array of laser codes can be provided, that will be used by the DESIGNATE when lasing. -- The laser code is communicated by the Recce when it is lasing a larget. -- Note that the default laser code is 1113. -- Working known laser codes are: 1113,1462,1483,1537,1362,1214,1131,1182,1644,1614,1515,1411,1621,1138,1542,1678,1573,1314,1643,1257,1467,1375,1341,1275,1237 -- -- Use the method @{#DESIGNATE.SetLaserCodes}() to set the possible laser codes to be selected from. -- One laser code can be given or an sequence of laser codes through an table... -- -- Designate:SetLaserCodes( 1214 ) -- -- The above sets one laser code with the value 1214. -- -- Designate:SetLaserCodes( { 1214, 1131, 1614, 1138 } ) -- -- The above sets a collection of possible laser codes that can be assigned. **Note the { } notation!** -- -- ### 4.2. Auto generate laser codes -- -- Use the method @{#DESIGNATE.GenerateLaserCodes}() to generate all possible laser codes. Logic implemented and advised by Ciribob! -- -- ### 4.3. Add specific lase codes to the lase menu -- -- Certain plane types can only drop laser guided ordonnance when targets are lased with specific laser codes. -- The SU-25T needs targets to be lased using laser code 1113. -- The A-10A needs targets to be lased using laser code 1680. -- -- The method @{#DESIGNATE.AddMenuLaserCode}() to allow a player to lase a target using a specific laser code. -- Remove such a lase menu option using @{#DESIGNATE.RemoveMenuLaserCode}(). -- -- ## 5. Autolase to automatically lase detected targets. -- -- DetectionItems can be auto lased once detected by Recces. As such, there is almost no action required from the Players using the Designate Menu. -- The **auto lase** function can be activated through the Designation Menu. -- Use the method @{#DESIGNATE.SetAutoLase}() to activate or deactivate the auto lase function programmatically. -- Note that autolase will automatically activate lasing for ALL DetectedItems. Individual items can be switched-off if required using the Designation Menu. -- -- Designate:SetAutoLase( true ) -- -- Activate the auto lasing. -- -- ## 6. Target prioritization on threat level -- -- Targets can be detected of different types in one DetectionItem. Depending on the type of the Target, a different threat level applies in an Air to Ground combat context. -- SAMs are of a higher threat than normal tanks. So, if the Target type was recognized, the Recces will select those targets that form the biggest threat first, -- and will continue this until the remaining vehicles with the lowest threat have been reached. -- -- This threat level prioritization can be activated using the method @{#DESIGNATE.SetThreatLevelPrioritization}(). -- If not activated, Targets will be selected in a random order, but most like those first which are the closest to the Recce marking the Target. -- -- Designate:SetThreatLevelPrioritization( true ) -- -- The example will activate the threat level prioritization for this the Designate object. Threats will be marked based on the threat level of the Target. -- -- ## 6. Designate Menu Location for a Mission -- -- You can make DESIGNATE work for a @{Mission#MISSION} object. In this way, the designate menu will not appear in the root of the radio menu, but in the menu of the Mission. -- Use the method @{#DESIGNATE.SetMission}() to set the @{Mission} object for the designate function. -- -- ## 7. Status Report -- -- A status report is available that displays the current Targets detected, grouped per DetectionItem, and a list of which Targets are currently being marked. -- -- * The status report can be shown by selecting "Status" -> "Report Status" from the Designation menu . -- * The status report can be automatically flashed by selecting "Status" -> "Flash Status On". -- * The automatic flashing of the status report can be deactivated by selecting "Status" -> "Flash Status Off". -- * The flashing of the status menu is disabled by default. -- * The method @{#DESIGNATE.FlashStatusMenu}() can be used to enable or disable to flashing of the status menu. -- -- Designate:FlashStatusMenu( true ) -- -- The example will activate the flashing of the status menu for this Designate object. -- -- @field #DESIGNATE DESIGNATE = { ClassName = "DESIGNATE", } --- DESIGNATE Constructor. This class is an abstract class and should not be instantiated. -- @param #DESIGNATE self -- @param Tasking.CommandCenter#COMMANDCENTER CC -- @param Functional.Detection#DETECTION_BASE Detection -- @param Core.Set#SET_GROUP AttackSet The Attack collection of GROUP objects to designate and report for. -- @param Tasking.Mission#MISSION Mission (Optional) The Mission where the menu needs to be attached. -- @return #DESIGNATE function DESIGNATE:New( CC, Detection, AttackSet, Mission ) local self = BASE:Inherit( self, FSM:New() ) -- #DESIGNATE self:F( { Detection } ) self:SetStartState( "Designating" ) self:AddTransition( "*", "Detect", "*" ) --- Detect Handler OnBefore for DESIGNATE -- @function [parent=#DESIGNATE] OnBeforeDetect -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- Detect Handler OnAfter for DESIGNATE -- @function [parent=#DESIGNATE] OnAfterDetect -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To --- Detect Trigger for DESIGNATE -- @function [parent=#DESIGNATE] Detect -- @param #DESIGNATE self --- Detect Asynchronous Trigger for DESIGNATE -- @function [parent=#DESIGNATE] __Detect -- @param #DESIGNATE self -- @param #number Delay self:AddTransition( "*", "LaseOn", "Lasing" ) --- LaseOn Handler OnBefore for DESIGNATE -- @function [parent=#DESIGNATE ] OnBeforeLaseOn -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- LaseOn Handler OnAfter for DESIGNATE -- @function [parent=#DESIGNATE ] OnAfterLaseOn -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To --- LaseOn Trigger for DESIGNATE -- @function [parent=#DESIGNATE ] LaseOn -- @param #DESIGNATE self --- LaseOn Asynchronous Trigger for DESIGNATE -- @function [parent=#DESIGNATE ] __LaseOn -- @param #DESIGNATE self -- @param #number Delay self:AddTransition( "Lasing", "Lasing", "Lasing" ) self:AddTransition( "*", "LaseOff", "Designate" ) --- LaseOff Handler OnBefore for DESIGNATE -- @function [parent=#DESIGNATE ] OnBeforeLaseOff -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- LaseOff Handler OnAfter for DESIGNATE -- @function [parent=#DESIGNATE ] OnAfterLaseOff -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To --- LaseOff Trigger for DESIGNATE -- @function [parent=#DESIGNATE ] LaseOff -- @param #DESIGNATE self --- LaseOff Asynchronous Trigger for DESIGNATE -- @function [parent=#DESIGNATE ] __LaseOff -- @param #DESIGNATE self -- @param #number Delay self:AddTransition( "*", "Smoke", "*" ) --- Smoke Handler OnBefore for DESIGNATE -- @function [parent=#DESIGNATE ] OnBeforeSmoke -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- Smoke Handler OnAfter for DESIGNATE -- @function [parent=#DESIGNATE ] OnAfterSmoke -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To --- Smoke Trigger for DESIGNATE -- @function [parent=#DESIGNATE ] Smoke -- @param #DESIGNATE self --- Smoke Asynchronous Trigger for DESIGNATE -- @function [parent=#DESIGNATE ] __Smoke -- @param #DESIGNATE self -- @param #number Delay self:AddTransition( "*", "Illuminate", "*" ) --- Illuminate Handler OnBefore for DESIGNATE -- @function [parent=#DESIGNATE] OnBeforeIlluminate -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- Illuminate Handler OnAfter for DESIGNATE -- @function [parent=#DESIGNATE] OnAfterIlluminate -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To --- Illuminate Trigger for DESIGNATE -- @function [parent=#DESIGNATE] Illuminate -- @param #DESIGNATE self --- Illuminate Asynchronous Trigger for DESIGNATE -- @function [parent=#DESIGNATE] __Illuminate -- @param #DESIGNATE self -- @param #number Delay self:AddTransition( "*", "Done", "*" ) self:AddTransition( "*", "Status", "*" ) --- Status Handler OnBefore for DESIGNATE -- @function [parent=#DESIGNATE ] OnBeforeStatus -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- Status Handler OnAfter for DESIGNATE -- @function [parent=#DESIGNATE ] OnAfterStatus -- @param #DESIGNATE self -- @param #string From -- @param #string Event -- @param #string To --- Status Trigger for DESIGNATE -- @function [parent=#DESIGNATE ] Status -- @param #DESIGNATE self --- Status Asynchronous Trigger for DESIGNATE -- @function [parent=#DESIGNATE ] __Status -- @param #DESIGNATE self -- @param #number Delay self.CC = CC self.Detection = Detection self.AttackSet = AttackSet self.RecceSet = Detection:GetDetectionSetGroup() self.Recces = {} self.Designating = {} self:SetDesignateName() self.LaseDuration = 60 self:SetFlashStatusMenu( false ) self:SetMission( Mission ) self:SetLaserCodes( { 1688, 1130, 4785, 6547, 1465, 4578 } ) -- set self.LaserCodes self:SetAutoLase( false, false ) -- set self.Autolase and don't send message. self:SetThreatLevelPrioritization( false ) -- self.ThreatLevelPrioritization, default is threat level priorization off self:SetMaximumDesignations( 5 ) -- Sets the maximum designations. The default is 5 designations. self:SetMaximumDistanceDesignations( 12000 ) -- Sets the maximum distance on which designations can be accepted. The default is 8000 meters. self:SetMaximumMarkings( 2 ) -- Per target group, a maximum of 2 markings will be made by default. self:SetDesignateMenu() self.LaserCodesUsed = {} self.MenuLaserCodes = {} -- This map contains the laser codes that will be shown in the designate menu to lase with specific laser codes. self.Detection:__Start( 2 ) self:__Detect( -15 ) self.MarkScheduler = SCHEDULER:New( self ) return self end --- Set the flashing of the status menu. -- @param #DESIGNATE self -- @param #boolean FlashMenu true: the status menu will be flashed every detection run; false: no flashing of the menu. -- @return #DESIGNATE function DESIGNATE:SetFlashStatusMenu( FlashMenu ) --R2.1 self.FlashStatusMenu = {} self.AttackSet:ForEachGroup( --- @param Wrapper.Group#GROUP GroupReport function( AttackGroup ) self.FlashStatusMenu[AttackGroup] = FlashMenu end ) return self end --- Set the maximum amount of designations. -- @param #DESIGNATE self -- @param #number MaximumDesignations -- @return #DESIGNATE function DESIGNATE:SetMaximumDesignations( MaximumDesignations ) self.MaximumDesignations = MaximumDesignations return self end --- Set the maximum ground designation distance. -- @param #DESIGNATE self -- @param #number MaximumDistanceGroundDesignation Maximum ground designation distance in meters. -- @return #DESIGNATE function DESIGNATE:SetMaximumDistanceGroundDesignation( MaximumDistanceGroundDesignation ) self.MaximumDistanceGroundDesignation = MaximumDistanceGroundDesignation return self end --- Set the maximum air designation distance. -- @param #DESIGNATE self -- @param #number MaximumDistanceAirDesignation Maximum air designation distance in meters. -- @return #DESIGNATE function DESIGNATE:SetMaximumDistanceAirDesignation( MaximumDistanceAirDesignation ) self.MaximumDistanceAirDesignation = MaximumDistanceAirDesignation return self end --- Set the overall maximum distance when designations can be accepted. -- @param #DESIGNATE self -- @param #number MaximumDistanceDesignations Maximum distance in meters to accept designations. -- @return #DESIGNATE function DESIGNATE:SetMaximumDistanceDesignations( MaximumDistanceDesignations ) self.MaximumDistanceDesignations = MaximumDistanceDesignations return self end --- Set the maximum amount of markings FACs will do, per designated target group. -- @param #DESIGNATE self -- @param #number MaximumMarkings Maximum markings FACs will do, per designated target group. -- @return #DESIGNATE function DESIGNATE:SetMaximumMarkings( MaximumMarkings ) self.MaximumMarkings = MaximumMarkings return self end --- Set an array of possible laser codes. -- Each new lase will select a code from this table. -- @param #DESIGNATE self -- @param #list<#number> LaserCodes -- @return #DESIGNATE function DESIGNATE:SetLaserCodes( LaserCodes ) --R2.1 self.LaserCodes = ( type( LaserCodes ) == "table" ) and LaserCodes or { LaserCodes } self:E( { LaserCodes = self.LaserCodes } ) self.LaserCodesUsed = {} return self end --- Add a specific lase code to the designate lase menu to lase targets with a specific laser code. -- The MenuText will appear in the lase menu. -- @param #DESIGNATE self -- @param #number LaserCode The specific laser code to be added to the lase menu. -- @param #string MenuText The text to be shown to the player. If you specify a %d in the MenuText, the %d will be replaced with the LaserCode specified. -- @return #DESIGNATE -- @usage -- RecceDesignation:AddMenuLaserCode( 1113, "Lase with %d for Su-25T" ) -- RecceDesignation:AddMenuLaserCode( 1680, "Lase with %d for A-10A" ) -- function DESIGNATE:AddMenuLaserCode( LaserCode, MenuText ) self.MenuLaserCodes[LaserCode] = MenuText self:SetDesignateMenu() return self end --- Removes a specific lase code from the designate lase menu. -- @param #DESIGNATE self -- @param #number LaserCode The specific laser code that was set to be added to the lase menu. -- @return #DESIGNATE -- @usage -- RecceDesignation:RemoveMenuLaserCode( 1113 ) -- function DESIGNATE:RemoveMenuLaserCode( LaserCode ) self.MenuLaserCodes[LaserCode] = nil self:SetDesignateMenu() return self end --- Set the name of the designation. The name will appear in the menu. -- This method can be used to control different designations for different plane types. -- @param #DESIGNATE self -- @param #string DesignateName -- @return #DESIGNATE function DESIGNATE:SetDesignateName( DesignateName ) self.DesignateName = "Designation" .. ( DesignateName and ( " for " .. DesignateName ) or "" ) return self end --- Generate an array of possible laser codes. -- Each new lase will select a code from this table. -- The entered value can range from 1111 - 1788, -- -- but the first digit of the series must be a 1 or 2 -- -- and the last three digits must be between 1 and 8. -- The range used to be bugged so its not 1 - 8 but 0 - 7. -- function below will use the range 1-7 just in case -- @param #DESIGNATE self -- @return #DESIGNATE function DESIGNATE:GenerateLaserCodes() --R2.1 self.LaserCodes = {} local function containsDigit(_number, _numberToFind) local _thisNumber = _number local _thisDigit = 0 while _thisNumber ~= 0 do _thisDigit = _thisNumber % 10 _thisNumber = math.floor(_thisNumber / 10) if _thisDigit == _numberToFind then return true end end return false end -- generate list of laser codes local _code = 1111 local _count = 1 while _code < 1777 and _count < 30 do while true do _code = _code + 1 if not containsDigit(_code, 8) and not containsDigit(_code, 9) and not containsDigit(_code, 0) then self:T(_code) table.insert( self.LaserCodes, _code ) break end end _count = _count + 1 end self.LaserCodesUsed = {} return self end --- Set auto lase. -- Auto lase will start lasing targets immediately when these are in range. -- @param #DESIGNATE self -- @param #boolean AutoLase (optional) true sets autolase on, false off. Default is off. -- @param #boolean Message (optional) true is send message, false or nil won't send a message. Default is no message sent. -- @return #DESIGNATE function DESIGNATE:SetAutoLase( AutoLase, Message ) self.AutoLase = AutoLase or false if Message then local AutoLaseOnOff = ( self.AutoLase == true ) and "On" or "Off" local CC = self.CC:GetPositionable() if CC then CC:MessageToSetGroup( self.DesignateName .. ": Auto Lase " .. AutoLaseOnOff .. ".", 15, self.AttackSet ) end end self:CoordinateLase() self:SetDesignateMenu() return self end --- Set priorization of Targets based on the **Threat Level of the Target** in an Air to Ground context. -- @param #DESIGNATE self -- @param #boolean Prioritize -- @return #DESIGNATE function DESIGNATE:SetThreatLevelPrioritization( Prioritize ) --R2.1 self.ThreatLevelPrioritization = Prioritize return self end --- Set the MISSION object for which designate will function. -- When a MISSION object is assigned, the menu for the designation will be located at the Mission Menu. -- @param #DESIGNATE self -- @param Tasking.Mission#MISSION Mission The MISSION object. -- @return #DESIGNATE function DESIGNATE:SetMission( Mission ) --R2.2 self.Mission = Mission return self end --- -- @param #DESIGNATE self -- @return #DESIGNATE function DESIGNATE:onafterDetect() self:__Detect( -math.random( 60 ) ) self:DesignationScope() self:CoordinateLase() self:SendStatus() self:SetDesignateMenu() return self end --- Adapt the designation scope according the detected items. -- @param #DESIGNATE self -- @return #DESIGNATE function DESIGNATE:DesignationScope() local DetectedItems = self.Detection:GetDetectedItems() local DetectedItemCount = 0 for DesignateIndex, Designating in pairs( self.Designating ) do local DetectedItem = DetectedItems[DesignateIndex] if DetectedItem then -- Check LOS... local IsDetected = self.Detection:IsDetectedItemDetected( DetectedItem ) self:F({IsDetected = IsDetected, DetectedItem }) if IsDetected == false then self:F("Removing") -- This Detection is obsolete, remove from the designate scope self.Designating[DesignateIndex] = nil self.AttackSet:ForEachGroup( function( AttackGroup ) local DetectionText = self.Detection:DetectedItemReportSummary( DesignateIndex, AttackGroup ):Text( ", " ) self.CC:GetPositionable():MessageToGroup( "Targets out of LOS\n" .. DetectionText, 10, AttackGroup, self.DesignateName ) end ) else DetectedItemCount = DetectedItemCount + 1 end else -- This Detection is obsolete, remove from the designate scope self.Designating[DesignateIndex] = nil end end if DetectedItemCount < 5 then for DesignateIndex, DetectedItem in pairs( DetectedItems ) do local IsDetected = self.Detection:IsDetectedItemDetected( DetectedItem ) if IsDetected == true then self:F( { DistanceRecce = DetectedItem.DistanceRecce } ) if DetectedItem.DistanceRecce <= self.MaximumDistanceDesignations then if self.Designating[DesignateIndex] == nil then -- ok, we added one item to the designate scope. self.AttackSet:ForEachGroup( function( AttackGroup ) local DetectionText = self.Detection:DetectedItemReportSummary( DesignateIndex, AttackGroup ):Text( ", " ) self.CC:GetPositionable():MessageToGroup( "Targets detected at \n" .. DetectionText, 10, AttackGroup, self.DesignateName ) end ) self.Designating[DesignateIndex] = "" break end end end end end return self end --- Coordinates the Auto Lase. -- @param #DESIGNATE self -- @return #DESIGNATE function DESIGNATE:CoordinateLase() local DetectedItems = self.Detection:GetDetectedItems() for DesignateIndex, Designating in pairs( self.Designating ) do local DetectedItem = DetectedItems[DesignateIndex] if DetectedItem then if self.AutoLase then self:LaseOn( DesignateIndex, self.LaseDuration ) end end end return self end --- Sends the status to the Attack Groups. -- @param #DESIGNATE self -- @param Wrapper.Group#GROUP AttackGroup -- @param #number Duration The time in seconds the report should be visible. -- @return #DESIGNATE function DESIGNATE:SendStatus( MenuAttackGroup, Duration ) Duration = Duration or 10 self.AttackSet:ForEachGroup( --- @param Wrapper.Group#GROUP GroupReport function( AttackGroup ) if self.FlashStatusMenu[AttackGroup] or ( MenuAttackGroup and ( AttackGroup:GetName() == MenuAttackGroup:GetName() ) ) then local DetectedReport = REPORT:New( "Targets ready for Designation:" ) local DetectedItems = self.Detection:GetDetectedItems() for DesignateIndex, Designating in pairs( self.Designating ) do local DetectedItem = DetectedItems[DesignateIndex] if DetectedItem then local Report = self.Detection:DetectedItemReportSummary( DesignateIndex, AttackGroup ):Text( ", " ) DetectedReport:Add( string.rep( "-", 140 ) ) DetectedReport:Add( " - " .. Report ) end end local CC = self.CC:GetPositionable() CC:MessageToGroup( DetectedReport:Text( "\n" ), Duration, AttackGroup, self.DesignateName ) local DesignationReport = REPORT:New( "Marking Targets:\n" ) self.RecceSet:ForEachGroup( function( RecceGroup ) local RecceUnits = RecceGroup:GetUnits() for UnitID, RecceData in pairs( RecceUnits ) do local Recce = RecceData -- Wrapper.Unit#UNIT if Recce:IsLasing() then DesignationReport:Add( " - " .. Recce:GetMessageText( "Marking " .. Recce:GetSpot().Target:GetTypeName() .. " with laser " .. Recce:GetSpot().LaserCode .. "." ) ) end end end ) CC:MessageToGroup( DesignationReport:Text(), Duration, AttackGroup, self.DesignateName ) end end ) return self end --- Sets the Designate Menu. -- @param #DESIGNATE self -- @return #DESIGNATE function DESIGNATE:SetDesignateMenu() self.AttackSet:Flush() self.AttackSet:ForEachGroup( --- @param Wrapper.Group#GROUP GroupReport function( AttackGroup ) self.MenuDesignate = self.MenuDesignate or {} local MissionMenu = nil if self.Mission then MissionMenu = self.Mission:GetRootMenu( AttackGroup ) end local MenuTime = timer.getTime() self.MenuDesignate[AttackGroup] = MENU_GROUP:New( AttackGroup, self.DesignateName, MissionMenu ):SetTime( MenuTime ):SetTag( self.DesignateName ) local MenuDesignate = self.MenuDesignate[AttackGroup] -- Core.Menu#MENU_GROUP -- Set Menu option for auto lase if self.AutoLase then MENU_GROUP_COMMAND:New( AttackGroup, "Auto Lase Off", MenuDesignate, self.MenuAutoLase, self, false ):SetTime( MenuTime ):SetTag( self.DesignateName ) else MENU_GROUP_COMMAND:New( AttackGroup, "Auto Lase On", MenuDesignate, self.MenuAutoLase, self, true ):SetTime( MenuTime ):SetTag( self.DesignateName ) end local StatusMenu = MENU_GROUP:New( AttackGroup, "Status", MenuDesignate ):SetTime( MenuTime ):SetTag( self.DesignateName ) MENU_GROUP_COMMAND:New( AttackGroup, "Report Status 15s", StatusMenu, self.MenuStatus, self, AttackGroup, 15 ):SetTime( MenuTime ):SetTag( self.DesignateName ) MENU_GROUP_COMMAND:New( AttackGroup, "Report Status 30s", StatusMenu, self.MenuStatus, self, AttackGroup, 30 ):SetTime( MenuTime ):SetTag( self.DesignateName ) MENU_GROUP_COMMAND:New( AttackGroup, "Report Status 60s", StatusMenu, self.MenuStatus, self, AttackGroup, 60 ):SetTime( MenuTime ):SetTag( self.DesignateName ) if self.FlashStatusMenu[AttackGroup] then MENU_GROUP_COMMAND:New( AttackGroup, "Flash Status Report Off", StatusMenu, self.MenuFlashStatus, self, AttackGroup, false ):SetTime( MenuTime ):SetTag( self.DesignateName ) else MENU_GROUP_COMMAND:New( AttackGroup, "Flash Status Report On", StatusMenu, self.MenuFlashStatus, self, AttackGroup, true ):SetTime( MenuTime ):SetTag( self.DesignateName ) end for DesignateIndex, Designating in pairs( self.Designating ) do local DetectedItem = self.Detection:GetDetectedItem( DesignateIndex ) if DetectedItem then local Coord = self.Detection:GetDetectedItemCoordinate( DesignateIndex ) local ID = self.Detection:GetDetectedItemID( DesignateIndex ) local MenuText = ID .. ", " .. Coord:ToStringA2G( AttackGroup ) if Designating == "" then MenuText = "(-) " .. MenuText local DetectedMenu = MENU_GROUP:New( AttackGroup, MenuText, MenuDesignate ):SetTime( MenuTime ):SetTag( self.DesignateName ) MENU_GROUP_COMMAND:New( AttackGroup, "Search other target", DetectedMenu, self.MenuForget, self, DesignateIndex ):SetTime( MenuTime ):SetTag( self.DesignateName ) for LaserCode, MenuText in pairs( self.MenuLaserCodes ) do MENU_GROUP_COMMAND:New( AttackGroup, string.format( MenuText, LaserCode ), DetectedMenu, self.MenuLaseCode, self, DesignateIndex, 60, LaserCode ):SetTime( MenuTime ):SetTag( self.DesignateName ) end MENU_GROUP_COMMAND:New( AttackGroup, "Lase with random laser code(s)", DetectedMenu, self.MenuLaseOn, self, DesignateIndex, 60 ):SetTime( MenuTime ):SetTag( self.DesignateName ) MENU_GROUP_COMMAND:New( AttackGroup, "Smoke red", DetectedMenu, self.MenuSmoke, self, DesignateIndex, SMOKECOLOR.Red ):SetTime( MenuTime ):SetTag( self.DesignateName ) MENU_GROUP_COMMAND:New( AttackGroup, "Smoke blue", DetectedMenu, self.MenuSmoke, self, DesignateIndex, SMOKECOLOR.Blue ):SetTime( MenuTime ):SetTag( self.DesignateName ) MENU_GROUP_COMMAND:New( AttackGroup, "Smoke green", DetectedMenu, self.MenuSmoke, self, DesignateIndex, SMOKECOLOR.Green ):SetTime( MenuTime ):SetTag( self.DesignateName ) MENU_GROUP_COMMAND:New( AttackGroup, "Smoke white", DetectedMenu, self.MenuSmoke, self, DesignateIndex, SMOKECOLOR.White ):SetTime( MenuTime ):SetTag( self.DesignateName ) MENU_GROUP_COMMAND:New( AttackGroup, "Smoke orange", DetectedMenu, self.MenuSmoke, self, DesignateIndex, SMOKECOLOR.Orange ):SetTime( MenuTime ):SetTag( self.DesignateName ) MENU_GROUP_COMMAND:New( AttackGroup, "Illuminate", DetectedMenu, self.MenuIlluminate, self, DesignateIndex ):SetTime( MenuTime ):SetTag( self.DesignateName ) else if Designating == "Laser" then MenuText = "(L) " .. MenuText elseif Designating == "Smoke" then MenuText = "(S) " .. MenuText elseif Designating == "Illuminate" then MenuText = "(I) " .. MenuText end local DetectedMenu = MENU_GROUP:New( AttackGroup, MenuText, MenuDesignate ):SetTime( MenuTime ):SetTag( self.DesignateName ) if Designating == "Laser" then MENU_GROUP_COMMAND:New( AttackGroup, "Stop lasing", DetectedMenu, self.MenuLaseOff, self, DesignateIndex ):SetTime( MenuTime ):SetTag( self.DesignateName ) else end end end end MenuDesignate:Remove( MenuTime, self.DesignateName ) end ) return self end --- -- @param #DESIGNATE self function DESIGNATE:MenuStatus( AttackGroup, Duration ) self:E("Status") self:SendStatus( AttackGroup, Duration ) end --- -- @param #DESIGNATE self function DESIGNATE:MenuFlashStatus( AttackGroup, Flash ) self:E("Flash Status") self.FlashStatusMenu[AttackGroup] = Flash self:SetDesignateMenu() end --- -- @param #DESIGNATE self function DESIGNATE:MenuForget( Index ) self:E("Forget") self.Designating[Index] = nil self:SetDesignateMenu() end --- -- @param #DESIGNATE self function DESIGNATE:MenuAutoLase( AutoLase ) self:E("AutoLase") self:SetAutoLase( AutoLase, true ) end --- -- @param #DESIGNATE self function DESIGNATE:MenuSmoke( Index, Color ) self:E("Designate through Smoke") self.Designating[Index] = "Smoke" self:Smoke( Index, Color ) end --- -- @param #DESIGNATE self function DESIGNATE:MenuIlluminate( Index ) self:E("Designate through Illumination") self.Designating[Index] = "Illuminate" self:__Illuminate( 1, Index ) end --- -- @param #DESIGNATE self function DESIGNATE:MenuLaseOn( Index, Duration ) self:E("Designate through Lase") self:__LaseOn( 1, Index, Duration ) self:SetDesignateMenu() end --- -- @param #DESIGNATE self function DESIGNATE:MenuLaseCode( Index, Duration, LaserCode ) self:E( "Designate through Lase using " .. LaserCode ) self:__LaseOn( 1, Index, Duration, LaserCode ) self:SetDesignateMenu() end --- -- @param #DESIGNATE self function DESIGNATE:MenuLaseOff( Index, Duration ) self:E("Lasing off") self.Designating[Index] = "" self:__LaseOff( 1, Index ) self:SetDesignateMenu() end --- -- @param #DESIGNATE self function DESIGNATE:onafterLaseOn( From, Event, To, Index, Duration, LaserCode ) self.Designating[Index] = "Laser" self.LaseStart = timer.getTime() self.LaseDuration = Duration self:__Lasing( -1, Index, Duration, LaserCode ) end --- -- @param #DESIGNATE self -- @return #DESIGNATE function DESIGNATE:onafterLasing( From, Event, To, Index, Duration, LaserCodeRequested ) local TargetSetUnit = self.Detection:GetDetectedSet( Index ) local MarkingCount = 0 local MarkedTypes = {} local ReportTypes = REPORT:New() local ReportLaserCodes = REPORT:New() TargetSetUnit:Flush() --self:F( { Recces = self.Recces } ) for TargetUnit, RecceData in pairs( self.Recces ) do local Recce = RecceData -- Wrapper.Unit#UNIT self:F( { TargetUnit = TargetUnit, Recce = Recce:GetName() } ) if not Recce:IsLasing() then local LaserCode = Recce:GetLaserCode() -- (Not deleted when stopping with lasing). self:F( { ClearingLaserCode = LaserCode } ) self.LaserCodesUsed[LaserCode] = nil self.Recces[TargetUnit] = nil end end -- If a specific lasercode is requested, we disable one active lase! if LaserCodeRequested then for TargetUnit, RecceData in pairs( self.Recces ) do -- We break after the first has been processed. local Recce = RecceData -- Wrapper.Unit#UNIT self:F( { TargetUnit = TargetUnit, Recce = Recce:GetName() } ) if Recce:IsLasing() then -- When a Recce is lasing, we switch the lasing off, and clear the references to the lasing in the DESIGNATE class. Recce:LaseOff() -- Switch off the lasing. local LaserCode = Recce:GetLaserCode() -- (Not deleted when stopping with lasing). self:F( { ClearingLaserCode = LaserCode } ) self.LaserCodesUsed[LaserCode] = nil self.Recces[TargetUnit] = nil break end end end if self.AutoLase or ( not self.AutoLase and ( self.LaseStart + Duration >= timer.getTime() ) ) then TargetSetUnit:ForEachUnitPerThreatLevel( 10, 0, --- @param Wrapper.Unit#UNIT SmokeUnit function( TargetUnit ) self:F( { TargetUnit = TargetUnit:GetName() } ) if MarkingCount < self.MaximumMarkings then if TargetUnit:IsAlive() then local Recce = self.Recces[TargetUnit] if not Recce then self:E( "Lasing..." ) self.RecceSet:Flush() for RecceGroupID, RecceGroup in pairs( self.RecceSet:GetSet() ) do for UnitID, UnitData in pairs( RecceGroup:GetUnits() or {} ) do local RecceUnit = UnitData -- Wrapper.Unit#UNIT local RecceUnitDesc = RecceUnit:GetDesc() --self:F( { RecceUnit = RecceUnit:GetName(), RecceDescription = RecceUnitDesc } ) if RecceUnit:IsLasing() == false then --self:F( { IsDetected = RecceUnit:IsDetected( TargetUnit ), IsLOS = RecceUnit:IsLOS( TargetUnit ) } ) if RecceUnit:IsDetected( TargetUnit ) and RecceUnit:IsLOS( TargetUnit ) then local LaserCodeIndex = math.random( 1, #self.LaserCodes ) local LaserCode = self.LaserCodes[LaserCodeIndex] --self:F( { LaserCode = LaserCode, LaserCodeUsed = self.LaserCodesUsed[LaserCode] } ) if LaserCodeRequested and LaserCodeRequested ~= LaserCode then LaserCode = LaserCodeRequested LaserCodeRequested = nil end if not self.LaserCodesUsed[LaserCode] then self.LaserCodesUsed[LaserCode] = LaserCodeIndex local Spot = RecceUnit:LaseUnit( TargetUnit, LaserCode, Duration ) local AttackSet = self.AttackSet function Spot:OnAfterDestroyed( From, Event, To ) self:E( "Destroyed Message" ) self.Recce:ToSetGroup( "Target " .. TargetUnit:GetTypeName() .. " destroyed. " .. TargetSetUnit:Count() .. " targets left.", 5, AttackSet, self.DesignateName ) end self.Recces[TargetUnit] = RecceUnit RecceUnit:MessageToSetGroup( "Marking " .. TargetUnit:GetTypeName() .. " with laser " .. RecceUnit:GetSpot().LaserCode .. " for " .. Duration .. "s.", 5, self.AttackSet, self.DesignateName ) -- OK. We have assigned for the Recce a TargetUnit. We can exit the function. MarkingCount = MarkingCount + 1 local TargetUnitType = TargetUnit:GetTypeName() if not MarkedTypes[TargetUnitType] then MarkedTypes[TargetUnitType] = true ReportTypes:Add(TargetUnitType) end ReportLaserCodes:Add(RecceUnit.LaserCode) return end else --RecceUnit:MessageToSetGroup( "Can't mark " .. TargetUnit:GetTypeName(), 5, self.AttackSet ) end else -- The Recce is lasing, but the Target is not detected or within LOS. So stop lasing and send a report. if not RecceUnit:IsDetected( TargetUnit ) or not RecceUnit:IsLOS( TargetUnit ) then local Recce = self.Recces[TargetUnit] -- Wrapper.Unit#UNIT if Recce then Recce:LaseOff() Recce:MessageToSetGroup( "Target " .. TargetUnit:GetTypeName() "out of LOS. Cancelling lase!", 5, self.AttackSet, self.DesignateName ) end else MarkingCount = MarkingCount + 1 local TargetUnitType = TargetUnit:GetTypeName() if not MarkedTypes[TargetUnitType] then MarkedTypes[TargetUnitType] = true ReportTypes:Add(TargetUnitType) end ReportLaserCodes:Add(RecceUnit.LaserCode) end end end end else MarkingCount = MarkingCount + 1 local TargetUnitType = TargetUnit:GetTypeName() if not MarkedTypes[TargetUnitType] then MarkedTypes[TargetUnitType] = true ReportTypes:Add(TargetUnitType) end ReportLaserCodes:Add(Recce.LaserCode) --Recce:MessageToSetGroup( self.DesignateName .. ": Marking " .. TargetUnit:GetTypeName() .. " with laser " .. Recce.LaserCode .. ".", 5, self.AttackSet ) end end end end ) local MarkedTypesText = ReportTypes:Text(', ') local MarkedLaserCodesText = ReportLaserCodes:Text(', ') for MarkedType, MarketCount in pairs( MarkedTypes ) do self.CC:GetPositionable():MessageToSetGroup( "Marking " .. MarkingCount .. " x " .. MarkedTypesText .. " with lasers " .. MarkedLaserCodesText .. ".", 5, self.AttackSet, self.DesignateName ) end self:__Lasing( -30, Index, Duration, LaserCodeRequested ) self:SetDesignateMenu() else self:__LaseOff( 1 ) end end --- -- @param #DESIGNATE self -- @return #DESIGNATE function DESIGNATE:onafterLaseOff( From, Event, To, Index ) local CC = self.CC:GetPositionable() if CC then CC:MessageToSetGroup( "Stopped lasing.", 5, self.AttackSet, self.DesignateName ) end local TargetSetUnit = self.Detection:GetDetectedSet( Index ) local Recces = self.Recces for TargetID, RecceData in pairs( Recces ) do local Recce = RecceData -- Wrapper.Unit#UNIT Recce:MessageToSetGroup( "Stopped lasing " .. Recce:GetSpot().Target:GetTypeName() .. ".", 5, self.AttackSet, self.DesignateName ) Recce:LaseOff() end Recces = nil self.Recces = {} self.LaserCodesUsed = {} self:SetDesignateMenu() end --- -- @param #DESIGNATE self -- @return #DESIGNATE function DESIGNATE:onafterSmoke( From, Event, To, Index, Color ) local TargetSetUnit = self.Detection:GetDetectedSet( Index ) local TargetSetUnitCount = TargetSetUnit:Count() local MarkedCount = 0 TargetSetUnit:ForEachUnitPerThreatLevel( 10, 0, --- @param Wrapper.Unit#UNIT SmokeUnit function( SmokeUnit ) if MarkedCount < self.MaximumMarkings then MarkedCount = MarkedCount + 1 self:E( "Smoking ..." ) local RecceGroup = self.RecceSet:FindNearestGroupFromPointVec2(SmokeUnit:GetPointVec2()) local RecceUnit = RecceGroup:GetUnit( 1 ) if RecceUnit then RecceUnit:MessageToSetGroup( "Smoking " .. SmokeUnit:GetTypeName() .. ".", 5, self.AttackSet, self.DesignateName ) self.MarkScheduler:Schedule( self, function() if SmokeUnit:IsAlive() then SmokeUnit:Smoke( Color, 50, 2 ) end self:Done( Index ) end, {}, math.random( 5, 20 ) ) end end end ) end --- Illuminating -- @param #DESIGNATE self -- @return #DESIGNATE function DESIGNATE:onafterIlluminate( From, Event, To, Index ) local TargetSetUnit = self.Detection:GetDetectedSet( Index ) local TargetUnit = TargetSetUnit:GetFirst() if TargetUnit then local RecceGroup = self.RecceSet:FindNearestGroupFromPointVec2(TargetUnit:GetPointVec2()) local RecceUnit = RecceGroup:GetUnit( 1 ) if RecceUnit then RecceUnit:MessageToSetGroup( "Illuminating " .. TargetUnit:GetTypeName() .. ".", 5, self.AttackSet, self.DesignateName ) self.MarkScheduler:Schedule( self, function() if TargetUnit:IsAlive() then TargetUnit:GetPointVec3():AddY(300):IlluminationBomb() end self:Done( Index ) end, {}, math.random( 5, 20 ) ) end end end --- Done -- @param #DESIGNATE self -- @return #DESIGNATE function DESIGNATE:onafterDone( From, Event, To, Index ) self.Designating[Index] = nil self:SetDesignateMenu() end end -- Help from Ciribob ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- **Functional** - Create random airtraffic in your missions. -- -- ![Banner Image](..\Presentations\RAT\RAT.png) -- -- ==== -- -- The aim of the RAT class is to fill the empty DCS world with randomized air traffic and bring more life to your airports. -- -- In particular, it is designed to spawn AI air units at random airports. These units will be assigned a random flight path to another random airport on the map. -- -- Even the mission designer will not know where aircraft will be spawned and which route they follow. -- -- ## Features -- -- * Very simple interface. Just one unit and two lines of Lua code needed to fill your map. -- * High degree of randomization. Aircraft will spawn at random airports, have random routes and random destinations. -- * Specific departure and/or destination airports can be chosen. -- * Departure and destination airports can be restricted by coalition. -- * Planes and helicopters supported. Helicopters can also be send to FARPs and ships. -- * Units can also be spawned in air within pre-defined zones of the map. -- * Aircraft will be removed when they arrive at their destination (or get stuck on the ground). -- * When a unit is removed a new unit with a different flight plan is respawned. -- * Aircraft can report their status during the route. -- * All of the above can be customized by the user if necessary. -- * All current (Caucasus, Nevada, Normandy) and future maps are supported. -- -- The RAT class creates an entry in the F10 menu which allows to -- -- * Create new groups on-the-fly, i.e. at run time within the mission, -- * Destroy specific groups (e.g. if they get stuck or damaged and block a runway), -- * Request the status of all RAT aircraft or individual groups, -- * Place markers at waypoints on the F10 map for each group. -- -- Note that by its very nature, this class is suited best for civil or transport aircraft. However, it also works perfectly fine for military aircraft of any kind. -- -- More of the documentation include some simple examples can be found further down this page. -- -- ==== -- -- # Demo Missions -- -- ### [RAT Demo Missions](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/Release/RAT%20-%20Random%20Air%20Traffic) -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### RAT videos are work in progress. -- ### [MOOSE YouTube Channel](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl1jirWIo4t4YxqN-HxjqRkL) -- -- === -- -- ### Author: **[funkyfranky](https://forums.eagle.ru/member.php?u=115026)** -- -- ### Contributions: **Sven van de Velde ([FlightControl](https://forums.eagle.ru/member.php?u=89536))** -- -- ==== -- @module Rat ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- RAT class -- @type RAT -- @field #string ClassName Name of the Class. -- @field #boolean debug Turn debug messages on or off. -- @field Core.Group#GROUP templategroup Group serving as template for the RAT aircraft. -- @field #string alias Alias for spawned group. -- @field #boolean spawninitialized If RAT:Spawn() was already called this RAT object is set to true to prevent users to call it again. -- @field #number spawndelay Delay time in seconds before first spawning happens. -- @field #number spawninterval Interval between spawning units/groups. Note that we add a randomization of 50%. -- @field #number coalition Coalition of spawn group template. -- @field #number country Country of spawn group template. -- @field #string category Category of aircarft: "plane" or "heli". -- @field #string friendly Possible departure/destination airport: all=blue+red+neutral, same=spawn+neutral, spawnonly=spawn, blue=blue+neutral, blueonly=blue, red=red+neutral, redonly=red. -- @field #table ctable Table with the valid coalitons from choice self.friendly. -- @field #table aircraft Table which holds the basic aircraft properties (speed, range, ...). -- @field #number Vcruisemax Max cruise speed in m/s (250 m/s = 900 km/h = 486 kt) set by user. -- @field #number Vclimb Default climb rate in ft/min. -- @field #number AlphaDescent Default angle of descenti in degrees. A value of 3.6 follows the 3:1 rule of 3 miles of travel and 1000 ft descent. -- @field #string roe ROE of spawned groups, default is weapon hold (this is a peaceful class for civil aircraft or ferry missions). Possible: "hold", "return", "free". -- @field #string rot ROT of spawned groups, default is no reaction. Possible: "noreaction", "passive", "evade". -- @field #number takeoff Takeoff type. 0=coldorhot. -- @field #number landing Landing type. Determines if we actually land at an airport or treat it as zone. -- @field #number mindist Min distance from departure to destination in meters. Default 5 km. -- @field #number maxdist Max distance from departure to destination in meters. Default 5000 km. -- @field #table airports_map All airports available on current map (Caucasus, Nevada, Normandy, ...). -- @field #table airports All airports of friedly coalitions. -- @field #boolean random_departure By default a random friendly airport is chosen as departure. -- @field #boolean random_destination By default a random friendly airport is chosen as destination. -- @field #table departure_ports Array containing the names of the destination airports or zones. -- @field #table destination_ports Array containing the names of the destination airports or zones. -- @field #number Ndestination_Airports Number of destination airports set via SetDestination(). -- @field #number Ndestination_Zones Number of destination zones set via SetDestination(). -- @field #number Ndeparture_Airports Number of departure airports set via SetDeparture(). -- @field #number Ndeparture_Zones Number of departure zones set via SetDeparture. -- @field #table excluded_ports Array containing the names of explicitly excluded airports. -- @field #boolean destinationzone Destination is a zone and not an airport. -- @field #table return_zones Array containing the names of the return zones. -- @field #boolean returnzone Zone where aircraft will fly to before returning to their departure airport. -- @field Core.Zone#ZONE departure_Azone Zone containing the departure airports. -- @field Core.Zone#ZONE destination_Azone Zone containing the destination airports. -- @field #boolean addfriendlydepartures Add all friendly airports to departures. -- @field #boolean addfriendlydestinations Add all friendly airports to destinations. -- @field #table ratcraft Array with the spawned RAT aircraft. -- @field #number Tinactive Time in seconds after which inactive units will be destroyed. Default is 300 seconds. -- @field #boolean reportstatus Aircraft report status. -- @field #number statusinterval Intervall between status checks (and reports if enabled). -- @field #boolean placemarkers Place markers of waypoints on F10 map. -- @field #number FLcruise Cruise altitude of aircraft. Default FL200 for planes and F005 for helos. -- @field #number FLuser Flight level set by users explicitly. -- @field #number FLminuser Minimum flight level set by user. -- @field #number FLmaxuser Maximum flight level set by user. -- @field #boolean commute Aircraft commute between departure and destination, i.e. when respawned the departure airport becomes the new destiation. -- @field #boolean continuejourney Aircraft will continue their journey, i.e. get respawned at their destination with a new random destination. -- @field #number ngroups Number of groups to be spawned in total. -- @field #number alive Number of groups which are alive. -- @field #boolean f10menu Add an F10 menu for RAT. -- @field #table Menu F10 menu items for this RAT object. -- @field #string SubMenuName Submenu name for RAT object. -- @field #boolean respawn_at_landing Respawn aircraft the moment they land rather than at engine shutdown. -- @field #boolean norespawn Aircraft will not be respawned after they have finished their route. -- @field #boolean respawn_after_takeoff Aircraft will be respawned directly after take-off. -- @field #number respawn_delay Delay in seconds until repawn happens after landing. -- @field #table markerids Array with marker IDs. -- @field #table waypointdescriptions Table with strings for waypoint descriptions of markers. -- @field #table waypointstatus Table with strings of waypoint status. -- @field #string livery Livery of the aircraft set by user. -- @field #string skill Skill of AI. -- @field #boolean ATCswitch Enable/disable ATC if set to true/false. -- @field #string parking_id String with a special parking ID for the aircraft. -- @field #number wp_final Index of the final waypoint. -- @field #number wp_holding Index of the holding waypoint. -- @field #boolean radio If true/false disables radio messages from the RAT groups. -- @field #number frequency Radio frequency used by the RAT groups. -- @field #string modulation Ratio modulation. Either "FM" or "AM". -- @field #boolean uncontrolled If true aircraft are spawned in uncontrolled state and will only sit on their parking spots. -- @extends Core.Spawn#SPAWN ---# RAT class, extends @{Spawn#SPAWN} -- The RAT class implements an easy to use way to randomly fill your map with AI aircraft. -- -- -- ## Airport Selection -- -- ![Process](..\Presentations\RAT\RAT_Airport_Selection.png) -- -- ### Default settings: -- -- * By default, aircraft are spawned at airports of their own coalition (blue or red) or neutral airports. -- * Destination airports are by default also of neutral or of the same coalition as the template group of the spawned aircraft. -- * Possible destinations are restricted by their distance to the departure airport. The maximal distance depends on the max range of spawned aircraft type and its initial fuel amount. -- -- ### The default behavior can be changed: -- -- * A specific departure and/or destination airport can be chosen. -- * Valid coalitions can be set, e.g. only red, blue or neutral, all three "colours". -- * It is possible to start in air within a zone defined in the mission editor or within a zone above an airport of the map. -- -- ## Flight Plan -- -- ![Process](..\Presentations\RAT\RAT_Flight_Plan.png) -- -- * A general flight plan has five main airborne segments: Climb, cruise, descent, holding and final approach. -- * Events monitored during the flight are: birth, engine-start, take-off, landing and engine-shutdown. -- * The default flight level (FL) is set to ~FL200, i.e. 20000 feet ASL but randomized for each aircraft. -- Service ceiling of aircraft type is into account for max FL as well as the distance between departure and destination. -- * Maximal distance between destination and departure airports depends on range and initial fuel of aircraft. -- * Climb rate is set to a moderate value of ~1500 ft/min. -- * The standard descent rate follows the 3:1 rule, i.e. 1000 ft decent per 3 miles of travel. Hence, angle of descent is ~3.6 degrees. -- * A holding point is randomly selected at a distance between 5 and 10 km away from destination airport. -- * The altitude of theholding point is ~1200 m AGL. Holding patterns might or might not happen with variable duration. -- * If an aircraft is spawned in air, the procedure omitts taxi and take-off and starts with the climb/cruising part. -- * All values are randomized for each spawned aircraft. -- -- ## Mission Editor Setup -- -- ![Process](..\Presentations\RAT\RAT_Mission_Setup.png) -- -- Basic mission setup is very simple and essentially a three step process: -- -- * Place your aircraft **anywhere** on the map. It really does not matter where you put it. -- * Give the group a good name. In the example above the group is named "RAT_YAK". -- * Activate the "LATE ACTIVATION" tick box. Note that this aircraft will not be spawned itself but serves a template for each RAT aircraft spawned when the mission starts. -- -- Voilà, your already done! -- -- Optionally, you can set a specific livery for the aircraft or give it some weapons. -- However, the aircraft will by default not engage any enemies. Think of them as beeing on a peaceful or ferry mission. -- -- ## Basic Lua Script -- -- ![Process](..\Presentations\RAT\RAT_Basic_Lua_Script.png) -- -- The basic Lua script for one template group consits of two simple lines as shown in the picture above. -- -- * **Line 2** creates a new RAT object "yak". The only required parameter for the constructor @{#RAT.New}() is the name of the group as defined in the mission editor. In this example it is "RAT_YAK". -- * **Line 5** trigger the command to spawn the aircraft. The (optional) parameter for the @{#RAT.Spawn}() function is the number of aircraft to be spawned of this object. -- By default each of these aircraft gets a random departure airport anywhere on the map and a random destination airport, which lies within range of the of the selected aircraft type. -- -- In this simple example aircraft are respawned with a completely new flightplan when they have reached their destination airport. -- The "old" aircraft is despawned (destroyed) after it has shut-down its engines and a new aircraft of the same type is spawned at a random departure airport anywhere on the map. -- Hence, the default flight plan for a RAT aircraft will be: Fly from airport A to B, get respawned at C and fly to D, get respawned at E and fly to F, ... -- This ensures that you always have a constant number of AI aircraft on your map. -- -- ## Examples -- -- Here are a few examples, how you can modify the default settings of RAT class objects. -- -- ### Specify Departure and Destinations -- -- ![Process](..\Presentations\RAT\RAT_Examples_Specify_Departure_and_Destination.png) -- -- In the picture above you find a few possibilities how to modify the default behaviour to spawn at random airports and fly to random destinations. -- -- In particular, you can specify fixed departure and/or destination airports. This is done via the @{#RAT.SetDeparture}() or @{#RAT.SetDestination}() functions, respectively. -- -- * If you only fix a specific departure airport via @{#RAT.SetDeparture}() all aircraft will be spawned at that airport and get random destination airports. -- * If you only fix the destination airport via @{#RAT.SetDestination}(), aircraft a spawned at random departure airports but will all fly to the destination airport. -- * If you fix departure and destination airports, aircraft will only travel from between those airports. -- When the aircraft reaches its destination, it will be respawned at its departure and fly again to its destination. -- -- There is also an option that allows aircraft to "continue their journey" from their destination. This is achieved by the @{#RAT.ContinueJourney}() function. -- In that case, when the aircraft arrives at its first destination it will be respawned at that very airport and get a new random destination. -- So the flight plan in this case would be: Fly from airport A to B, then from B to C, then from C to D, ... -- -- It is also possible to make aircraft "commute" between two airports, i.e. flying from airport A to B and then back from B to A, etc. -- This can be done by the @{#RAT.Commute}() function. Note that if no departure or destination airports are specified, the first departure and destination are chosen randomly. -- Then the aircraft will fly back and forth between those two airports indefinetly. -- -- -- ### Spawn in Air -- -- ![Process](..\Presentations\RAT\RAT_Examples_Spawn_in_Air.png) -- -- Aircraft can also be spawned in air rather than at airports on the ground. This is done by setting @{#RAT.SetTakeoff}() to "air". -- -- By default, aircraft are spawned randomly above airports of the map. -- -- The @{#RAT.SetDeparture}() option can be used to specify zones, which have been defined in the mission editor as departure zones. -- Aircraft will then be spawned at a random point within the zone or zones. -- -- Note that @{#RAT.SetDeparture}() also accepts airport names. For an air takeoff these are treated like zones with a radius of XX kilometers. -- Again, aircraft are spawned at random points within these zones around the airport. -- -- ### Misc Options -- -- ![Process](..\Presentations\RAT\RAT_Examples_Misc.png) -- -- The default "takeoff" type of RAT aircraft is that they are spawned with hot or cold engines. -- The choice is random, so 50% of aircraft will be spawned with hot engines while the other 50% will be spawned with cold engines. -- This setting can be changed using the @{#RAT.SetTakeoff}() function. The possible parameters for starting on ground are: -- -- * @{#RAT.SetTakeoff}("cold"), which means that all aircraft are spawned with their engines off, -- * @{#RAT.SetTakeoff}("hot"), which means that all aircraft are spawned with their engines on, -- * @{#RAT.SetTakeoff}("runway"), which means that all aircraft are spawned already at the runway ready to takeoff. -- Note that in this case the default spawn intervall is set to 180 seconds in order to avoid aircraft jamms on the runway. Generally, this takeoff at runways should be used with care and problems are to be expected. -- -- -- The options @{#RAT.SetMinDistance}() and @{#RAT.SetMaxDistance}() can be used to restrict the range from departure to destination. For example -- -- * @{#RAT.SetMinDistance}(100) will cause only random destination airports to be selected which are **at least** 100 km away from the departure airport. -- * @{#RAT.SetMaxDistance}(150) will allow only destination airports which are **less than** 150 km away from the departure airport. -- -- ![Process](..\Presentations\RAT\RAT_Gaussian.png) -- -- By default planes get a cruise altitude of ~20,000 ft ASL. The actual altitude is sampled from a Gaussian distribution. The picture shows this distribution -- if one would spawn 1000 planes. As can be seen most planes get a cruising alt of around FL200. Other values are possible but less likely the further away -- one gets from the expectation value. -- -- The expectation value, i.e. the altitude most aircraft get, can be set with the function @{#RAT.SetFLcruise}(). -- It is possible to restrict the minimum cruise altitude by @{#RAT.SetFLmin}() and the maximum cruise altitude by @{#RAT.SetFLmax}() -- -- The cruise altitude can also be given in meters ASL by the functions @{#RAT.SetCruiseAltitude}(), @{#RAT.SetMinCruiseAltitude}() and @{#RAT.SetMaxCruiseAltitude}(). -- -- For example: -- -- * @{#RAT.SetFLcruise}(300) will cause most planes fly around FL300. -- * @{#RAT.SetFLmin}(100) restricts the cruising alt such that no plane will fly below FL100. Note that this automatically changes the minimum distance from departure to destination. -- That means that only destinations are possible for which the aircraft has had enought time to reach that flight level and descent again. -- * @{#RAT.SetFLmax}(200) will restrict the cruise alt to maximum FL200, i.e. no aircraft will travel above this height. -- -- -- @field #RAT RAT={ ClassName = "RAT", -- Name of class: RAT = Random Air Traffic. debug=false, -- Turn debug messages on or off. templategroup=nil, -- Template group for the RAT aircraft. alias=nil, -- Alias for spawned group. spawninitialized=false, -- If RAT:Spawn() was already called this is set to true to prevent users to call it again. spawndelay=5, -- Delay time in seconds before first spawning happens. spawninterval=5, -- Interval between spawning units/groups. Note that we add a randomization of 50%. coalition = nil, -- Coalition of spawn group template. country = nil, -- Country of the group template. category = nil, -- Category of aircarft: "plane" or "heli". friendly = "same", -- Possible departure/destination airport: same=spawn+neutral, spawnonly=spawn, blue=blue+neutral, blueonly=blue, red=red+neutral, redonly=red, neutral. ctable = {}, -- Table with the valid coalitons from choice self.friendly. aircraft = {}, -- Table which holds the basic aircraft properties (speed, range, ...). Vcruisemax=nil, -- Max cruise speed in set by user. Vclimb=1500, -- Default climb rate in ft/min. AlphaDescent=3.6, -- Default angle of descenti in degrees. A value of 3.6 follows the 3:1 rule of 3 miles of travel and 1000 ft descent. roe = "hold", -- ROE of spawned groups, default is weapon hold (this is a peaceful class for civil aircraft or ferry missions). Possible: "hold", "return", "free". rot = "noreaction", -- ROT of spawned groups, default is no reaction. Possible: "noreaction", "passive", "evade". takeoff = 0, -- Takeoff type. 0=coldorhot. landing = 9, -- Landing type. 9=landing. mindist = 5000, -- Min distance from departure to destination in meters. Default 5 km. maxdist = 5000000, -- Max distance from departure to destination in meters. Default 5000 km. airports_map={}, -- All airports available on current map (Caucasus, Nevada, Normandy, ...). airports={}, -- All airports of friedly coalitions. random_departure=true, -- By default a random friendly airport is chosen as departure. random_destination=true, -- By default a random friendly airport is chosen as destination. departure_ports={}, -- Array containing the names of the departure airports or zones. destination_ports={}, -- Array containing the names of the destination airports or zones. Ndestination_Airports=0, -- Number of destination airports set via SetDestination(). Ndestination_Zones=0, -- Number of destination zones set via SetDestination(). Ndeparture_Airports=0, -- Number of departure airports set via SetDeparture(). Ndeparture_Zones=0, -- Number of departure zones set via SetDeparture. destinationzone=false, -- Destination is a zone and not an airport. return_zones={}, -- Array containing the names of return zones. returnzone=false, -- Aircraft will fly to a zone and back. excluded_ports={}, -- Array containing the names of explicitly excluded airports. departure_Azone=nil, -- Zone containing the departure airports. destination_Azone=nil, -- Zone containing the destination airports. addfriendlydepartures=false, -- Add all friendly airports to departures. addfriendlydestinations=false, -- Add all friendly airports to destinations. ratcraft={}, -- Array with the spawned RAT aircraft. Tinactive=600, -- Time in seconds after which inactive units will be destroyed. Default is 600 seconds. reportstatus=false, -- Aircraft report status. statusinterval=30, -- Intervall between status checks (and reports if enabled). placemarkers=false, -- Place markers of waypoints on F10 map. FLcruise=nil, -- Cruise altitude of aircraft. Default FL200 for planes and F005 for helos. FLminuser=nil, -- Minimum flight level set by user. FLmaxuser=nil, -- Maximum flight level set by user. FLuser=nil, -- Flight level set by users explicitly. commute=false, -- Aircraft commute between departure and destination, i.e. when respawned the departure airport becomes the new destiation. continuejourney=false, -- Aircraft will continue their journey, i.e. get respawned at their destination with a new random destination. alive=0, -- Number of groups which are alive. ngroups=nil, -- Number of groups to be spawned in total. f10menu=true, -- Add an F10 menu for RAT. Menu={}, -- F10 menu items for this RAT object. SubMenuName=nil, -- Submenu name for RAT object. respawn_at_landing=false, -- Respawn aircraft the moment they land rather than at engine shutdown. norespawn=false, -- Aircraft will not get respawned. respawn_after_takeoff=false, -- Aircraft will be respawned directly after takeoff. respawn_delay=nil, -- Delay in seconds until repawn happens after landing. markerids={}, -- Array with marker IDs. waypointdescriptions={}, -- Array with descriptions for waypoint markers. waypointstatus={}, -- Array with status info on waypoints. livery=nil, -- Livery of the aircraft. skill="High", -- Skill of AI. ATCswitch=true, -- Enable ATC. parking_id=nil, -- Specific parking ID when aircraft are spawned at airports. wp_final=nil, -- Index of the final waypoint. wp_holding=nil, -- Index of the holding waypoint. radio=nil, -- If true/false disables radio messages from the RAT groups. frequency=nil, -- Radio frequency used by the RAT groups. modulation=nil, -- Ratio modulation. Either "FM" or "AM". actype=nil, -- Aircraft type set by user. Changes the type of the template group. uncontrolled=false, -- Spawn uncontrolled aircraft. } ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Categories of the RAT class. -- @list cat -- @field #string plane Plane. -- @field #string heli Heli. RAT.cat={ plane="plane", heli="heli", } --- RAT waypoint type. -- @list wp RAT.wp={ coldorhot=0, air=1, runway=2, hot=3, cold=4, climb=5, cruise=6, descent=7, holding=8, landing=9, finalwp=10, } --- RAT aircraft status. -- @list status RAT.status={ -- Waypoint states. Departure="At departure point", Climb="Climbing", Cruise="Cruising", Uturn="Flying back home", Descent="Descending", DescentHolding="Descend to holding point", Holding="Holding", Destination="Arrived at destination", -- Event states. EventBirthAir="Born in air", EventBirth="Ready and starting engines", EventEngineStartAir="On journey", -- Started engines (in air) EventEngineStart="Started engines and taxiing", EventTakeoff="Airborne after take-off", EventLand="Landed and taxiing", EventEngineShutdown="Engines off", EventDead="Dead", EventCrash="Crashed", } --- RAT friendly coalitions. -- @list coal RAT.coal={ same="same", sameonly="sameonly", neutral="neutral", } --- RAT unit conversions. -- @list unit RAT.unit={ ft2meter=0.305, kmh2ms=0.278, FL2m=30.48, nm2km=1.852, nm2m=1852, } --- RAT rules of engagement. -- @list ROE RAT.ROE={ weaponhold="hold", weaponfree="free", returnfire="return", } --- RAT reaction to threat. -- @list ROT RAT.ROT={ evade="evade", passive="passive", noreaction="noreaction", } RAT.ATC={ init=false, flight={}, airport={}, unregistered=-1, onfinal=-100, Nclearance=2, delay=240, } --- Running number of placed markers on the F10 map. -- @field #number markerid RAT.markerid=0 --- Main F10 menu. -- @field #string MenuF10 RAT.MenuF10=nil --- Some ID to identify who we are in output of the DCS.log file. -- @field #string id RAT.id="RAT | " --- RAT version. -- @field #string version RAT.version="2.0.0" ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --TODO list: --DONE: Add scheduled spawn. --DONE: Add possibility to spawn in air. --DONE: Add departure zones for air start. --DONE: Make more functions to adjust/set RAT parameters. --DONE: Clean up debug messages. --DONE: Improve flight plan. Especially check FL against route length. --DONE: Add event handlers. --DONE: Respawn units when they have landed. --DONE: Change ROE state. --DONE: Make ROE state user function --DONE: Improve status reports. --DONE: Check compatibility with other #SPAWN functions. nope, not all! --DONE: Add possibility to continue journey at destination. Need "place" in event data for that. --DONE: Add enumerators and get rid off error prone string comparisons. --DONE: Check that FARPS are not used as airbases for planes. --DONE: Add special cases for ships (similar to FARPs). --DONE: Add cases for helicopters. --DONE: Add F10 menu. --DONE: Add markers to F10 menu. --DONE: Add respawn limit. Later... --DONE: Make takeoff method random between cold and hot start. --DONE: Check out uncontrolled spawning. Not now! --DONE: Check aircraft spawning in air at Sochi after third aircraft was spawned. ==> DCS behaviour. --DONE: Improve despawn after stationary. Might lead to despawning if many aircraft spawn at the same time. --DONE: Check why birth event is not handled. ==> Seems to be okay if it is called _OnBirth rather than _OnBirthday. Dont know why actually!? --DONE: Improve behaviour when no destination or departure airports were found. Leads to crash, e.g. 1184: attempt to get length of local 'destinations' (a nil value) --DONE: Check cases where aircraft get shot down. --DONE: Handle the case where more than 10 RAT objects are spawned. Likewise, more than 10 groups of one object. Causes problems with the number of menu items! ==> not now! --DONE: Add custom livery choice if possible. --TODO: When only a destination is set, it should be checked that the departure is within range. Also, that departure and destination are not the same. --TODO: Add function to include all airports to selected destinations/departures. --DONE: Find way to respawn aircraft at same position where the last was despawned for commute and journey. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Create a new RAT object. -- @param #RAT self -- @param #string groupname Name of the group as defined in the mission editor. This group is serving as a template for all spawned units. -- @param #string alias (Optional) Alias of the group. This is and optional parameter but must(!) be used if the same template group is used for more than one RAT object. -- @return #RAT Object of RAT class. -- @return #nil If the group does not exist in the mission editor. -- @usage yak1:RAT("RAT_YAK") will create a RAT object called "yak1". The template group in the mission editor must have the name "RAT_YAK". -- @usage yak2:RAT("RAT_YAK", "Yak2") will create a RAT object "yak2". The template group in the mission editor must have the name "RAT_YAK" but the group will be called "Yak2" in e.g. the F10 menu. function RAT:New(groupname, alias) -- Version info. env.info(RAT.id.."Version "..RAT.version) -- Welcome message. env.info(RAT.id.."Creating new RAT object from template: "..groupname) -- Set alias. alias=alias or groupname -- Inherit SPAWN class. local self=BASE:Inherit(self, SPAWN:NewWithAlias(groupname, alias)) -- #RAT -- Alias of groupname. self.alias=alias -- Get template group defined in the mission editor. local DCSgroup=Group.getByName(groupname) -- Check the group actually exists. if DCSgroup==nil then env.error(RAT.id.."Group with name "..groupname.." does not exist in the mission editor!") return nil end -- Store template group. self.templategroup=GROUP:FindByName(groupname) -- Set own coalition. self.coalition=DCSgroup:getCoalition() -- Initialize aircraft parameters based on ME group template. self:_InitAircraft(DCSgroup) -- Get all airports of current map (Caucasus, NTTR, Normandy, ...). self:_GetAirportsOfMap() return self end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Triggers the spawning of AI aircraft. Note that all additional options should be set before giving the spawn command. -- @param #RAT self -- @param #number naircraft (Optional) Number of aircraft to spawn. Default is one aircraft. -- @usage yak:Spawn(5) will spawn five aircraft. By default aircraft will spawn at neutral and red airports if the template group is part of the red coaliton. function RAT:Spawn(naircraft) -- Make sure that this function is only been called once per RAT object. if self.spawninitialized==true then env.error("Spawn function should only be called once per RAT object! Exiting and returning nil.") return nil else self.spawninitialized=true end -- Number of aircraft to spawn. Default is one. self.ngroups=naircraft or 1 -- Init RAT ATC if not already done. if self.ATCswitch and not RAT.ATC.init then RAT:_ATCInit(self.airports_map) end -- Create F10 main menu if it does not exists yet. if self.f10menu and not RAT.MenuF10 then RAT.MenuF10 = MENU_MISSION:New("RAT") end -- Set the coalition table based on choice of self.coalition and self.friendly. self:_SetCoalitionTable() -- Get all airports of this map beloning to friendly coalition(s). self:_GetAirportsOfCoalition() -- Set submenuname if it has not been set by user. if not self.SubMenuName then self.SubMenuName=self.alias end -- Get all departure airports inside a Moose zone. if self.departure_Azone~=nil then self.departure_ports=self:_GetAirportsInZone(self.departure_Azone) end -- Get all destination airports inside a Moose zone. if self.destination_Azone~=nil then self.destination_ports=self:_GetAirportsInZone(self.destination_Azone) end -- Add all friendly airports to possible departures/destinations if self.addfriendlydepartures then self:_AddFriendlyAirports(self.departure_ports) end if self.addfriendlydestinations then self:_AddFriendlyAirports(self.destination_ports) end -- Setting and possibly correction min/max/cruise flight levels. if self.FLcruise==nil then -- Default flight level (ASL). if self.category==RAT.cat.plane then -- For planes: FL200 = 20000 ft = 6096 m. self.FLcruise=200*RAT.unit.FL2m else -- For helos: FL005 = 500 ft = 152 m. self.FLcruise=005*RAT.unit.FL2m end end -- Run consistency checks. self:_CheckConsistency() -- Settings info local text=string.format("\n******************************************************\n") text=text..string.format("Spawning %i aircraft from template %s of type %s.\n", self.ngroups, self.SpawnTemplatePrefix, self.aircraft.type) text=text..string.format("Alias: %s\n", self.alias) text=text..string.format("Category: %s\n", self.category) text=text..string.format("Friendly coalitions: %s\n", self.friendly) text=text..string.format("Number of airports on map : %i\n", #self.airports_map) text=text..string.format("Number of friendly airports: %i\n", #self.airports) text=text..string.format("Totally random departure: %s\n", tostring(self.random_departure)) if not self.random_departure then text=text..string.format("Number of departure airports: %d\n", self.Ndeparture_Airports) text=text..string.format("Number of departure zones : %d\n", self.Ndeparture_Zones) end text=text..string.format("Totally random destination: %s\n", tostring(self.random_destination)) if not self.random_destination then text=text..string.format("Number of destination airports: %d\n", self.Ndestination_Airports) text=text..string.format("Number of destination zones : %d\n", self.Ndestination_Zones) end text=text..string.format("Min dist to destination: %4.1f\n", self.mindist) text=text..string.format("Max dist to destination: %4.1f\n", self.maxdist) text=text..string.format("Takeoff type: %i\n", self.takeoff) text=text..string.format("Landing type: %i\n", self.landing) text=text..string.format("Commute: %s\n", tostring(self.commute)) text=text..string.format("Journey: %s\n", tostring(self.continuejourney)) text=text..string.format("Destination Zone: %s\n", tostring(self.destinationzone)) text=text..string.format("Return Zone: %s\n", tostring(self.returnzone)) text=text..string.format("Uncontrolled: %s\n", tostring(self.uncontrolled)) text=text..string.format("Spawn delay: %4.1f\n", self.spawndelay) text=text..string.format("Spawn interval: %4.1f\n", self.spawninterval) text=text..string.format("Respawn after landing: %s\n", tostring(self.respawn_at_landing)) text=text..string.format("Respawning off: %s\n", tostring(self.norespawn)) text=text..string.format("Respawn after take-off: %s\n", tostring(self.respawn_after_takeoff)) text=text..string.format("Respawn delay: %s\n", tostring(self.respawn_delay)) text=text..string.format("ROE: %s\n", tostring(self.roe)) text=text..string.format("ROT: %s\n", tostring(self.rot)) text=text..string.format("Vclimb: %4.1f\n", self.Vclimb) text=text..string.format("AlphaDescent: %4.2f\n", self.AlphaDescent) text=text..string.format("Vcruisemax: %s\n", tostring(self.Vcruisemax)) text=text..string.format("FLcruise = %6.1f km = FL%3.0f\n", self.FLcruise/1000, self.FLcruise/RAT.unit.FL2m) text=text..string.format("FLuser: %s\n", tostring(self.Fluser)) text=text..string.format("FLminuser: %s\n", tostring(self.FLminuser)) text=text..string.format("FLmaxuser: %s\n", tostring(self.FLmaxuser)) text=text..string.format("Place markers: %s\n", tostring(self.placemarkers)) text=text..string.format("Report status: %s\n", tostring(self.reportstatus)) text=text..string.format("Status interval: %4.1f\n", self.statusinterval) text=text..string.format("Time inactive: %4.1f\n", self.Tinactive) text=text..string.format("Create F10 menu : %s\n", tostring(self.f10menu)) text=text..string.format("F10 submenu name: %s\n", self.SubMenuName) text=text..string.format("ATC enabled : %s\n", tostring(self.ATCswitch)) text=text..string.format("Radio comms : %s\n", tostring(self.radio)) text=text..string.format("Radio frequency : %s\n", tostring(self.frequency)) text=text..string.format("Radio modulation : %s\n", tostring(self.frequency)) if self.livery then text=text..string.format("Available liveries:\n") for _,livery in pairs(self.livery) do text=text..string.format("- %s\n", livery) end end text=text..string.format("******************************************************\n") env.info(RAT.id..text) -- Create submenus. if self.f10menu then self.Menu[self.SubMenuName]=MENU_MISSION:New(self.SubMenuName, RAT.MenuF10) self.Menu[self.SubMenuName]["groups"]=MENU_MISSION:New("Groups", self.Menu[self.SubMenuName]) MENU_MISSION_COMMAND:New("Spawn new group", self.Menu[self.SubMenuName], self._SpawnWithRoute, self) MENU_MISSION_COMMAND:New("Delete markers", self.Menu[self.SubMenuName], self._DeleteMarkers, self) MENU_MISSION_COMMAND:New("Status report", self.Menu[self.SubMenuName], self.Status, self, true) end -- Schedule spawning of aircraft. local Tstart=self.spawndelay local dt=self.spawninterval -- Ensure that interval is >= 180 seconds if spawn at runway is chosen. Aircraft need time to takeoff or the runway gets jammed. if self.takeoff==RAT.wp.runway and not self.random_departure then dt=math.max(dt, 180) end local Tstop=Tstart+dt*(self.ngroups-1) SCHEDULER:New(nil, self._SpawnWithRoute, {self}, Tstart, dt, 0.0, Tstop) -- Status check and report scheduler. SCHEDULER:New(nil, self.Status, {self}, Tstart+1, self.statusinterval) -- Handle events. self:HandleEvent(EVENTS.Birth, self._OnBirth) self:HandleEvent(EVENTS.EngineStartup, self._EngineStartup) self:HandleEvent(EVENTS.Takeoff, self._OnTakeoff) self:HandleEvent(EVENTS.Land, self._OnLand) self:HandleEvent(EVENTS.EngineShutdown, self._OnEngineShutdown) self:HandleEvent(EVENTS.Dead, self._OnDead) self:HandleEvent(EVENTS.Crash, self._OnCrash) -- TODO: add hit event? end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Function checks consistency of user input and automatically adjusts parameters if necessary. -- @param #RAT self function RAT:_CheckConsistency() -- User has used SetDeparture() if not self.random_departure then -- Count departure airports and zones. for _,name in pairs(self.departure_ports) do if self:_AirportExists(name) then self.Ndeparture_Airports=self.Ndeparture_Airports+1 elseif self:_ZoneExists(name) then self.Ndeparture_Zones=self.Ndeparture_Zones+1 end end -- Count destination airports and zones. for _,name in pairs(self.destination_ports) do if self:_AirportExists(name) then self.Ndestination_Airports=self.Ndestination_Airports+1 elseif self:_ZoneExists(name) then self.Ndestination_Zones=self.Ndestination_Zones+1 end end -- What can go wrong? -- Only zones but not takeoff air == > Enable takeoff air. if self.Ndeparture_Zones>0 and self.takeoff~=RAT.wp.air then self.takeoff=RAT.wp.air env.error(RAT.id.."At least one zone defined as departure and takeoff is NOT set to air. Enabling air start!") end -- No airport and no zone specified. if self.Ndeparture_Airports==0 and self.Ndeparture_Zone==0 then self.random_departure=true local text="No airports or zones found given in SetDeparture(). Enabling random departure airports!" env.error(RAT.id..text) MESSAGE:New(text, 30):ToAll() end end -- User has used SetDestination() if not self.random_destination then -- One zone specified as destination ==> Enable destination zone. -- This does not apply to return zone because the destination is the zone and not the final destination which can be an airport. if self.Ndestination_Zones>0 and self.landing~=RAT.wp.air and not self.returnzone then self.landing=RAT.wp.air self.destinationzone=true env.error(RAT.id.."At least one zone defined as destination and landing is NOT set to air. Enabling destination zone!") end -- No specified airport and no zone found at all. if self.Ndestination_Airports==0 and self.Ndestination_Zones==0 then self.random_destination=true local text="No airports or zones found given in SetDestination(). Enabling random destination airports!" env.error(RAT.id..text) MESSAGE:New(text, 30):ToAll() end end -- Destination zone and return zone should not be used together. if self.destinationzone and self.returnzone then env.error(RAT.id.."Destination zone _and_ return to zone not possible! Disabling return to zone.") self.returnzone=false end -- If returning to a zone, we set the landing type to "air" if takeoff is in air. -- Because if we start in air we want to end in air. But default landing is ground. if self.returnzone and self.takeoff==RAT.wp.air then self.landing=RAT.wp.air end -- Ensure that neither FLmin nor FLmax are above the aircrafts service ceiling. if self.FLminuser then self.FLminuser=math.min(self.FLminuser, self.aircraft.ceiling) end if self.FLmaxuser then self.FLmaxuser=math.min(self.FLmaxuser, self.aircraft.ceiling) end if self.FLcruise then self.FLcruise=math.min(self.FLcruise, self.aircraft.ceiling) end -- FL min > FL max case ==> spaw values if self.FLminuser and self.FLmaxuser then if self.FLminuser > self.FLmaxuser then local min=self.FLminuser local max=self.FLmaxuser self.FLminuser=max self.FLmaxuser=min end end -- Cruise alt < FL min if self.FLminuser and self.FLcruise FL max if self.FLmaxuser and self.FLcruise>self.FLmaxuser then self.FLcruise=self.FLmaxuser end -- Uncontrolled aircraft must start with engines off. if self.uncontrolled then -- TODO: Strangly, it does not work with RAT.wp.cold only with RAT.wp.hot! self.takeoff=RAT.wp.hot end end --- Set the friendly coalitions from which the airports can be used as departure and destination. -- @param #RAT self -- @param #string friendly "same"=own coalition+neutral (default), "sameonly"=own coalition only, "neutral"=all neutral airports. -- Default is "same", so aircraft will use airports of the coalition their spawn template has plus all neutral airports. -- @usage yak:SetCoalition("neutral") will spawn aircraft randomly on all neutral airports. -- @usage yak:SetCoalition("sameonly") will spawn aircraft randomly on airports belonging to the same coalition only as the template. function RAT:SetCoalition(friendly) if friendly:lower()=="sameonly" then self.friendly=RAT.coal.sameonly elseif friendly:lower()=="neutral" then self.friendly=RAT.coal.neutral else self.friendly=RAT.coal.same end end --- Set coalition of RAT group. You can make red templates blue and vice versa. -- @param #RAT self -- @param #string color Color of coalition, i.e. "red" or blue". function RAT:SetCoalitionAircraft(color) if color:lower()=="blue" then self.coalition=coalition.side.BLUE if not self.country then self.country=country.id.USA end elseif color:lower()=="red" then self.coalition=coalition.side.RED if not self.country then self.country=country.id.RUSSIA end elseif color:lower()=="neutral" then self.coalition=coalition.side.NEUTRAL end end --- Set country of RAT group. This overrules the coalition settings. -- @param #RAT self -- @param #number id DCS country enumerator ID. For example country.id.USA or country.id.RUSSIA. function RAT:SetCountry(id) self.country=id end --- Set takeoff type. Starting cold at airport, starting hot at airport, starting at runway, starting in the air. -- Default is "takeoff-coldorhot". So there is a 50% chance that the aircraft starts with cold engines and 50% that it starts with hot engines. -- @param #RAT self -- @param #string type Type can be "takeoff-cold" or "cold", "takeoff-hot" or "hot", "takeoff-runway" or "runway", "air". -- @usage RAT:Takeoff("hot") will spawn RAT objects at airports with engines started. -- @usage RAT:Takeoff("cold") will spawn RAT objects at airports with engines off. -- @usage RAT:Takeoff("air") will spawn RAT objects in air over random airports or within pre-defined zones. function RAT:SetTakeoff(type) local _Type if type:lower()=="takeoff-cold" or type:lower()=="cold" then _Type=RAT.wp.cold elseif type:lower()=="takeoff-hot" or type:lower()=="hot" then _Type=RAT.wp.hot elseif type:lower()=="takeoff-runway" or type:lower()=="runway" then _Type=RAT.wp.runway elseif type:lower()=="air" then _Type=RAT.wp.air else _Type=RAT.wp.coldorhot end self.takeoff=_Type end --- Set possible departure ports. This can be an airport or a zone defined in the mission editor. -- @param #RAT self -- @param #string departurenames Name or table of names of departure airports or zones. -- @usage RAT:SetDeparture("Sochi-Adler") will spawn RAT objects at Sochi-Adler airport. -- @usage RAT:SetDeparture({"Sochi-Adler", "Gudauta"}) will spawn RAT aircraft radomly at Sochi-Adler or Gudauta airport. -- @usage RAT:SetDeparture({"Zone A", "Gudauta"}) will spawn RAT aircraft in air randomly within Zone A, which has to be defined in the mission editor, or within a zone around Gudauta airport. Note that this also requires RAT:takeoff("air") to be set. function RAT:SetDeparture(departurenames) -- Random departure is deactivated now that user specified departure ports. self.random_departure=false -- Convert input to table. local names if type(departurenames)=="table" then names=departurenames elseif type(departurenames)=="string" then names={departurenames} else -- error message env.error(RAT.id.."Input parameter must be a string or a table in SetDeparture()!") end -- Put names into arrays. for _,name in pairs(names) do if self:_AirportExists(name) then -- If an airport with this name exists, we put it in the ports array. table.insert(self.departure_ports, name) elseif self:_ZoneExists(name) then -- If it is not an airport, we assume it is a zone. table.insert(self.departure_ports, name) else env.error(RAT.id.."ERROR! No departure airport or zone found with name "..name) end end end --- Set name of destination airports or zones for the AI aircraft. -- @param #RAT self -- @param #string destinationnames Name of the destination airport or table of destination airports. -- @usage RAT:SetDestination("Krymsk") makes all aircraft of this RAT oject fly to Krymsk airport. function RAT:SetDestination(destinationnames) -- Random departure is deactivated now that user specified departure ports. self.random_destination=false -- Convert input to table local names if type(destinationnames)=="table" then names=destinationnames elseif type(destinationnames)=="string" then names={destinationnames} else -- Error message. env.error(RAT.id.."Input parameter must be a string or a table in SetDestination()!") end -- Put names into arrays. for _,name in pairs(names) do if self:_AirportExists(name) then -- If an airport with this name exists, we put it in the ports array. table.insert(self.destination_ports, name) elseif self:_ZoneExists(name) then -- If it is not an airport, we assume it is a zone. table.insert(self.destination_ports, name) else env.error(RAT.id.."ERROR! No destination airport or zone found with name "..name) end end end --- Destinations are treated as zones. Aircraft will not land but rather be despawned when they reach a random point in the zone. -- @param #RAT self function RAT:DestinationZone() -- Destination is a zone. Needs special care. self.destinationzone=true -- Landing type is "air" because we don't actually land at the airport. self.landing=RAT.wp.air end --- Aircraft will fly to a random point within a zone and then return to its departure airport or zone. -- @param #RAT self function RAT:ReturnZone() -- Destination is a zone. Needs special care. self.returnzone=true end --- Include all airports which lie in a zone as possible destinations. -- @param #RAT self -- @param Core.Zone#ZONE zone Zone in which the departure airports lie. Has to be a MOOSE zone. function RAT:SetDestinationsFromZone(zone) -- Random departure is deactivated now that user specified departure ports. self.random_destination=false -- Set zone. self.destination_Azone=zone end --- Include all airports which lie in a zone as possible destinations. -- @param #RAT self -- @param Core.Zone#ZONE zone Zone in which the destination airports lie. Has to be a MOOSE zone. function RAT:SetDeparturesFromZone(zone) -- Random departure is deactivated now that user specified departure ports. self.random_departure=false -- Set zone. self.departure_Azone=zone end --- Add all friendly airports to the list of possible departures. -- @param #RAT self function RAT:AddFriendlyAirportsToDepartures() self.addfriendlydepartures=true end --- Add all friendly airports to the list of possible destinations -- @param #RAT self function RAT:AddFriendlyAirportsToDestinations() self.addfriendlydestinations=true end --- Airports, FARPs and ships explicitly excluded as departures and destinations. -- @param #RAT self -- @param #string ports Name or table of names of excluded airports. function RAT:ExcludedAirports(ports) if type(ports)=="string" then self.excluded_ports={ports} else self.excluded_ports=ports end end --- Set skill of AI aircraft. Default is "High". -- @param #RAT self -- @param #string skill Skill, options are "Average", "Good", "High", "Excellent" and "Random". Parameter is case insensitive. function RAT:SetAISkill(skill) if skill:lower()=="average" then self.skill="Average" elseif skill:lower()=="good" then self.skill="Good" elseif skill:lower()=="excellent" then self.skill="Excellent" elseif skill:lower()=="random" then self.skill="Random" else self.skill="High" end end --- Set livery of aircraft. If more than one livery is specified in a table, the actually used one is chosen randomly from the selection. -- @param #RAT self -- @param #table skins Name of livery or table of names of liveries. function RAT:Livery(skins) if type(skins)=="string" then self.livery={skins} else self.livery=skins end end --- Change aircraft type. This is a dirty hack which allows to change the aircraft type of the template group. -- Note that all parameters like cruise speed, climb rate, range etc are still taken from the template group which likely leads to strange behaviour. -- @param #RAT self -- @param #string actype Type of aircraft which is spawned independent of the template group. Use with care and expect problems! function RAT:ChangeAircraft(actype) self.actype=actype end --- Aircraft will continue their journey from their destination. This means they are respawned at their destination and get a new random destination. -- @param #RAT self function RAT:ContinueJourney() self.continuejourney=true self.commute=false end --- Aircraft will commute between their departure and destination airports or zones. -- @param #RAT self function RAT:Commute() self.commute=true self.continuejourney=false end --- Set the delay before first group is spawned. -- @param #RAT self -- @param #number delay Delay in seconds. Default is 5 seconds. Minimum delay is 0.5 seconds. function RAT:SetSpawnDelay(delay) delay=delay or 5 self.spawndelay=math.max(0.5, delay) end --- Set the interval between spawnings of the template group. -- @param #RAT self -- @param #number interval Interval in seconds. Default is 5 seconds. Minimum is 0.5 seconds. function RAT:SetSpawnInterval(interval) interval=interval or 5 self.spawninterval=math.max(0.5, interval) end --- Make aircraft respawn the moment they land rather than at engine shut down. -- @param #RAT self -- @param #number delay (Optional) Delay in seconds until respawn happens after landing. Default is 180 seconds. Minimum is 0.5 seconds. function RAT:RespawnAfterLanding(delay) delay = delay or 180 self.respawn_at_landing=true delay=math.max(0.5, delay) self.respawn_delay=delay end --- Aircraft will not get respawned when they finished their route. -- @param #RAT self function RAT:NoRespawn() self.norespawn=true end --- Aircraft will be respawned directly after take-off. -- @param #RAT self function RAT:RespawnAfterTakeoff() self.respawn_after_takeoff=true end --- Set parking id of aircraft. -- @param #RAT self -- @param #string id Parking ID of the aircraft. function RAT:SetParkingID(id) self.parking_id=id env.info(RAT.id.."Setting parking ID to "..self.parking_id) end --- Enable Radio. Overrules the ME setting. -- @param #RAT self function RAT:RadioON() self.radio=true end --- Disable Radio. Overrules the ME setting. -- @param #RAT self function RAT:RadioOFF() self.radio=false end --- Set radio frequency. -- @param #RAT self -- @param #number frequency Radio frequency. function RAT:RadioFrequency(frequency) self.frequency=frequency end --- Spawn aircraft in uncontolled state. Aircraft will only sit at their parking spots. Only for populating airfields. -- @param #RAT self function RAT:Uncontrolled() self.uncontrolled=true end --- Set radio modulation. Default is AM. -- @param #RAT self -- @param #string modulation Either "FM" or "AM". If no value is given, modulation is set to AM. function RAT:RadioModulation(modulation) if modulation=="AM" then self.modulation=radio.modulation.AM elseif modulation=="FM" then self.modulation=radio.modulation.FM else self.modulation=radio.modulation.AM end end --- Set the time after which inactive groups will be destroyed. -- @param #RAT self -- @param #number time Time in seconds. Default is 600 seconds = 10 minutes. Minimum is 60 seconds. function RAT:TimeDestroyInactive(time) time=time or self.Tinactive time=math.max(time, 60) self.Tinactive=time end --- Set the maximum cruise speed of the aircraft. -- @param #RAT self -- @param #number speed Speed in km/h. function RAT:SetMaxCruiseSpeed(speed) -- Convert to m/s. self.Vcruisemax=speed/3.6 end --- Set the climb rate. This automatically sets the climb angle. -- @param #RAT self -- @param #number rate Climb rate in ft/min. Default is 1500 ft/min. Minimum is 100 ft/min. Maximum is 15,000 ft/min. function RAT:SetClimbRate(rate) rate=rate or self.Vclimb rate=math.max(rate, 100) rate=math.min(rate, 15000) self.Vclimb=rate end --- Set the angle of descent. Default is 3.6 degrees, which corresponds to 3000 ft descent after one mile of travel. -- @param #RAT self -- @param #number angle Angle of descent in degrees. Minimum is 0.5 deg. Maximum 50 deg. function RAT:SetDescentAngle(angle) angle=angle or self.AlphaDescent angle=math.max(angle, 0.5) angle=math.min(angle, 50) self.AlphaDescent=angle end --- Set rules of engagement (ROE). Default is weapon hold. This is a peaceful class. -- @param #RAT self -- @param #string roe "hold" = weapon hold, "return" = return fire, "free" = weapons free. function RAT:SetROE(roe) if roe=="return" then self.roe=RAT.ROE.returnfire elseif roe=="free" then self.roe=RAT.ROE.weaponfree else self.roe=RAT.ROE.weaponhold end end --- Set reaction to threat (ROT). Default is no reaction, i.e. aircraft will simply ignore all enemies. -- @param #RAT self -- @param #string rot "noreaction" = no reaction to threats, "passive" = passive defence, "evade" = evade enemy attacks. function RAT:SetROT(rot) if rot=="passive" then self.rot=RAT.ROT.passive elseif rot=="evade" then self.rot=RAT.ROT.evade else self.rot=RAT.ROT.noreaction end end --- Set the name of the F10 submenu. Default is the name of the template group. -- @param #RAT self -- @param #string name Submenu name. function RAT:MenuName(name) self.SubMenuName=tostring(name) end --- Enable ATC, which manages the landing queue for RAT aircraft if they arrive simultaniously at the same airport. -- @param #RAT self -- @param #boolean switch Enable ATC (true) or Disable ATC (false). No argument means ATC enabled. function RAT:EnableATC(switch) if switch==nil then switch=true end self.ATCswitch=switch end --- Max number of planes that get landing clearance of the RAT ATC. This setting effects all RAT objects and groups! -- @param #RAT self -- @param #number n Number of aircraft that are allowed to land simultaniously. Default is 2. function RAT:ATC_Clearance(n) RAT.ATC.Nclearance=n or 2 end --- Delay between granting landing clearance for simultanious landings. This setting effects all RAT objects and groups! -- @param #RAT self -- @param #number time Delay time when the next aircraft will get landing clearance event if the previous one did not land yet. Default is 240 sec. function RAT:ATC_Delay(time) RAT.ATC.delay=time or 240 end --- Set minimum distance between departure and destination. Default is 5 km. -- Minimum distance should not be smaller than maybe ~500 meters to ensure that departure and destination are different. -- @param #RAT self -- @param #number dist Distance in km. function RAT:SetMinDistance(dist) -- Distance in meters. Absolute minimum is 500 m. self.mindist=math.max(500, dist*1000) end --- Set maximum distance between departure and destination. Default is 5000 km but aircarft range is also taken into account automatically. -- @param #RAT self -- @param #number dist Distance in km. function RAT:SetMaxDistance(dist) -- Distance in meters. self.maxdist=dist*1000 end --- Turn debug messages on or off. Default is off. -- @param #RAT self -- @param #boolean switch Turn debug on=true or off=false. No argument means on. function RAT:_Debug(switch) if switch==nil then switch=true end self.debug=switch end --- Aircraft report status update messages along the route. -- @param #RAT self -- @param #boolean switch Swtich reports on (true) or off (false). No argument is on. function RAT:StatusReports(switch) if switch==nil then switch=true end self.reportstatus=switch end --- Place markers of waypoints on the F10 map. Default is off. -- @param #RAT self -- @param #boolean switch true=yes, false=no. function RAT:PlaceMarkers(switch) if switch==nil then switch=true end self.placemarkers=switch end --- Set flight level. Setting this value will overrule all other logic. Aircraft will try to fly at this height regardless. -- @param #RAT self -- @param #number FL Fight Level in hundrets of feet. E.g. FL200 = 20000 ft ASL. function RAT:SetFL(FL) FL=FL or self.FLcruise FL=math.max(FL,0) self.FLuser=FL*RAT.unit.FL2m end --- Set max flight level. Setting this value will overrule all other logic. Aircraft will try to fly at less than this FL regardless. -- @param #RAT self -- @param #number FL Maximum Fight Level in hundrets of feet. function RAT:SetFLmax(FL) self.FLmaxuser=FL*RAT.unit.FL2m end --- Set max cruising altitude above sea level. -- @param #RAT self -- @param #number alt Altitude ASL in meters. function RAT:SetMaxCruiseAltitude(alt) self.FLmaxuser=alt end --- Set min flight level. Setting this value will overrule all other logic. Aircraft will try to fly at higher than this FL regardless. -- @param #RAT self -- @param #number FL Maximum Fight Level in hundrets of feet. function RAT:SetFLmin(FL) self.FLminuser=FL*RAT.unit.FL2m end --- Set min cruising altitude above sea level. -- @param #RAT self -- @param #number alt Altitude ASL in meters. function RAT:SetMinCruiseAltitude(alt) self.FLminuser=alt end --- Set flight level of cruising part. This is still be checked for consitancy with selected route and prone to radomization. -- Default is FL200 for planes and FL005 for helicopters. -- @param #RAT self -- @param #number FL Flight level in hundrets of feet. E.g. FL200 = 20000 ft ASL. function RAT:SetFLcruise(FL) self.FLcruise=FL*RAT.unit.FL2m end --- Set cruising altitude. This is still be checked for consitancy with selected route and prone to radomization. -- @param #RAT self -- @param #number alt Cruising altitude ASL in meters. function RAT:SetCruiseAltitude(alt) self.FLcruise=alt end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Initialize basic parameters of the aircraft based on its (template) group in the mission editor. -- @param #RAT self -- @param Dcs.DCSWrapper.Group#Group DCSgroup Group of the aircraft in the mission editor. function RAT:_InitAircraft(DCSgroup) local DCSunit=DCSgroup:getUnit(1) local DCSdesc=DCSunit:getDesc() local DCScategory=DCSgroup:getCategory() local DCStype=DCSunit:getTypeName() -- Descriptors table of unit. if self.debug then self:E({"DCSdesc", DCSdesc}) end -- set category if DCScategory==Group.Category.AIRPLANE then self.category=RAT.cat.plane elseif DCScategory==Group.Category.HELICOPTER then self.category=RAT.cat.heli else self.category="other" env.error(RAT.id.."Group of RAT is neither airplane nor helicopter!") end -- Get type of aircraft. self.aircraft.type=DCStype -- inital fuel in % self.aircraft.fuel=DCSunit:getFuel() -- operational range in NM converted to m self.aircraft.Rmax = DCSdesc.range*RAT.unit.nm2m -- effective range taking fuel into accound and a 5% reserve self.aircraft.Reff = self.aircraft.Rmax*self.aircraft.fuel*0.95 -- max airspeed from group self.aircraft.Vmax = DCSdesc.speedMax -- max climb speed in m/s self.aircraft.Vymax=DCSdesc.VyMax -- service ceiling in meters self.aircraft.ceiling=DCSdesc.Hmax -- info message local text=string.format("\n******************************************************\n") text=text..string.format("Aircraft parameters:\n") text=text..string.format("Template group = %s\n", self.SpawnTemplatePrefix) text=text..string.format("Alias = %s\n", self.alias) text=text..string.format("Category = %s\n", self.category) text=text..string.format("Type = %s\n", self.aircraft.type) text=text..string.format("Max air speed = %6.1f m/s\n", self.aircraft.Vmax) text=text..string.format("Max climb speed = %6.1f m/s\n", self.aircraft.Vymax) text=text..string.format("Initial Fuel = %6.1f\n", self.aircraft.fuel*100) text=text..string.format("Max range = %6.1f km\n", self.aircraft.Rmax/1000) text=text..string.format("Eff range = %6.1f km (with 95 percent initial fuel amount)\n", self.aircraft.Reff/1000) text=text..string.format("Ceiling = %6.1f km = FL%3.0f\n", self.aircraft.ceiling/1000, self.aircraft.ceiling/RAT.unit.FL2m) text=text..string.format("******************************************************\n") env.info(RAT.id..text) end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Spawn the AI aircraft with a route. -- Sets the departure and destination airports and waypoints. -- Modifies the spawn template. -- Sets ROE/ROT. -- Initializes the ratcraft array and group menu. -- @param #RAT self -- @param #string _departure (Optional) Name of departure airbase. -- @param #string _destination (Optional) Name of destination airbase. -- @param #number _takeoff Takeoff type id. function RAT:_SpawnWithRoute(_departure, _destination, _takeoff, _landing, _livery, _waypoint) -- Set takeoff type. local takeoff=self.takeoff local landing=self.landing -- Random choice between cold and hot. if self.takeoff==RAT.wp.coldorhot then local temp={RAT.wp.cold, RAT.wp.hot} takeoff=temp[math.random(2)] end -- Overrule takeoff/landing by what comes in. if _takeoff then takeoff=_takeoff end if _landing then landing=_landing end -- Set flight plan. local departure, destination, waypoints = self:_SetRoute(takeoff, landing, _departure, _destination, _waypoint) -- Return nil if we could not find a departure destination or waypoints if not (departure and destination and waypoints) then return nil end -- Set (another) livery. local livery if _livery then -- Take livery from previous flight (continue journey). livery=_livery elseif self.livery then -- Choose random livery. livery=self.livery[math.random(#self.livery)] local text=string.format("Chosen livery for group %s: %s", self:_AnticipatedGroupName(), livery) env.info(RAT.id..text) else livery=nil end --[[ -- Use last waypoint of previous flight as initial wp for this one. if _waypoint and takeoff==RAT.wp.air and (self.continuejourney or self.commute) then -- If the other way does not work, we can still try this. waypoints[1]=_waypoint end ]] -- Modify the spawn template to follow the flight plan. self:_ModifySpawnTemplate(waypoints, livery) -- Actually spawn the group. local group=self:SpawnWithIndex(self.SpawnIndex) -- Wrapper.Group#GROUP -- Increase group counter. self.alive=self.alive+1 -- ATC is monitoring this flight (if it supposed to land). if self.ATCswitch and landing==RAT.wp.landing then if self.returnzone then RAT:_ATCAddFlight(group:GetName(), departure:GetName()) else RAT:_ATCAddFlight(group:GetName(), destination:GetName()) end end -- Place markers of waypoints on F10 map. if self.placemarkers then self:_PlaceMarkers(waypoints, self.SpawnIndex) end -- Set ROE, default is "weapon hold". self:_SetROE(group, self.roe) -- Set ROT, default is "no reaction". self:_SetROT(group, self.rot) -- Init ratcraft array. self.ratcraft[self.SpawnIndex]={} self.ratcraft[self.SpawnIndex]["group"]=group self.ratcraft[self.SpawnIndex]["destination"]=destination self.ratcraft[self.SpawnIndex]["departure"]=departure self.ratcraft[self.SpawnIndex]["waypoints"]=waypoints self.ratcraft[self.SpawnIndex]["status"]="spawned" self.ratcraft[self.SpawnIndex]["airborne"]=group:InAir() -- Time and position on ground. For check if aircraft is stuck somewhere. if group:InAir() then self.ratcraft[self.SpawnIndex]["Tground"]=nil self.ratcraft[self.SpawnIndex]["Pground"]=nil self.ratcraft[self.SpawnIndex]["Tlastcheck"]=nil else self.ratcraft[self.SpawnIndex]["Tground"]=timer.getTime() self.ratcraft[self.SpawnIndex]["Pground"]=group:GetCoordinate() self.ratcraft[self.SpawnIndex]["Tlastcheck"]=timer.getTime() end -- Initial and current position. For calculating the travelled distance. self.ratcraft[self.SpawnIndex]["P0"]=group:GetCoordinate() self.ratcraft[self.SpawnIndex]["Pnow"]=group:GetCoordinate() self.ratcraft[self.SpawnIndex]["Distance"]=0 -- Each aircraft gets its own takeoff type. self.ratcraft[self.SpawnIndex].takeoff=takeoff self.ratcraft[self.SpawnIndex].landing=landing -- Livery self.ratcraft[self.SpawnIndex].livery=livery -- If this switch is set to true, the aircraft will be despawned the next time the status function is called. self.ratcraft[self.SpawnIndex].despawnme=false -- Create submenu for this group. if self.f10menu then local name=self.aircraft.type.." ID "..tostring(self.SpawnIndex) -- F10/RAT//Group X self.Menu[self.SubMenuName].groups[self.SpawnIndex]=MENU_MISSION:New(name, self.Menu[self.SubMenuName].groups) -- F10/RAT//Group X/Set ROE self.Menu[self.SubMenuName].groups[self.SpawnIndex]["roe"]=MENU_MISSION:New("Set ROE", self.Menu[self.SubMenuName].groups[self.SpawnIndex]) MENU_MISSION_COMMAND:New("Weapons hold", self.Menu[self.SubMenuName].groups[self.SpawnIndex]["roe"], self._SetROE, self, group, RAT.ROE.weaponhold) MENU_MISSION_COMMAND:New("Weapons free", self.Menu[self.SubMenuName].groups[self.SpawnIndex]["roe"], self._SetROE, self, group, RAT.ROE.weaponfree) MENU_MISSION_COMMAND:New("Return fire", self.Menu[self.SubMenuName].groups[self.SpawnIndex]["roe"], self._SetROE, self, group, RAT.ROE.returnfire) -- F10/RAT//Group X/Set ROT self.Menu[self.SubMenuName].groups[self.SpawnIndex]["rot"]=MENU_MISSION:New("Set ROT", self.Menu[self.SubMenuName].groups[self.SpawnIndex]) MENU_MISSION_COMMAND:New("No reaction", self.Menu[self.SubMenuName].groups[self.SpawnIndex]["rot"], self._SetROT, self, group, RAT.ROT.noreaction) MENU_MISSION_COMMAND:New("Passive defense", self.Menu[self.SubMenuName].groups[self.SpawnIndex]["rot"], self._SetROT, self, group, RAT.ROT.passive) MENU_MISSION_COMMAND:New("Evade on fire", self.Menu[self.SubMenuName].groups[self.SpawnIndex]["rot"], self._SetROT, self, group, RAT.ROT.evade) -- F10/RAT//Group X/ MENU_MISSION_COMMAND:New("Despawn group", self.Menu[self.SubMenuName].groups[self.SpawnIndex], self._Despawn, self, group) MENU_MISSION_COMMAND:New("Place markers", self.Menu[self.SubMenuName].groups[self.SpawnIndex], self._PlaceMarkers, self, waypoints, self.SpawnIndex) MENU_MISSION_COMMAND:New("Status report", self.Menu[self.SubMenuName].groups[self.SpawnIndex], self.Status, self, true, self.SpawnIndex) end return self.SpawnIndex end --- Clear flight for landing. Sets tigger value to 1. -- @param #RAT self -- @param #string name Name of flight to be cleared for landing. function RAT:ClearForLanding(name) trigger.action.setUserFlag(name, 1) local flagvalue=trigger.misc.getUserFlag(name) env.info(RAT.id.."ATC: User flag value (landing) for "..name.." set to "..flagvalue) end --- Respawn a group. -- @param #RAT self -- @param Wrapper.Group#GROUP group Group to be repawned. function RAT:_Respawn(group) -- Get the spawn index from group local index=self:GetSpawnIndexFromGroup(group) -- Get departure and destination from previous journey. local departure=self.ratcraft[index].departure local destination=self.ratcraft[index].destination local takeoff=self.ratcraft[index].takeoff local landing=self.ratcraft[index].landing local livery=self.ratcraft[index].livery local lastwp=self.ratcraft[index].waypoints[#self.ratcraft[index].waypoints] local _departure=nil local _destination=nil local _takeoff=nil local _landing=nil local _livery=nil local _lastwp=nil if self.continuejourney then -- We continue our journey from the old departure airport. _departure=destination:GetName() -- Use the same livery for next aircraft. _livery=livery if self.destinationzone then -- Case: X --> Zone --> Zone --> Zone _takeoff=RAT.wp.air _landing=RAT.wp.air elseif self.returnzone then -- Case: X --> Zone --> X, X --> Zone --> X -- We flew to a zone and back. Takeoff type does not change. _takeoff=self.takeoff -- If we took of in air we also want to land "in air". if self.takeoff==RAT.wp.air then _landing=RAT.wp.air else _landing=RAT.wp.landing end -- Departure stays the same. (The destination is the zone here.) _departure=departure:GetName() else -- Default case. Takeoff and landing type does not change. _takeoff=self.takeoff _landing=self.landing end elseif self.commute then -- We commute between departure and destination. _departure=destination:GetName() _destination=departure:GetName() -- Use the same livery for next aircraft. _livery=livery -- Handle takeoff type. if self.destinationzone then -- self.takeoff is either RAT.wp.air or RAT.wp.cold -- self.landing is RAT.wp.Air if self.takeoff==RAT.wp.air then -- Case: Zone <--> Zone (both have takeoff air) _takeoff=RAT.wp.air -- = self.takeoff (because we just checked) _landing=RAT.wp.air -- = self.landing (because destinationzone) else -- Case: Airport <--> Zone if takeoff==RAT.wp.air then -- Last takeoff was air so we are at the airport now, takeoff is from ground. _takeoff=self.takeoff -- must be either hot/cold/runway/hotcold _landing=RAT.wp.air -- must be air = self.landing (because destinationzone) else -- Last takeoff was on ground so we are at a zone now ==> takeoff in air, landing at airport. _takeoff=RAT.wp.air _landing=RAT.wp.landing end end elseif self.returnzone then -- We flew to a zone and back. No need to swap departure and destination. _departure=departure:GetName() _destination=destination:GetName() -- Takeoff and landing should also not change. _takeoff=self.takeoff _landing=self.landing end end -- Take the last waypoint as initial waypoint for next plane. if _takeoff==RAT.wp.air and (self.continuejourney or self.commute) then _lastwp=lastwp end if self.debug then env.info(RAT.id..string.format("self.takeoff, takeoff, _takeoff = %s, %s, %s", tostring(self.takeoff), tostring(takeoff), tostring(_takeoff))) env.info(RAT.id..string.format("self.landing, landing, _landing = %s, %s, %s", tostring(self.landing), tostring(landing), tostring(_landing))) end -- Spawn new group. if self.respawn_delay then SCHEDULER:New(nil, self._SpawnWithRoute, {self, _departure, _destination, _takeoff, _landing, _livery, _lastwp}, self.respawn_delay) else self:_SpawnWithRoute(_departure, _destination, _takeoff, _landing, _livery, _lastwp) end end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Set the route of the AI plane. Due to DCS landing bug, this has to be done before the unit is spawned. -- @param #RAT self -- @param takeoff #RAT.wp Takeoff type. Could also be air start. -- @param landing #RAT.wp Landing type. Could also be a destination in air. -- @param Wrapper.Airport#AIRBASE _departure (Optional) Departure airbase. -- @param Wrapper.Airport#AIRBASE _destination (Optional) Destination airbase. -- @return Wrapper.Airport#AIRBASE Departure airbase. -- @return Wrapper.Airport#AIRBASE Destination airbase. -- @return #table Table of flight plan waypoints. -- @return #nil If no valid departure or destination airport could be found. function RAT:_SetRoute(takeoff, landing, _departure, _destination, _waypoint) -- Max cruise speed. local VxCruiseMax if self.Vcruisemax then -- User input. VxCruiseMax = min(self.Vcruisemax, self.aircraft.Vmax) else -- Max cruise speed 90% of Vmax or 900 km/h whichever is lower. VxCruiseMax = math.min(self.aircraft.Vmax*0.90, 250) end -- Min cruise speed 70% of max cruise or 600 km/h whichever is lower. local VxCruiseMin = math.min(VxCruiseMax*0.70, 166) -- Cruise speed (randomized). Expectation value at midpoint between min and max. local VxCruise = self:_Random_Gaussian((VxCruiseMax-VxCruiseMin)/2+VxCruiseMin, (VxCruiseMax-VxCruiseMax)/4, VxCruiseMin, VxCruiseMax) -- Climb speed 90% ov Vmax but max 720 km/h. local VxClimb = math.min(self.aircraft.Vmax*0.90, 200) -- Descent speed 60% of Vmax but max 500 km/h. local VxDescent = math.min(self.aircraft.Vmax*0.60, 140) -- Holding speed is 90% of descent speed. local VxHolding = VxDescent*0.9 -- Final leg is 90% of holding speed. local VxFinal = VxHolding*0.9 -- Reasonably civil climb speed Vy=1500 ft/min = 7.6 m/s but max aircraft specific climb rate. local VyClimb=math.min(self.Vclimb*RAT.unit.ft2meter/60, self.aircraft.Vymax) -- Climb angle in rad. local AlphaClimb=math.asin(VyClimb/VxClimb) -- Descent angle in rad. local AlphaDescent=math.rad(self.AlphaDescent) -- Expected cruise level (peak of Gaussian distribution) local FLcruise_expect=self.FLcruise -- DEPARTURE AIRPORT -- Departure airport or zone. local departure=nil if _departure then if self:_AirportExists(_departure) then -- Check if new departure is an airport. departure=AIRBASE:FindByName(_departure) -- If we spawn in air, we convert departure to a zone. if takeoff == RAT.wp.air then departure=departure:GetZone() end elseif self:_ZoneExists(_departure) then -- If it's not an airport, check whether it's a zone. departure=ZONE:New(_departure) else local text=string.format("ERROR: Specified departure airport %s does not exist for %s!", _departure, self.alias) env.error(RAT.id..text) end else departure=self:_PickDeparture(takeoff) end -- Return nil if no departure could be found. if not departure then local text=string.format("No valid departure airport could be found for %s.", self.alias) MESSAGE:New(text, 60):ToAll() env.error(RAT.id..text) return nil end -- Coordinates of departure point. local Pdeparture if takeoff==RAT.wp.air then if _waypoint then -- Use coordinates of previous flight (commute or journey). Pdeparture=COORDINATE:New(_waypoint.x, _waypoint.alt, _waypoint.y) else -- For an air start, we take a random point within the spawn zone. local vec2=departure:GetRandomVec2() Pdeparture=COORDINATE:NewFromVec2(vec2) end else Pdeparture=departure:GetCoordinate() end -- Height ASL of departure point. local H_departure if takeoff==RAT.wp.air then -- Absolute minimum AGL local Hmin if self.category==RAT.cat.plane then Hmin=1000 else Hmin=50 end -- Departure altitude is 70% of default cruise with 30% variation and limited to 1000 m AGL (50 m for helos). H_departure=self:_Randomize(FLcruise_expect*0.7, 0.3, Pdeparture.y+Hmin, FLcruise_expect) if self.FLminuser then H_departure=math.max(H_departure,self.FLminuser) end -- Use alt of last flight. if _waypoint then H_departure=_waypoint.alt end else H_departure=Pdeparture.y end -- Adjust min distance between departure and destination for user set min flight level. local mindist=self.mindist if self.FLminuser then -- We can conly consider the symmetric case, because no destination selected yet. local hclimb=self.FLminuser-H_departure local hdescent=self.FLminuser-H_departure -- Minimum distance for l local Dclimb, Ddescent, Dtot=self:_MinDistance(AlphaClimb, AlphaDescent, hclimb, hdescent) if takeoff==RAT.wp.air and landing==RAT.wpair then mindist=0 -- Takeoff and landing are in air. No mindist required. elseif takeoff==RAT.wp.air then mindist=Ddescent -- Takeoff in air. Need only space to descent. elseif landing==RAT.wp.air then mindist=Dclimb -- Landing "in air". Need only space to climb. else mindist=Dtot -- Takeoff and landing on ground. Need both space to climb and descent. end -- Mindist is at least self.mindist. mindist=math.max(self.mindist, mindist) local text=string.format("Adjusting min distance to %d km (for given min FL%03d)", mindist/1000, self.FLminuser/RAT.unit.FL2m) env.info(RAT.id..text) end -- DESTINATION AIRPORT local destination=nil if _destination then if self:_AirportExists(_destination) then destination=AIRBASE:FindByName(_destination) if landing==RAT.wp.air or self.returnzone then destination=destination:GetZone() end elseif self:_ZoneExists(_destination) then destination=ZONE:New(_destination) else local text=string.format("ERROR: Specified destination airport/zone %s does not exist for %s!", _destination, self.alias) env.error(RAT.id..text) end else -- This handles the case where we have a journey and the first flight is done, i.e. _departure is set. -- If a user specified more than two destination airport explicitly, then we will stick to this. -- Otherwise, the route is random from now on. local random=self.random_destination if self.continuejourney and _departure and #self.destination_ports<3 then random=true end -- In case of a returnzone the destination (i.e. return point) is always a zone. local mylanding=landing local acrange=self.aircraft.Reff if self.returnzone then mylanding=RAT.wp.air acrange=self.aircraft.Reff/2 -- Aircraft needs to go to zone and back home. end -- Pick a destination airport. destination=self:_PickDestination(departure, Pdeparture, mindist, math.min(acrange, self.maxdist), random, mylanding) end -- Return nil if no departure could be found. if not destination then local text=string.format("No valid destination airport could be found for %s!", self.alias) MESSAGE:New(text, 60):ToAll() env.error(RAT.id..text) return nil end -- Check that departure and destination are not the same. Should not happen due to mindist. if destination:GetName()==departure:GetName() then local text=string.format("%s: Destination and departure are identical. Airport/zone %s.", self.alias, destination:GetName()) MESSAGE:New(text, 30):ToAll() env.error(RAT.id..text) end -- Get a random point inside zone return zone. local Preturn local destination_returnzone if self.returnzone then -- Get a random point inside zone return zone. local vec2=destination:GetRandomVec2() Preturn=COORDINATE:NewFromVec2(vec2) -- Returnzone becomes destination. destination_returnzone=destination -- Set departure to destination. destination=departure end -- Get destination coordinate. Either in a zone or exactly at the airport. local Pdestination if landing==RAT.wp.air then local vec2=destination:GetRandomVec2() Pdestination=COORDINATE:NewFromVec2(vec2) else Pdestination=destination:GetCoordinate() end -- Height ASL of destination airport/zone. local H_destination=Pdestination.y -- DESCENT/HOLDING POINT -- Get a random point between 5 and 10 km away from the destination. local Rhmin=8000 local Rhmax=20000 if self.category==RAT.cat.heli then -- For helos we set a distance between 500 to 1000 m. Rhmin=500 Rhmax=1000 end -- Coordinates of the holding point. y is the land height at that point. local Vholding=Pdestination:GetRandomVec2InRadius(Rhmax, Rhmin) local Pholding=COORDINATE:NewFromVec2(Vholding) -- AGL height of holding point. local H_holding=Pholding.y -- Holding point altitude. For planes between 1600 and 2400 m AGL. For helos 160 to 240 m AGL. local h_holding if self.category==RAT.cat.plane then h_holding=1200 else h_holding=150 end h_holding=self:_Randomize(h_holding, 0.2) -- This is the actual height ASL of the holding point we want to fly to local Hh_holding=H_holding+h_holding -- When we dont land, we set the holding altitude to the departure or cruise alt. -- This is used in the calculations. if landing==RAT.wp.air then Hh_holding=H_departure end -- Distance from holding point to final destination. local d_holding=Pholding:Get2DDistance(Pdestination) -- GENERAL local heading local d_total if self.returnzone then -- Heading from departure to destination in return zone. heading=self:_Course(Pdeparture, Preturn) -- Total distance to return zone and back. d_total=Pdeparture:Get2DDistance(Preturn) + Preturn:Get2DDistance(Pholding) else -- Heading from departure to holding point of destination. heading=self:_Course(Pdeparture, Pholding) -- Total distance between departure and holding point near destination. d_total=Pdeparture:Get2DDistance(Pholding) end -- Max height in case of air start, i.e. if we only would descent to holding point for the given distance. if takeoff==RAT.wp.air then local H_departure_max if landing==RAT.wp.air then H_departure_max = H_departure -- If we fly to a zone, there is no descent necessary. else H_departure_max = d_total * math.tan(AlphaDescent) + Hh_holding end H_departure=math.min(H_departure, H_departure_max) end -------------------------------------------- -- Height difference between departure and destination. local deltaH=math.abs(H_departure-Hh_holding) -- Slope between departure and destination. local phi = math.atan(deltaH/d_total) -- Adjusted climb/descent angles. local phi_climb local phi_descent if (H_departure > Hh_holding) then phi_climb=AlphaClimb+phi phi_descent=AlphaDescent-phi else phi_climb=AlphaClimb-phi phi_descent=AlphaDescent+phi end -- Total distance including slope. local D_total if self.returnzone then D_total = math.sqrt(deltaH*deltaH+d_total/2*d_total/2) else D_total = math.sqrt(deltaH*deltaH+d_total*d_total) end -- SSA triangle for sloped case. local gamma=math.rad(180)-phi_climb-phi_descent local a = D_total*math.sin(phi_climb)/math.sin(gamma) local b = D_total*math.sin(phi_descent)/math.sin(gamma) local hphi_max = b*math.sin(phi_climb) local hphi_max2 = a*math.sin(phi_descent) -- Height of triangle. local h_max1 = b*math.sin(AlphaClimb) local h_max2 = a*math.sin(AlphaDescent) -- Max height relative to departure or destination. local h_max if (H_departure > Hh_holding) then h_max=math.min(h_max1, h_max2) else h_max=math.max(h_max1, h_max2) end -- Max flight level aircraft can reach for given angles and distance. local FLmax = h_max+H_departure --CRUISE -- Min cruise alt is just above holding point at destination or departure height, whatever is larger. local FLmin=math.max(H_departure, Hh_holding) -- For helicopters we take cruise alt between 50 to 1000 meters above ground. Default cruise alt is ~150 m. if self.category==RAT.cat.heli then FLmin=math.max(H_departure, H_destination)+50 FLmax=math.max(H_departure, H_destination)+1000 end -- Ensure that FLmax not above its service ceiling. FLmax=math.min(FLmax, self.aircraft.ceiling) -- Overrule setting if user specified min/max flight level explicitly. if self.FLminuser then FLmin=math.max(self.FLminuser, FLmin) -- Still take care that we dont fly too high. end if self.FLmaxuser then FLmax=math.min(self.FLmaxuser, FLmax) -- Still take care that we dont fly too low. end -- If the route is very short we set FLmin a bit lower than FLmax. if FLmin>FLmax then FLmin=FLmax end -- Expected cruise altitude - peak of gaussian distribution. if FLcruise_expectFLmax then FLcruise_expect=FLmax end -- Set cruise altitude. Selected from Gaussian distribution but limited to FLmin and FLmax. local FLcruise=self:_Random_Gaussian(FLcruise_expect, math.abs(FLmax-FLmin)/4, FLmin, FLmax) -- Overrule setting if user specified a flight level explicitly. if self.FLuser then FLcruise=self.FLuser -- Still cruise alt should be with parameters! FLcruise=math.max(FLcruise, FLmin) FLcruise=math.min(FLcruise, FLmax) end -- Climb and descent heights. local h_climb = FLcruise - H_departure local h_descent = FLcruise - Hh_holding -- Distances. local d_climb = h_climb/math.tan(AlphaClimb) local d_descent = h_descent/math.tan(AlphaDescent) local d_cruise = d_total-d_climb-d_descent -- debug message local text=string.format("\n******************************************************\n") text=text..string.format("Template = %s\n", self.SpawnTemplatePrefix) text=text..string.format("Alias = %s\n", self.alias) text=text..string.format("Group name = %s\n\n", self:_AnticipatedGroupName()) text=text..string.format("Speeds:\n") text=text..string.format("VxCruiseMin = %6.1f m/s = %5.1f km/h\n", VxCruiseMin, VxCruiseMin*3.6) text=text..string.format("VxCruiseMax = %6.1f m/s = %5.1f km/h\n", VxCruiseMax, VxCruiseMax*3.6) text=text..string.format("VxCruise = %6.1f m/s = %5.1f km/h\n", VxCruise, VxCruise*3.6) text=text..string.format("VxClimb = %6.1f m/s = %5.1f km/h\n", VxClimb, VxClimb*3.6) text=text..string.format("VxDescent = %6.1f m/s = %5.1f km/h\n", VxDescent, VxDescent*3.6) text=text..string.format("VxHolding = %6.1f m/s = %5.1f km/h\n", VxHolding, VxHolding*3.6) text=text..string.format("VxFinal = %6.1f m/s = %5.1f km/h\n", VxFinal, VxFinal*3.6) text=text..string.format("VyClimb = %6.1f m/s\n", VyClimb) text=text..string.format("\nDistances:\n") text=text..string.format("d_climb = %6.1f km\n", d_climb/1000) text=text..string.format("d_cruise = %6.1f km\n", d_cruise/1000) text=text..string.format("d_descent = %6.1f km\n", d_descent/1000) text=text..string.format("d_holding = %6.1f km\n", d_holding/1000) text=text..string.format("d_total = %6.1f km\n", d_total/1000) text=text..string.format("\nHeights:\n") text=text..string.format("H_departure = %6.1f m ASL\n", H_departure) text=text..string.format("H_destination = %6.1f m ASL\n", H_destination) text=text..string.format("H_holding = %6.1f m ASL\n", H_holding) text=text..string.format("h_climb = %6.1f m\n", h_climb) text=text..string.format("h_descent = %6.1f m\n", h_descent) text=text..string.format("h_holding = %6.1f m\n", h_holding) text=text..string.format("delta H = %6.1f m\n", deltaH) text=text..string.format("FLmin = %6.1f m ASL = FL%03d\n", FLmin, FLmin/RAT.unit.FL2m) text=text..string.format("FLcruise = %6.1f m ASL = FL%03d\n", FLcruise, FLcruise/RAT.unit.FL2m) text=text..string.format("FLmax = %6.1f m ASL = FL%03d\n", FLmax, FLmax/RAT.unit.FL2m) text=text..string.format("\nAngles:\n") text=text..string.format("Alpha climb = %6.2f Deg\n", math.deg(AlphaClimb)) text=text..string.format("Alpha descent = %6.2f Deg\n", math.deg(AlphaDescent)) text=text..string.format("Phi (slope) = %6.2f Deg\n", math.deg(phi)) text=text..string.format("Phi climb = %6.2f Deg\n", math.deg(phi_climb)) text=text..string.format("Phi descent = %6.2f Deg\n", math.deg(phi_descent)) if self.debug then -- Max heights and distances if we would travel at FLmax. local h_climb_max = FLmax - H_departure local h_descent_max = FLmax - Hh_holding local d_climb_max = h_climb_max/math.tan(AlphaClimb) local d_descent_max = h_descent_max/math.tan(AlphaDescent) local d_cruise_max = d_total-d_climb_max-d_descent_max text=text..string.format("Heading = %6.1f Deg\n", heading) text=text..string.format("\nSSA triangle:\n") text=text..string.format("D_total = %6.1f km\n", D_total/1000) text=text..string.format("gamma = %6.1f Deg\n", math.deg(gamma)) text=text..string.format("a = %6.1f m\n", a) text=text..string.format("b = %6.1f m\n", b) text=text..string.format("hphi_max = %6.1f m\n", hphi_max) text=text..string.format("hphi_max2 = %6.1f m\n", hphi_max2) text=text..string.format("h_max1 = %6.1f m\n", h_max1) text=text..string.format("h_max2 = %6.1f m\n", h_max2) text=text..string.format("h_max = %6.1f m\n", h_max) text=text..string.format("\nMax heights and distances:\n") text=text..string.format("d_climb_max = %6.1f km\n", d_climb_max/1000) text=text..string.format("d_cruise_max = %6.1f km\n", d_cruise_max/1000) text=text..string.format("d_descent_max = %6.1f km\n", d_descent_max/1000) text=text..string.format("h_climb_max = %6.1f m\n", h_climb_max) text=text..string.format("h_descent_max = %6.1f m\n", h_descent_max) end text=text..string.format("******************************************************\n") env.info(RAT.id..text) -- Ensure that cruise distance is positve. Can be slightly negative in special cases. And we don't want to turn back. if d_cruise<0 then d_cruise=100 end -- Waypoints and coordinates local wp={} local c={} -- Departure/Take-off c[#c+1]=Pdeparture wp[#wp+1]=self:_Waypoint(#wp+1, takeoff, c[#wp+1], VxClimb, H_departure, departure) self.waypointdescriptions[#wp]="Departure" self.waypointstatus[#wp]=RAT.status.Departure -- Climb if takeoff==RAT.wp.air then -- Air start. if d_climb < 5000 or d_cruise < 5000 then -- We omit the climb phase completely and add it to the cruise part. d_cruise=d_cruise+d_climb else -- Only one waypoint at the end of climb = begin of cruise. c[#c+1]=c[#c]:Translate(d_climb, heading) wp[#wp+1]=self:_Waypoint(#wp+1, RAT.wp.cruise, c[#wp+1], VxCruise, FLcruise) self.waypointdescriptions[#wp]="Begin of Cruise" self.waypointstatus[#wp]=RAT.status.Cruise end else -- Ground start. c[#c+1]=c[#c]:Translate(d_climb/2, heading) c[#c+1]=c[#c]:Translate(d_climb/2, heading) wp[#wp+1]=self:_Waypoint(#wp+1, RAT.wp.climb, c[#wp+1], VxClimb, H_departure+(FLcruise-H_departure)/2) self.waypointdescriptions[#wp]="Climb" self.waypointstatus[#wp]=RAT.status.Climb wp[#wp+1]=self:_Waypoint(#wp+1, RAT.wp.cruise, c[#wp+1], VxCruise, FLcruise) self.waypointdescriptions[#wp]="Begin of Cruise" self.waypointstatus[#wp]=RAT.status.Cruise end -- Cruise -- First add the little bit from begin of cruise to the return point. if self.returnzone then c[#c+1]=Preturn wp[#wp+1]=self:_Waypoint(#wp+1, RAT.wp.cruise, c[#wp+1], VxCruise, FLcruise) self.waypointdescriptions[#wp]="Return Zone" self.waypointstatus[#wp]=RAT.status.Uturn end if landing==RAT.wp.air then -- Next waypoint is already the final destination. c[#c+1]=Pdestination wp[#wp+1]=self:_Waypoint(#wp+1, RAT.wp.finalwp, c[#wp+1], VxCruise, FLcruise) self.waypointdescriptions[#wp]="Final Destination" self.waypointstatus[#wp]=RAT.status.Destination elseif self.returnzone then -- The little bit back to end of cruise. c[#c+1]=c[#c]:Translate(d_cruise/2, heading-180) wp[#wp+1]=self:_Waypoint(#wp+1, RAT.wp.cruise, c[#wp+1], VxCruise, FLcruise) self.waypointdescriptions[#wp]="End of Cruise" self.waypointstatus[#wp]=RAT.status.Descent else c[#c+1]=c[#c]:Translate(d_cruise, heading) wp[#wp+1]=self:_Waypoint(#wp+1, RAT.wp.cruise, c[#wp+1], VxCruise, FLcruise) self.waypointdescriptions[#wp]="End of Cruise" self.waypointstatus[#wp]=RAT.status.Descent end -- Descent (only if we acually want to land) if landing==RAT.wp.landing then if self.returnzone then c[#c+1]=c[#c]:Translate(d_descent/2, heading-180) wp[#wp+1]=self:_Waypoint(#wp+1, RAT.wp.descent, c[#wp+1], VxDescent, FLcruise-(FLcruise-(h_holding+H_holding))/2) self.waypointdescriptions[#wp]="Descent" self.waypointstatus[#wp]=RAT.status.DescentHolding else c[#c+1]=c[#c]:Translate(d_descent/2, heading) wp[#wp+1]=self:_Waypoint(#wp+1, RAT.wp.descent, c[#wp+1], VxDescent, FLcruise-(FLcruise-(h_holding+H_holding))/2) self.waypointdescriptions[#wp]="Descent" self.waypointstatus[#wp]=RAT.status.DescentHolding end end -- Holding and final destination. if landing==RAT.wp.landing then -- Holding point c[#c+1]=Pholding wp[#wp+1]=self:_Waypoint(#wp+1, RAT.wp.holding, c[#wp+1], VxHolding, H_holding+h_holding) self.waypointdescriptions[#wp]="Holding Point" self.waypointstatus[#wp]=RAT.status.Holding self.wp_holding=#wp -- Final destination. c[#c+1]=Pdestination wp[#wp+1]=self:_Waypoint(#wp+1, landing, c[#wp+1], VxFinal, H_destination, destination) self.waypointdescriptions[#wp]="Destination" self.waypointstatus[#wp]=RAT.status.Destination end -- Final Waypoint self.wp_final=#wp -- Fill table with waypoints. local waypoints={} for _,p in ipairs(wp) do table.insert(waypoints, p) end -- Some info on the route. self:_Routeinfo(waypoints, "Waypoint info in set_route:") -- Return departure, destination and waypoints. if self.returnzone then -- We return the actual zone here because returning the departure leads to problems with commute. return departure, destination_returnzone, waypoints else return departure, destination, waypoints end end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Set the departure airport of the AI. If no airport name is given explicitly an airport from the coalition is chosen randomly. -- If takeoff style is set to "air", we use zones around the airports or the zones specified by user input. -- @param #RAT self -- @param #number takeoff Takeoff type. -- @return Wrapper.Airbase#AIRBASE Departure airport if spawning at airport. -- @return Core.Zone#ZONE Departure zone if spawning in air. function RAT:_PickDeparture(takeoff) -- Array of possible departure airports or zones. local departures={} if self.random_departure then -- Airports of friendly coalitions. for _,airport in pairs(self.airports) do local name=airport:GetName() if not self:_Excluded(name) then if takeoff==RAT.wp.air then table.insert(departures, airport:GetZone()) -- insert zone object. else table.insert(departures, airport) -- insert airport object. end end end else -- Destination airports or zones specified by user. for _,name in pairs(self.departure_ports) do local dep=nil if self:_AirportExists(name) then if takeoff==RAT.wp.air then dep=AIRBASE:FindByName(name):GetZone() else dep=AIRBASE:FindByName(name) end elseif self:_ZoneExists(name) then if takeoff==RAT.wp.air then dep=ZONE:New(name) else env.error(RAT.id.."Takeoff is not in air. Cannot use "..name.." as departure!") end else env.error(RAT.id.."No airport or zone found with name "..name) end -- Add to departures table. if dep then table.insert(departures, dep) end end end -- Info message. env.info(RAT.id.."Number of possible departures = "..#departures) -- Select departure airport or zone. local departure=departures[math.random(#departures)] local text if departure and departure:GetName() then if takeoff==RAT.wp.air then text="Chosen departure zone: "..departure:GetName() else text="Chosen departure airport: "..departure:GetName().." (ID "..departure:GetID()..")" end env.info(RAT.id..text) if self.debug then MESSAGE:New(text, 30):ToAll() end else env.error(RAT.id.."No departure airport or zone found.") departure=nil end return departure end --- Pick destination airport or zone depending on departure position. -- @param #RAT self -- @param Wrapper.Airbase#AIRBASE departure Departure airport or zone. -- @param Core.Point#COORDINATE q Coordinate of the departure point. -- @param #number minrange Minimum range to q in meters. -- @param #number maxrange Maximum range to q in meters. -- @param #boolean random Destination is randomly selected from friendly airport (true) or from destinations specified by user input (false). -- @param #number landing Number indicating whether we land at a destination airport or fly to a zone object. -- @return Wrapper.Airbase#AIRBASE destination Destination airport or zone. function RAT:_PickDestination(departure, q, minrange, maxrange, random, landing) -- Min/max range to destination. minrange=minrange or self.mindist maxrange=maxrange or self.maxdist -- All possible destinations. local destinations={} if random then -- Airports of friendly coalitions. for _,airport in pairs(self.airports) do local name=airport:GetName() if self:_IsFriendly(name) and not self:_Excluded(name) and name~=departure:GetName() then -- Distance from departure to possible destination local distance=q:Get2DDistance(airport:GetCoordinate()) -- Check if distance form departure to destination is within min/max range. if distance>=minrange and distance<=maxrange then if landing==RAT.wp.air then table.insert(destinations, airport:GetZone()) -- insert zone object. else table.insert(destinations, airport) -- insert airport object. end end end end else -- Destination airports or zones specified by user. for _,name in pairs(self.destination_ports) do -- Make sure departure and destination are not identical. if name ~= departure:GetName() then local dest=nil if self:_AirportExists(name) then if landing==RAT.wp.air then dest=AIRBASE:FindByName(name):GetZone() else dest=AIRBASE:FindByName(name) end elseif self:_ZoneExists(name) then if landing==RAT.wp.air then dest=ZONE:New(name) else env.error(RAT.id.."Landing is not in air. Cannot use zone "..name.." as destination!") end else env.error(RAT.id.."No airport or zone found with name "..name) end if dest then -- Distance from departure to possible destination local distance=q:Get2DDistance(dest:GetCoordinate()) -- Add as possible destination if zone is within range. if distance>=minrange and distance<=maxrange then table.insert(destinations, dest) else local text=string.format("Destination %s is ouside range. Distance = %5.1f km, min = %5.1f km, max = %5.1f km.", name, distance, minrange, maxrange) env.info(RAT.id..text) end end end end end -- Info message. env.info(RAT.id.."Number of possible destinations = "..#destinations) if #destinations > 0 then --- Compare distance of destination airports. -- @param Core.Point#COORDINATE a Coordinate of point a. -- @param Core.Point#COORDINATE b Coordinate of point b. -- @return #list Table sorted by distance. local function compare(a,b) local qa=q:Get2DDistance(a:GetCoordinate()) local qb=q:Get2DDistance(b:GetCoordinate()) return qa < qb end table.sort(destinations, compare) else destinations=nil end -- Randomly select one possible destination. local destination if destinations and #destinations>0 then -- Random selection. destination=destinations[math.random(#destinations)] -- Wrapper.Airbase#AIRBASE -- Debug message. local text if landing==RAT.wp.air then text=string.format("Chosen destination zone: %s.", destination:GetName()) else text=string.format("Chosen destination airport: %s (ID %d).", destination:GetName(), destination:GetID()) end env.info(RAT.id..text) if self.debug then MESSAGE:New(text, 30):ToAll() end else env.error(RAT.id.."No destination airport or zone found.") destination=nil end -- Return the chosen destination. return destination end --- Find airports within a zone. -- @param #RAT self -- @param Core.Zone#ZONE zone -- @return #list Table with airport names that lie within the zone. function RAT:_GetAirportsInZone(zone) local airports={} for _,airport in pairs(self.airports) do local name=airport:GetName() local coord=airport:GetCoordinate() if zone:IsPointVec3InZone(coord) then table.insert(airports, name) end end return airports end --- Check if airport is excluded from possible departures and destinations. -- @param #RAT self -- @param #string port Name of airport, FARP or ship to check. -- @return #boolean true if airport is excluded and false otherwise. function RAT:_Excluded(port) for _,name in pairs(self.excluded_ports) do if name==port then return true end end return false end --- Check if airport is friendly, i.e. belongs to the right coalition. -- @param #RAT self -- @param #string port Name of airport, FARP or ship to check. -- @return #boolean true if airport is friendly and false otherwise. function RAT:_IsFriendly(port) for _,airport in pairs(self.airports) do local name=airport:GetName() if name==port then return true end end return false end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Get all airports of the current map. -- @param #RAT self function RAT:_GetAirportsOfMap() local _coalition for i=0,2 do -- cycle coalition.side 0=NEUTRAL, 1=RED, 2=BLUE -- set coalition if i==0 then _coalition=coalition.side.NEUTRAL elseif i==1 then _coalition=coalition.side.RED elseif i==2 then _coalition=coalition.side.BLUE end -- get airbases of coalition local ab=coalition.getAirbases(i) -- loop over airbases and put them in a table for _,airbase in pairs(ab) do local _id=airbase:getID() local _p=airbase:getPosition().p local _name=airbase:getName() local _myab=AIRBASE:FindByName(_name) -- Add airport to table. table.insert(self.airports_map, _myab) if self.debug then local text1="MOOSE: Airport ID = ".._myab:GetID().." and Name = ".._myab:GetName()..", Category = ".._myab:GetCategory()..", TypeName = ".._myab:GetTypeName() --local text2="DCS : Airport ID = "..airbase:getID().." and Name = "..airbase:getName()..", Category = "..airbase:getCategory()..", TypeName = "..airbase:getTypeName() env.info(RAT.id..text1) --env.info(RAT.id..text2) end end end end --- Get all "friendly" airports of the current map. -- @param #RAT self function RAT:_GetAirportsOfCoalition() for _,coalition in pairs(self.ctable) do for _,airport in pairs(self.airports_map) do if airport:GetCoalition()==coalition then -- Planes cannot land on FARPs. local condition1=self.category==RAT.cat.plane and airport:GetTypeName()=="FARP" -- Planes cannot land on ships. local condition2=self.category==RAT.cat.plane and airport:GetCategory()==1 if not (condition1 or condition2) then table.insert(self.airports, airport) end end end end if #self.airports==0 then local text="No possible departure/destination airports found!" MESSAGE:New(text, 60):ToAll() env.error(RAT.id..text) end end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Report status of RAT groups. -- @param #RAT self -- @param #boolean message (Optional) Send message with report to all if true. -- @param #number forID (Optional) Send message only for this ID. function RAT:Status(message, forID) message=message or false forID=forID or false -- number of ratcraft spawned. local ngroups=#self.ratcraft -- Current time. local Tnow=timer.getTime() for i=1, ngroups do if self.ratcraft[i].group then if self.ratcraft[i].group:IsAlive() then -- Gather some information. local group=self.ratcraft[i].group --Wrapper.Group#GROUP local prefix=self:_GetPrefixFromGroup(group) local life=self:_GetLife(group) local fuel=group:GetFuel()*100.0 local airborne=group:InAir() local coords=group:GetCoordinate() local alt=coords.y --local vel=group:GetVelocityKMH() local departure=self.ratcraft[i].departure:GetName() local destination=self.ratcraft[i].destination:GetName() local type=self.aircraft.type -- Monitor time and distance on ground. local Tg=0 local Dg=0 local dTlast=0 local stationary=false --lets assume, we did move if airborne then -- Aircraft is airborne. self.ratcraft[i]["Tground"]=nil self.ratcraft[i]["Pground"]=nil self.ratcraft[i]["Tlastcheck"]=nil else --Aircraft is on ground. if self.ratcraft[i]["Tground"] then -- Aircraft was already on ground. Calculate total time on ground. Tg=Tnow-self.ratcraft[i]["Tground"] -- Distance on ground since last check. Dg=coords:Get2DDistance(self.ratcraft[i]["Pground"]) -- Time interval since last check. dTlast=Tnow-self.ratcraft[i]["Tlastcheck"] -- If more than Tinactive seconds passed since last check ==> check how much we moved meanwhile. if dTlast > self.Tinactive then -- If aircraft did not move more than 50 m since last check, we call it stationary and despawn it. --TODO: add case that the aircraft are currently starting their engines. This should not count as being stationary. --local starting_engines=self.ratcraft[i].status=="" if Dg<50 and not self.uncontrolled then stationary=true end -- Set the current time to know when the next check is necessary. self.ratcraft[i]["Tlastcheck"]=Tnow self.ratcraft[i]["Pground"]=coords end else -- First time we see that the aircraft is on ground. Initialize the times and position. self.ratcraft[i]["Tground"]=Tnow self.ratcraft[i]["Tlastcheck"]=Tnow self.ratcraft[i]["Pground"]=coords end end -- Monitor travelled distance since last check. local Pn=coords local Dtravel=Pn:Get2DDistance(self.ratcraft[i]["Pnow"]) self.ratcraft[i]["Pnow"]=Pn -- Add up the travelled distance. self.ratcraft[i]["Distance"]=self.ratcraft[i]["Distance"]+Dtravel -- Distance remaining to destination. local Ddestination=Pn:Get2DDistance(self.ratcraft[i].destination:GetCoordinate()) -- Status shortcut. local status=self.ratcraft[i].status -- Uncontrolled aircraft. if self.uncontrolled then status="Uncontrolled" end -- Status report. if (forID and i==forID) or (not forID) then local text=string.format("ID %i of group %s\n", i, prefix) if self.commute then text=text..string.format("%s commuting between %s and %s\n", type, departure, destination) elseif self.continuejourney then text=text..string.format("%s travelling from %s to %s (and continueing form there)\n", type, departure, destination) else text=text..string.format("%s travelling from %s to %s\n", type, departure, destination) end text=text..string.format("Status: %s", status) if airborne then text=text.." [airborne]\n" else text=text.." [on ground]\n" end text=text..string.format("Fuel = %3.0f %%\n", fuel) text=text..string.format("Life = %3.0f %%\n", life) text=text..string.format("FL%03d = %i m ASL\n", alt/RAT.unit.FL2m, alt) --text=text..string.format("Speed = %i km/h\n", vel) text=text..string.format("Distance travelled = %6.1f km\n", self.ratcraft[i]["Distance"]/1000) text=text..string.format("Distance to destination = %6.1f km", Ddestination/1000) if not airborne then text=text..string.format("\nTime on ground = %6.0f seconds\n", Tg) text=text..string.format("Position change = %8.1f m since %3.0f seconds.", Dg, dTlast) end if self.debug then env.info(RAT.id..text) end if message then MESSAGE:New(text, 20):ToAll() end end -- Despawn groups if they are on ground and don't move or are damaged. if not airborne then -- Despawn unit if it did not move more then 50 m in the last 180 seconds. if stationary then local text=string.format("Group %s is despawned after being %4.0f seconds inaktive on ground.", self.alias, dTlast) env.info(RAT.id..text) self:_Despawn(group) end -- Despawn group if life is < 10% and distance travelled < 100 m. if life<10 and Dtravel<100 then local text=string.format("Damaged group %s is despawned. Life = %3.0f", self.alias, life) self:_Despawn(group) end end if self.ratcraft[i].despawnme then local text=string.format("Flight %s will be despawned NOW!", self.alias) env.info(RAT.id..text) -- Despawn old group. self:_Respawn(self.ratcraft[i].group) self:_Despawn(self.ratcraft[i].group) end end else if self.debug then local text=string.format("Group %i does not exist.", i) env.info(RAT.id..text) end end end if (message and not forID) then local text=string.format("Alive groups of %s: %d", self.alias, self.alive) env.info(RAT.id..text) MESSAGE:New(text, 20):ToAll() end end --- Get (relative) life of first unit of a group. -- @param #RAT self -- @param Wrapper.Group#GROUP group Group of unit. -- @return #number Life of unit in percent. function RAT:_GetLife(group) local life=0.0 if group and group:IsAlive() then local unit=group:GetUnit(1) if unit then life=unit:GetLife()/unit:GetLife0()*100 else if self.debug then env.error(RAT.id.."Unit does not exist in RAT_Getlife(). Returning zero.") end end else if self.debug then env.error(RAT.id.."Group does not exist in RAT_Getlife(). Returning zero.") end end return life end --- Set status of group. -- @param #RAT self function RAT:_SetStatus(group, status) -- Get index from groupname. local index=self:GetSpawnIndexFromGroup(group) -- Set new status. self.ratcraft[index].status=status -- No status update message for "first waypoint", "holding" local no1 = status==RAT.status.Departure local no2 = status==RAT.status.EventBirthAir local no3 = status==RAT.status.Holding local text=string.format("Flight %s: %s.", group:GetName(), status) env.info(RAT.id..text) if (not (no1 or no2 or no3)) then MESSAGE:New(text, 10):ToAllIf(self.reportstatus) end end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Function is executed when a unit is spawned. -- @param #RAT self function RAT:_OnBirth(EventData) local SpawnGroup = EventData.IniGroup --Wrapper.Group#GROUP if SpawnGroup then -- Get the template name of the group. This can be nil if this was not a spawned group. local EventPrefix = self:_GetPrefixFromGroup(SpawnGroup) if EventPrefix then -- Check that the template name actually belongs to this object. if EventPrefix == self.alias then local text="Event: Group "..SpawnGroup:GetName().." was born." env.info(RAT.id..text) -- Set status. local status if SpawnGroup:InAir() then status="Just born (after air start)" status=RAT.status.EventBirthAir else status="Starting engines (after birth)" status=RAT.status.EventBirth end self:_SetStatus(SpawnGroup, status) end end else if self.debug then env.error("Group does not exist in RAT:_OnBirthDay().") end end end --- Function is executed when a unit starts its engines. -- @param #RAT self function RAT:_EngineStartup(EventData) local SpawnGroup = EventData.IniGroup --Wrapper.Group#GROUP if SpawnGroup then -- Get the template name of the group. This can be nil if this was not a spawned group. local EventPrefix = self:_GetPrefixFromGroup(SpawnGroup) if EventPrefix then -- Check that the template name actually belongs to this object. if EventPrefix == self.alias then local text="Event: Group "..SpawnGroup:GetName().." started engines." env.info(RAT.id..text) -- Set status. local status if SpawnGroup:InAir() then status="On journey (after air start)" status=RAT.status.EventEngineStartAir else status="Taxiing (after engines started)" status=RAT.status.EventEngineStart end self:_SetStatus(SpawnGroup, status) end end else if self.debug then env.error("Group does not exist in RAT:_EngineStartup().") end end end --- Function is executed when a unit takes off. -- @param #RAT self function RAT:_OnTakeoff(EventData) local SpawnGroup = EventData.IniGroup --Wrapper.Group#GROUP if SpawnGroup then -- Get the template name of the group. This can be nil if this was not a spawned group. local EventPrefix = self:_GetPrefixFromGroup(SpawnGroup) if EventPrefix then -- Check that the template name actually belongs to this object. if EventPrefix == self.alias then local text="Event: Group "..SpawnGroup:GetName().." is airborne." env.info(RAT.id..text) -- Set status. local status=RAT.status.EventTakeoff --self:_SetStatus(SpawnGroup, "On journey (after takeoff)") self:_SetStatus(SpawnGroup, status) if self.respawn_after_takeoff then text="Event: Group "..SpawnGroup:GetName().." will be respawned." env.info(RAT.id..text) -- Respawn group. self:_Respawn(SpawnGroup) end end end else if self.debug then env.error("Group does not exist in RAT:_OnTakeoff().") end end end --- Function is executed when a unit lands. -- @param #RAT self function RAT:_OnLand(EventData) local SpawnGroup = EventData.IniGroup --Wrapper.Group#GROUP if SpawnGroup then -- Get the template name of the group. This can be nil if this was not a spawned group. local EventPrefix = self:_GetPrefixFromGroup(SpawnGroup) if EventPrefix then -- Check that the template name actually belongs to this object. if EventPrefix == self.alias then local text="Event: Group "..SpawnGroup:GetName().." landed." env.info(RAT.id..text) -- Set status. --self:_SetStatus(SpawnGroup, "Taxiing (after landing)") local status=RAT.status.EventLand self:_SetStatus(SpawnGroup, status) -- ATC plane landed. Take it out of the queue and set runway to free. if self.ATCswitch then RAT:_ATCFlightLanded(SpawnGroup:GetName()) end if self.respawn_at_landing and not self.norespawn then text="Event: Group "..SpawnGroup:GetName().." will be respawned." env.info(RAT.id..text) -- Respawn group. self:_Respawn(SpawnGroup) end end end else if self.debug then env.error("Group does not exist in RAT:_OnLand().") end end end --- Function is executed when a unit shuts down its engines. -- @param #RAT self function RAT:_OnEngineShutdown(EventData) local SpawnGroup = EventData.IniGroup --Wrapper.Group#GROUP if SpawnGroup then -- Get the template name of the group. This can be nil if this was not a spawned group. local EventPrefix = self:_GetPrefixFromGroup(SpawnGroup) if EventPrefix then -- Check that the template name actually belongs to this object. if EventPrefix == self.alias then local text="Event: Group "..SpawnGroup:GetName().." shut down its engines." env.info(RAT.id..text) -- Set status. --self:_SetStatus(SpawnGroup, "Parking (shutting down engines)") local status=RAT.status.EventEngineShutdown self:_SetStatus(SpawnGroup, status) if not self.respawn_at_landing and not self.norespawn then text="Event: Group "..SpawnGroup:GetName().." will be respawned." env.info(RAT.id..text) -- Respawn group. self:_Respawn(SpawnGroup) end -- Despawn group. text="Event: Group "..SpawnGroup:GetName().." will be destroyed now." env.info(RAT.id..text) self:_Despawn(SpawnGroup) end end else if self.debug then env.error("Group does not exist in RAT:_OnEngineShutdown().") end end end --- Function is executed when a unit is dead. -- @param #RAT self function RAT:_OnDead(EventData) local SpawnGroup = EventData.IniGroup --Wrapper.Group#GROUP if SpawnGroup then -- Get the template name of the group. This can be nil if this was not a spawned group. local EventPrefix = self:_GetPrefixFromGroup(SpawnGroup) if EventPrefix then -- Check that the template name actually belongs to this object. if EventPrefix == self.alias then local text="Event: Group "..SpawnGroup:GetName().." died." env.info(RAT.id..text) -- Set status. --self:_SetStatus(SpawnGroup, "Destroyed (after dead)") local status=RAT.status.EventDead self:_SetStatus(SpawnGroup, status) end end else if self.debug then env.error("Group does not exist in RAT:_OnDead().") end end end --- Function is executed when a unit crashes. -- @param #RAT self function RAT:_OnCrash(EventData) local SpawnGroup = EventData.IniGroup --Wrapper.Group#GROUP if SpawnGroup then env.info(string.format("%sGroup %s crashed!", RAT.id, SpawnGroup:GetName())) -- Get the template name of the group. This can be nil if this was not a spawned group. local EventPrefix = self:_GetPrefixFromGroup(SpawnGroup) if EventPrefix then -- Check that the template name actually belongs to this object. if EventPrefix == self.alias then local text="Event: Group "..SpawnGroup:GetName().." crashed." env.info(RAT.id..text) -- Set status. --self:_SetStatus(SpawnGroup, "Crashed") local status=RAT.status.EventCrash self:_SetStatus(SpawnGroup, status) --TODO: Aircraft are not respawned if they crash. Should they? --TODO: Maybe spawn some people at the crash site and send a distress call. -- And define them as cargo which can be rescued. end end else if self.debug then env.error("Group does not exist in RAT:_OnCrash().") end end end --- Despawn unit. Unit gets destoyed and group is set to nil. -- Index of ratcraft array is taken from spawned group name. -- @param #RAT self -- @param Wrapper.Group#GROUP group Group to be despawned. function RAT:_Despawn(group) local index=self:GetSpawnIndexFromGroup(group) --self.ratcraft[index].group:Destroy() self.ratcraft[index].group=nil group:Destroy() -- Decrease group alive counter. self.alive=self.alive-1 -- Remove submenu for this group. if self.f10menu then self.Menu[self.SubMenuName]["groups"][index]:Remove() end --TODO: Maybe here could be some more arrays deleted? end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Create a waypoint that can be used with the Route command. -- @param #RAT self -- @param #number Running index of waypoints. Starts with 1 which is normally departure/spawn waypoint. -- @param #number Type Type of waypoint. -- @param Core.Point#COORDINATE Coord 3D coordinate of the waypoint. -- @param #number Speed Speed in m/s. -- @param #number Altitude Altitude in m. -- @param Wrapper.Airbase#AIRBASE Airport Airport of object to spawn. -- @return #table Waypoints for DCS task route or spawn template. function RAT:_Waypoint(index, Type, Coord, Speed, Altitude, Airport) -- Altitude of input parameter or y-component of 3D-coordinate. local _Altitude=Altitude or Coord.y -- Land height at given coordinate. local Hland=Coord:GetLandHeight() -- convert type and action in DCS format local _Type=nil local _Action=nil local _alttype="RADIO" if Type==RAT.wp.cold then -- take-off with engine off _Type="TakeOffParking" _Action="From Parking Area" _Altitude = 0 _alttype="RADIO" elseif Type==RAT.wp.hot then -- take-off with engine on _Type="TakeOffParkingHot" _Action="From Parking Area Hot" _Altitude = 0 _alttype="RADIO" elseif Type==RAT.wp.runway then -- take-off from runway _Type="TakeOff" _Action="From Parking Area" _Altitude = 0 _alttype="RADIO" elseif Type==RAT.wp.air then -- air start _Type="Turning Point" _Action="Turning Point" _alttype="BARO" elseif Type==RAT.wp.climb then _Type="Turning Point" _Action="Turning Point" _alttype="BARO" elseif Type==RAT.wp.cruise then _Type="Turning Point" _Action="Turning Point" _alttype="BARO" elseif Type==RAT.wp.descent then _Type="Turning Point" _Action="Turning Point" _alttype="BARO" elseif Type==RAT.wp.holding then _Type="Turning Point" _Action="Turning Point" --_Action="Fly Over Point" _alttype="BARO" elseif Type==RAT.wp.landing then _Type="Land" _Action="Landing" _Altitude = 0 _alttype="RADIO" elseif Type==RAT.wp.finalwp then _Type="Turning Point" --_Action="Fly Over Point" _Action="Turning Point" _alttype="BARO" else env.error("Unknown waypoint type in RAT:Waypoint() function!") _Type="Turning Point" _Action="Turning Point" _alttype="RADIO" end -- some debug info about input parameters local text=string.format("\n******************************************************\n") text=text..string.format("Waypoint = %d\n", index) text=text..string.format("Template = %s\n", self.SpawnTemplatePrefix) text=text..string.format("Alias = %s\n", self.alias) text=text..string.format("Type: %i - %s\n", Type, _Type) text=text..string.format("Action: %s\n", _Action) text=text..string.format("Coord: x = %6.1f km, y = %6.1f km, alt = %6.1f m\n", Coord.x/1000, Coord.z/1000, Coord.y) text=text..string.format("Speed = %6.1f m/s = %6.1f km/h = %6.1f knots\n", Speed, Speed*3.6, Speed*1.94384) text=text..string.format("Land = %6.1f m ASL\n", Hland) text=text..string.format("Altitude = %6.1f m (%s)\n", _Altitude, _alttype) if Airport then if Type==RAT.wp.air then text=text..string.format("Zone = %s\n", Airport:GetName()) else --text=text..string.format("Airport = %s with ID %i\n", Airport:GetName(), Airport:GetID()) text=text..string.format("Airport = %s\n", Airport:GetName()) end else text=text..string.format("No airport/zone specified\n") end text=text.."******************************************************\n" if self.debug then env.info(RAT.id..text) end -- define waypoint local RoutePoint = {} -- coordinates and altitude RoutePoint.x = Coord.x RoutePoint.y = Coord.z RoutePoint.alt = _Altitude -- altitude type: BARO=ASL or RADIO=AGL RoutePoint.alt_type = _alttype -- type RoutePoint.type = _Type RoutePoint.action = _Action -- speed in m/s RoutePoint.speed = Speed RoutePoint.speed_locked = true -- ETA (not used) RoutePoint.ETA=nil RoutePoint.ETA_locked = false -- waypoint name (only for the mission editor) RoutePoint.name="RAT waypoint" if (Airport~=nil) and (Type~=RAT.wp.air) then local AirbaseID = Airport:GetID() local AirbaseCategory = Airport:GetDesc().category if AirbaseCategory == Airbase.Category.SHIP then RoutePoint.linkUnit = AirbaseID RoutePoint.helipadId = AirbaseID --env.info(RAT.id.."WP: Ship id = "..AirbaseID) elseif AirbaseCategory == Airbase.Category.HELIPAD then RoutePoint.linkUnit = AirbaseID RoutePoint.helipadId = AirbaseID --env.info(RAT.id.."WP: Helipad id = "..AirbaseID) elseif AirbaseCategory == Airbase.Category.AIRDROME then RoutePoint.airdromeId = AirbaseID --env.info(RAT.id.."WP: Airdrome id = "..AirbaseID) else --env.error(RAT.id.."Unknown Airport categoryin _Waypoint()!") end end -- properties RoutePoint.properties = { ["vnav"] = 1, ["scale"] = 0, ["angle"] = 0, ["vangle"] = 0, ["steer"] = 2, } -- tasks local TaskCombo = {} local TaskHolding = self:_TaskHolding({x=Coord.x, y=Coord.z}, Altitude, Speed, self:_Randomize(90,0.9)) local TaskWaypoint = self:_TaskFunction("RAT._WaypointFunction", self, index) RoutePoint.task = {} RoutePoint.task.id = "ComboTask" RoutePoint.task.params = {} TaskCombo[#TaskCombo+1]=TaskWaypoint if Type==RAT.wp.holding then TaskCombo[#TaskCombo+1]=TaskHolding end RoutePoint.task.params.tasks = TaskCombo -- Return waypoint. return RoutePoint end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Provide information about the assigned flightplan. -- @param #RAT self -- @param #table waypoints Waypoints of the flight plan. -- @param #string comment Some comment to identify the provided information. -- @return #number total Total route length in meters. function RAT:_Routeinfo(waypoints, comment) local text=string.format("\n******************************************************\n") text=text..string.format("Template = %s\n", self.SpawnTemplatePrefix) if comment then text=text..comment.."\n" end text=text..string.format("Number of waypoints = %i\n", #waypoints) -- info on coordinate and altitude for i=1,#waypoints do local p=waypoints[i] text=text..string.format("WP #%i: x = %6.1f km, y = %6.1f km, alt = %6.1f m %s\n", i-1, p.x/1000, p.y/1000, p.alt, self.waypointdescriptions[i]) end -- info on distance between waypoints local total=0.0 for i=1,#waypoints-1 do local point1=waypoints[i] local point2=waypoints[i+1] local x1=point1.x local y1=point1.y local x2=point2.x local y2=point2.y local d=math.sqrt((x1-x2)^2 + (y1-y2)^2) local heading=self:_Course(point1, point2) total=total+d text=text..string.format("Distance from WP %i-->%i = %6.1f km. Heading = %03d : %s - %s\n", i-1, i, d/1000, heading, self.waypointdescriptions[i], self.waypointdescriptions[i+1]) end text=text..string.format("Total distance = %6.1f km\n", total/1000) text=text..string.format("******************************************************\n") -- send message if self.debug then --env.info(RAT.id..text) end env.info(RAT.id..text) -- return total route length in meters return total end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Orbit at a specified position at a specified alititude with a specified speed. -- @param #RAT self -- @param Dcs.DCSTypes#Vec2 P1 The point to hold the position. -- @param #number Altitude The altitude ASL at which to hold the position. -- @param #number Speed The speed flying when holding the position in m/s. -- @param #number Duration Duration of holding pattern in seconds. -- @return Dcs.DCSTasking.Task#Task DCSTask function RAT:_TaskHolding(P1, Altitude, Speed, Duration) --local LandHeight = land.getHeight(P1) --TODO: randomize P1 -- Second point is 3 km north of P1 and 200 m for helos. local dx=3000 local dy=0 if self.category==RAT.cat.heli then dx=200 dy=0 end local P2={} P2.x=P1.x+dx P2.y=P1.y+dy local Task = { id = 'Orbit', params = { pattern = AI.Task.OrbitPattern.RACE_TRACK, --pattern = AI.Task.OrbitPattern.CIRCLE, point = P1, point2 = P2, speed = Speed, altitude = Altitude } } local DCSTask={} DCSTask.id="ControlledTask" DCSTask.params={} DCSTask.params.task=Task if self.ATCswitch then -- Set stop condition for holding. Either flag=1 or after max. X min holding. local userflagname=string.format("%s#%03d", self.alias, self.SpawnIndex+1) local maxholdingduration=60*120 DCSTask.params.stopCondition={userFlag=userflagname, userFlagValue=1, duration=maxholdingduration} else DCSTask.params.stopCondition={duration=Duration} end return DCSTask end --- Function which is called after passing every waypoint. Info on waypoint is given and special functions are executed. -- @param Core.Group#GROUP group Group of aircraft. -- @param #RAT rat RAT object. -- @param #number wp Waypoint index. Running number of the waypoints. Determines the actions to be executed. function RAT._WaypointFunction(group, rat, wp) -- Current time and Spawnindex. local Tnow=timer.getTime() local sdx=rat:GetSpawnIndexFromGroup(group) -- Departure and destination names. local departure=rat.ratcraft[sdx].departure:GetName() local destination=rat.ratcraft[sdx].destination:GetName() local landing=rat.ratcraft[sdx].landing -- For messages local text -- Info on passing waypoint. text=string.format("Flight %s passing waypoint #%d %s.", group:GetName(), wp, rat.waypointdescriptions[wp]) env.info(RAT.id..text) -- New status. local status=rat.waypointstatus[wp] --rat.ratcraft[sdx].status=status rat:_SetStatus(group, status) if wp==rat.wp_holding then -- Aircraft arrived at holding point text=string.format("Flight %s to %s ATC: Holding and awaiting landing clearance.", group:GetName(), destination) MESSAGE:New(text, 10):ToAllIf(rat.reportstatus) -- Register aircraft at ATC. if rat.ATCswitch then MENU_MISSION_COMMAND:New("Clear for landing", rat.Menu[rat.SubMenuName].groups[sdx], rat.ClearForLanding, rat, group:GetName()) rat:_ATCRegisterFlight(group:GetName(), Tnow) end end if wp==rat.wp_final then text=string.format("Flight %s arrived at final destination %s.", group:GetName(), destination) MESSAGE:New(text, 10):ToAllIf(rat.reportstatus) env.info(RAT.id..text) if landing==RAT.wp.air then text=string.format("Activating despawn switch for flight %s! Group will be detroyed soon.", group:GetName()) MESSAGE:New(text, 30):ToAllIf(rat.debug) env.info(RAT.id..text) -- Enable despawn switch. Next time the status function is called, the aircraft will be despawned. rat.ratcraft[sdx].despawnme=true end end end --- Task function. -- @param #RAT self -- @param #string FunctionString Name of the function to be called. function RAT:_TaskFunction(FunctionString, ... ) self:F2({FunctionString, arg}) local DCSTask local ArgumentKey -- Templatename and anticipated name the group will get local templatename=self.templategroup:GetName() local groupname=self:_AnticipatedGroupName() local DCSScript = {} --DCSScript[#DCSScript+1] = "local MissionControllable = GROUP:Find( ... ) " DCSScript[#DCSScript+1] = "local MissionControllable = GROUP:FindByName(\""..groupname.."\") " DCSScript[#DCSScript+1] = "local RATtemplateControllable = GROUP:FindByName(\""..templatename.."\") " if arg and arg.n > 0 then ArgumentKey = '_' .. tostring(arg):match("table: (.*)") self.templategroup:SetState(self.templategroup, ArgumentKey, arg) DCSScript[#DCSScript+1] = "local Arguments = RATtemplateControllable:GetState(RATtemplateControllable, '" .. ArgumentKey .. "' ) " DCSScript[#DCSScript+1] = FunctionString .. "( MissionControllable, unpack( Arguments ) )" else DCSScript[#DCSScript+1] = FunctionString .. "( MissionControllable )" end DCSTask = self.templategroup:TaskWrappedAction(self.templategroup:CommandDoScript(table.concat(DCSScript))) --env.info(RAT.id.."Taskfunction:") --self:E( DCSTask ) return DCSTask end --- Anticipated group name from alias and spawn index. -- @param #RAT self -- @param #number index Spawnindex of group if given or self.SpawnIndex+1 by default. -- @return #string Name the group will get after it is spawned. function RAT:_AnticipatedGroupName(index) local index=index or self.SpawnIndex+1 return string.format("%s#%03d", self.alias, index) end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Calculate the max flight level for a given distance and fixed climb and descent rates. -- In other words we have a distance between two airports and want to know how high we -- can climb before we must descent again to arrive at the destination without any level/cruising part. -- @param #RAT self -- @param #number alpha Angle of climb [rad]. -- @param #number beta Angle of descent [rad]. -- @param #number d Distance between the two airports [m]. -- @param #number phi Angle between departure and destination [rad]. -- @param #number h0 Height [m] of departure airport. Note we implicitly assume that the height difference between departure and destination is negligible. -- @return #number Maximal flight level in meters. function RAT:_FLmax(alpha, beta, d, phi, h0) -- Solve ASA triangle for one side (d) and two adjacent angles (alpha, beta) given. local gamma=math.rad(180)-alpha-beta local a=d*math.sin(alpha)/math.sin(gamma) local b=d*math.sin(beta)/math.sin(gamma) -- h1 and h2 should be equal. local h1=b*math.sin(alpha) local h2=a*math.sin(beta) -- We also take the slope between departure and destination into account. local h3=b*math.cos(math.pi/2-(alpha+phi)) -- Debug message. local text=string.format("\nFLmax = FL%3.0f = %6.1f m.\n", h1/RAT.unit.FL2m, h1) text=text..string.format( "FLmax = FL%3.0f = %6.1f m.\n", h2/RAT.unit.FL2m, h2) text=text..string.format( "FLmax = FL%3.0f = %6.1f m.", h3/RAT.unit.FL2m, h3) if self.debug then env.info(RAT.id..text) end return h3+h0 end --- Calculate minimum distance between departure and destination for given minimum flight level and climb/decent rates. -- @param #RAT self -- @param #number alpha Angle of climb [rad]. -- @param #number beta Angle of descent [rad]. -- @param #number ha Height difference between departure and cruise altiude. -- @param #number hb Height difference between cruise altitude and destination. -- @return #number d1 Minimum distance for climb phase to reach cruise altitude. -- @return #number d2 Minimum distance for descent phase to reach destination height. -- @return #number dtot Minimum total distance to climb and descent. function RAT:_MinDistance(alpha, beta, ha, hb) local d1=ha/math.tan(alpha) local d2=hb/math.tan(beta) return d1, d2, d1+d2 end --- Add names of all friendly airports to possible departure or destination airports if they are not already in the list. -- @param #RAT self -- @param #table ports List of departure or destination airports/zones that will be added. function RAT:_AddFriendlyAirports(ports) for _,airport in pairs(self.airports) do if not self:_NameInList(ports, airport:GetName()) then table.insert(ports, airport:GetName()) end end end --- Check if a name/string is in a list or not. -- @param #RAT self -- @param #table liste List of names to be checked. -- @param #string name Name to be checked for. function RAT:_NameInList(liste, name) for _,item in pairs(liste) do if item==name then return true end end return false end --- Test if an airport exists on the current map. -- @param #RAT self -- @param #string name -- @return #boolean True if airport exsits, false otherwise. function RAT:_AirportExists(name) for _,airport in pairs(self.airports_map) do if airport:GetName()==name then return true end end return false end --- Test if a trigger zone defined in the mission editor exists. -- @param #RAT self -- @param #string name -- @return #boolean True if zone exsits, false otherwise. function RAT:_ZoneExists(name) local z=trigger.misc.getZone(name) if z then return true end return false end --- Set ROE for a group. -- @param #RAT self -- @param Wrapper.Group#GROUP group Group for which the ROE is set. -- @param #string roe ROE of group. function RAT:_SetROE(group, roe) env.info(RAT.id.."Setting ROE to "..roe.." for group "..group:GetName()) if self.roe==RAT.ROE.returnfire then group:OptionROEReturnFire() elseif self.roe==RAT.ROE.weaponfree then group:OptionROEWeaponFree() else group:OptionROEHoldFire() end end --- Set ROT for a group. -- @param #RAT self -- @param Wrapper.Group#GROUP group Group for which the ROT is set. -- @param #string rot ROT of group. function RAT:_SetROT(group, rot) env.info(RAT.id.."Setting ROT to "..rot.." for group "..group:GetName()) if self.rot==RAT.ROT.passive then group:OptionROTPassiveDefense() elseif self.rot==RAT.ROT.evade then group:OptionROTEvadeFire() else group:OptionROTNoReaction() end end --- Create a table with the valid coalitions for departure and destination airports. -- @param #RAT self function RAT:_SetCoalitionTable() -- get all possible departures/destinations depending on coalition if self.friendly==RAT.coal.neutral then self.ctable={coalition.side.NEUTRAL} elseif self.friendly==RAT.coal.same then self.ctable={self.coalition, coalition.side.NEUTRAL} elseif self.friendly==RAT.coal.sameonly then self.ctable={self.coalition} else env.error("Unknown friendly coalition in _SetCoalitionTable(). Defaulting to NEUTRAL.") self.ctable={self.coalition, coalition.side.NEUTRAL} end end ---Determine the heading from point a to point b. --@param #RAT self --@param Core.Point#COORDINATE a Point from. --@param Core.Point#COORDINATE b Point to. --@return #number Heading/angle in degrees. function RAT:_Course(a,b) local dx = b.x-a.x -- take the right value for y-coordinate (if we have "alt" then "y" if not "z") local ay if a.alt then ay=a.y else ay=a.z end local by if b.alt then by=b.y else by=b.z end local dy = by-ay local angle = math.deg(math.atan2(dy,dx)) if angle < 0 then angle = 360 + angle end return angle end ---Determine the heading for an aircraft to be entered in the route template. --@param #RAT self --@param #number course The course between two points in degrees. --@return #number heading Heading in rad. function RAT:_Heading(course) local h if course<=180 then h=math.rad(course) else h=-math.rad(360-course) end return h end --- Randomize a value by a certain amount. -- @param #RAT self -- @param #number value The value which should be randomized -- @param #number fac Randomization factor. -- @param #number lower (Optional) Lower limit of the returned value. -- @param #number upper (Optional) Upper limit of the returned value. -- @return #number Randomized value. -- @usage _Randomize(100, 0.1) returns a value between 90 and 110, i.e. a plus/minus ten percent variation. -- @usage _Randomize(100, 0.5, nil, 120) returns a value between 50 and 120, i.e. a plus/minus fivty percent variation with upper bound 120. function RAT:_Randomize(value, fac, lower, upper) local min if lower then min=math.max(value-value*fac, lower) else min=value-value*fac end local max if upper then max=math.min(value+value*fac, upper) else max=value+value*fac end local r=math.random(min, max) -- debug info if self.debug then local text=string.format("Random: value = %6.2f, fac = %4.2f, min = %6.2f, max = %6.2f, r = %6.2f", value, fac, min, max, r) env.info(RAT.id..text) end return r end --- Generate Gaussian pseudo-random numbers. -- @param #number x0 Expectation value of distribution. -- @param #number sigma (Optional) Standard deviation. Default 10. -- @param #number xmin (Optional) Lower cut-off value. -- @param #number xmax (Optional) Upper cut-off value. -- @return #number Gaussian random number. function RAT:_Random_Gaussian(x0, sigma, xmin, xmax) -- Standard deviation. Default 10 if not given. sigma=sigma or 10 local r local gotit=false local i=0 while not gotit do -- Uniform numbers in [0,1). We need two. local x1=math.random() local x2=math.random() -- Transform to Gaussian exp(-(x-x0)²/(2*sigma²). r = math.sqrt(-2*sigma*sigma * math.log(x1)) * math.cos(2*math.pi * x2) + x0 i=i+1 if (r>=xmin and r<=xmax) or i>100 then gotit=true end end return r end --- Place markers of the waypoints. Note we assume a very specific number and type of waypoints here. -- @param #RAT self -- @param #table waypoints Table with waypoints. -- @param #number index Spawn index of group. function RAT:_PlaceMarkers(waypoints, index) for i=1,#waypoints do self:_SetMarker(self.waypointdescriptions[i], waypoints[i], index) if self.debug then local text=string.format("Marker at waypoint #%d: %s for flight #%d", i, self.waypointdescriptions[i], index) env.info(RAT.id..text) end end end --- Set a marker visible for all on the F10 map. -- @param #RAT self -- @param #string text Info text displayed at maker. -- @param #table wp Position of marker coming in as waypoint, i.e. has x, y and alt components. -- @param #number index Spawn index of group. function RAT:_SetMarker(text, wp, index) RAT.markerid=RAT.markerid+1 self.markerids[#self.markerids+1]=RAT.markerid if self.debug then env.info(RAT.id..self.SpawnTemplatePrefix..": placing marker with ID "..RAT.markerid..": "..text) end -- Convert to coordinate. local vec={x=wp.x, y=wp.alt, z=wp.y} local flight=self:GetGroupFromIndex(index):GetName() -- Place maker visible for all on the F10 map. local text1=string.format("%s:\n%s", flight, text) trigger.action.markToAll(RAT.markerid, text1, vec) end --- Delete all markers on F10 map. -- @param #RAT self function RAT:_DeleteMarkers() for k,v in ipairs(self.markerids) do trigger.action.removeMark(v) end for k,v in ipairs(self.markerids) do self.markerids[k]=nil end end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Modifies the template of the group to be spawned. -- In particular, the waypoints of the group's flight plan are copied into the spawn template. -- This allows to spawn at airports and also land at other airports, i.e. circumventing the DCS "landing bug". -- @param #RAT self -- @param #table waypoints The waypoints of the AI flight plan. -- @param #string livery (Optional) Livery of the aircraft. All members of a flight will get the same livery. function RAT:_ModifySpawnTemplate(waypoints, livery) -- The 3D vector of the first waypoint, i.e. where we actually spawn the template group. local PointVec3 = {x=waypoints[1].x, y=waypoints[1].alt, z=waypoints[1].y} -- Heading from first to seconds waypoints to align units in case of air start. local course = self:_Course(waypoints[1], waypoints[2]) local heading = self:_Heading(course) if self:_GetSpawnIndex(self.SpawnIndex+1) then local SpawnTemplate = self.SpawnGroups[self.SpawnIndex].SpawnTemplate if SpawnTemplate then self:T(SpawnTemplate) -- Spawn aircraft in uncontolled state. if self.uncontrolled then SpawnTemplate.uncontrolled=true end -- Translate the position of the Group Template to the Vec3. for UnitID = 1, #SpawnTemplate.units do self:T('Before Translation SpawnTemplate.units['..UnitID..'].x = '..SpawnTemplate.units[UnitID].x..', SpawnTemplate.units['..UnitID..'].y = '..SpawnTemplate.units[UnitID].y) -- Tranlate position. local UnitTemplate = SpawnTemplate.units[UnitID] local SX = UnitTemplate.x local SY = UnitTemplate.y local BX = SpawnTemplate.route.points[1].x local BY = SpawnTemplate.route.points[1].y local TX = PointVec3.x + (SX-BX) local TY = PointVec3.z + (SY-BY) SpawnTemplate.units[UnitID].x = TX SpawnTemplate.units[UnitID].y = TY SpawnTemplate.units[UnitID].alt = PointVec3.y SpawnTemplate.units[UnitID].heading = heading SpawnTemplate.units[UnitID].psi = -heading -- Set livery (will be the same for all units of the group). if livery then SpawnTemplate.units[UnitID].livery_id = livery end -- Set type of aircraft. if self.actype then SpawnTemplate.units[UnitID]["type"] = self.actype end -- Set AI skill. SpawnTemplate.units[UnitID]["skill"] = self.skill -- Onboard number. SpawnTemplate.units[UnitID]["onboard_num"] = self.SpawnIndex -- Modify coaltion and country of template. SpawnTemplate.CoalitionID=self.coalition if self.country then SpawnTemplate.CountryID=self.country end -- Parking spot. UnitTemplate.parking = nil UnitTemplate.parking_id = self.parking_id --env.info(RAT.id.."Parking ID "..tostring(self.parking_id)) -- Initial altitude UnitTemplate.alt=PointVec3.y self:T('After Translation SpawnTemplate.units['..UnitID..'].x = '..SpawnTemplate.units[UnitID].x..', SpawnTemplate.units['..UnitID..'].y = '..SpawnTemplate.units[UnitID].y) end -- Copy waypoints into spawntemplate. By this we avoid the nasty DCS "landing bug" :) for i,wp in ipairs(waypoints) do SpawnTemplate.route.points[i]=wp end -- Also modify x,y of the template. Not sure why. SpawnTemplate.x = PointVec3.x SpawnTemplate.y = PointVec3.z -- Enable/disable radio. Same as checking the COMM box in the ME if self.radio then SpawnTemplate.communication=self.radio end -- Set radio frequency and modulation. if self.frequency then SpawnTemplate.frequency=self.frequency end if self.modulation then SpawnTemplate.modulation=self.modulation end -- Update modified template for spawn group. --self.SpawnGroups[self.SpawnIndex].SpawnTemplate=SpawnTemplate self:T(SpawnTemplate) end end end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- Initializes the ATC arrays and starts schedulers. -- @param #RAT self -- @param #table airports_map List of all airports of the map. function RAT:_ATCInit(airports_map) if not RAT.ATC.init then env.info(RAT.id.."Starting RAT ATC.") env.info(RAT.id.."Simultanious = "..RAT.ATC.Nclearance) env.info(RAT.id.."Delay = "..RAT.ATC.delay) RAT.ATC.init=true for _,ap in pairs(airports_map) do local name=ap:GetName() RAT.ATC.airport[name]={} RAT.ATC.airport[name].queue={} RAT.ATC.airport[name].busy=false RAT.ATC.airport[name].onfinal={} RAT.ATC.airport[name].Nonfinal=0 RAT.ATC.airport[name].traffic=0 RAT.ATC.airport[name].Tlastclearance=nil end SCHEDULER:New(nil, RAT._ATCCheck, {self}, 5, 15) SCHEDULER:New(nil, RAT._ATCStatus, {self}, 5, 60) RAT.ATC.T0=timer.getTime() end end --- Adds andd initializes a new flight after it was spawned. -- @param #RAT self -- @param #string name Group name of the flight. -- @param #string dest Name of the destination airport. function RAT:_ATCAddFlight(name, dest) env.info(string.format("%sATC %s: Adding flight %s with destination %s.", RAT.id, dest, name, dest)) RAT.ATC.flight[name]={} RAT.ATC.flight[name].destination=dest RAT.ATC.flight[name].Tarrive=-1 RAT.ATC.flight[name].holding=-1 RAT.ATC.flight[name].Tonfinal=-1 end --- Deletes a flight from ATC lists after it landed. -- @param #RAT self -- @param #table t Table. -- @param #string entry Flight name which shall be deleted. function RAT:_ATCDelFlight(t,entry) for k,_ in pairs(t) do if k==entry then t[entry]=nil end end end --- Registers a flight once it is near its holding point at the final destination. -- @param #RAT self -- @param #string name Group name of the flight. -- @param #number time Time the fight first registered. function RAT:_ATCRegisterFlight(name, time) env.info(RAT.id.."Flight ".. name.." registered at ATC for landing clearance.") RAT.ATC.flight[name].Tarrive=time RAT.ATC.flight[name].holding=0 end --- ATC status report about flights. -- @param #RAT self function RAT:_ATCStatus() -- Current time. local Tnow=timer.getTime() for name,_ in pairs(RAT.ATC.flight) do -- Holding time at destination. local hold=RAT.ATC.flight[name].holding local dest=RAT.ATC.flight[name].destination if hold >= 0 then -- Some string whether the runway is busy or not. local busy="Runway state is unknown" if RAT.ATC.airport[dest].Nonfinal>0 then busy="Runway is occupied by "..RAT.ATC.airport[dest].Nonfinal else busy="Runway is currently clear" end -- Aircraft is holding. local text=string.format("ATC %s: Flight %s is holding for %i:%02d. %s.", dest, name, hold/60, hold%60, busy) env.info(RAT.id..text) elseif hold==RAT.ATC.onfinal then -- Aircarft is on final approach for landing. local Tfinal=Tnow-RAT.ATC.flight[name].Tonfinal local text=string.format("ATC %s: Flight %s is on final. Waiting %i:%02d for landing event.", dest, name, Tfinal/60, Tfinal%60) env.info(RAT.id..text) elseif hold==RAT.ATC.unregistered then -- Aircraft has not arrived at holding point. --env.info(string.format("ATC %s: Flight %s is not registered yet (hold %d).", dest, name, hold)) else env.error(RAT.id.."Unknown holding time in RAT:_ATCStatus().") end end end --- Main ATC function. Updates the landing queue of all airports and inceases holding time for all flights. -- @param #RAT self function RAT:_ATCCheck() -- Init queue of flights at all airports. RAT:_ATCQueue() -- Current time. local Tnow=timer.getTime() for name,_ in pairs(RAT.ATC.airport) do for qID,flight in ipairs(RAT.ATC.airport[name].queue) do -- Number of aircraft in queue. local nqueue=#RAT.ATC.airport[name].queue -- Conditions to clear an aircraft for landing local landing1 if RAT.ATC.airport[name].Tlastclearance then -- Landing if time is enough and less then two planes are on final. landing1=(Tnow-RAT.ATC.airport[name].Tlastclearance > RAT.ATC.delay) and RAT.ATC.airport[name].Nonfinal < RAT.ATC.Nclearance else landing1=false end -- No other aircraft is on final. local landing2=RAT.ATC.airport[name].Nonfinal==0 if not landing1 and not landing2 then -- Update holding time. RAT.ATC.flight[flight].holding=Tnow-RAT.ATC.flight[flight].Tarrive -- Debug message. local text=string.format("ATC %s: Flight %s runway is busy. You are #%d of %d in landing queue. Your holding time is %i:%02d.", name, flight,qID, nqueue, RAT.ATC.flight[flight].holding/60, RAT.ATC.flight[flight].holding%60) env.info(RAT.id..text) else local text=string.format("ATC %s: Flight %s was cleared for landing. Your holding time was %i:%02d.", name, flight, RAT.ATC.flight[flight].holding/60, RAT.ATC.flight[flight].holding%60) env.info(RAT.id..text) -- Clear flight for landing. RAT:_ATCClearForLanding(name, flight) end end end -- Update queue of flights at all airports. RAT:_ATCQueue() end --- Giving landing clearance for aircraft by setting user flag. -- @param #RAT self -- @param #string airport Name of destination airport. -- @param #string flight Group name of flight, which gets landing clearence. function RAT:_ATCClearForLanding(airport, flight) -- Flight is cleared for landing. RAT.ATC.flight[flight].holding=RAT.ATC.onfinal -- Airport runway is busy now. RAT.ATC.airport[airport].busy=true -- Flight which is landing. RAT.ATC.airport[airport].onfinal[flight]=flight -- Number of planes on final approach. RAT.ATC.airport[airport].Nonfinal=RAT.ATC.airport[airport].Nonfinal+1 -- Last time an aircraft got landing clearance. RAT.ATC.airport[airport].Tlastclearance=timer.getTime() -- Current time. RAT.ATC.flight[flight].Tonfinal=timer.getTime() -- Set user flag to 1 ==> stop condition for holding. trigger.action.setUserFlag(flight, 1) local flagvalue=trigger.misc.getUserFlag(flight) -- Debug message. local text1=string.format("ATC %s: Flight %s cleared for landing (flag=%d).", airport, flight, flagvalue) local text2=string.format("ATC %s: Flight %s you are cleared for landing.", airport, flight) env.info( RAT.id..text1) MESSAGE:New(text2, 10):ToAll() end --- Takes care of organisational stuff after a plane has landed. -- @param #RAT self -- @param #string name Group name of flight. function RAT:_ATCFlightLanded(name) if RAT.ATC.flight[name] then -- Destination airport. local dest=RAT.ATC.flight[name].destination -- Times for holding and final approach. local Tnow=timer.getTime() local Tfinal=Tnow-RAT.ATC.flight[name].Tonfinal local Thold=RAT.ATC.flight[name].Tonfinal-RAT.ATC.flight[name].Tarrive -- Airport is not busy any more. RAT.ATC.airport[dest].busy=false -- No aircraft on final any more. RAT.ATC.airport[dest].onfinal[name]=nil -- Decrease number of aircraft on final. RAT.ATC.airport[dest].Nonfinal=RAT.ATC.airport[dest].Nonfinal-1 -- Remove this flight from list of flights. RAT:_ATCDelFlight(RAT.ATC.flight, name) -- Increase landing counter to monitor traffic. RAT.ATC.airport[dest].traffic=RAT.ATC.airport[dest].traffic+1 -- Number of planes landing per hour. local TrafficPerHour=RAT.ATC.airport[dest].traffic/(timer.getTime()-RAT.ATC.T0)*3600 -- Debug info local text1=string.format("ATC %s: Flight %s landed. Tholding = %i:%02d, Tfinal = %i:%02d.", dest, name, Thold/60, Thold%60, Tfinal/60, Tfinal%60) local text2=string.format("ATC %s: Number of flights still on final %d.", dest, RAT.ATC.airport[dest].Nonfinal) local text3=string.format("ATC %s: Traffic report: Number of planes landed in total %d. Flights/hour = %3.2f.", dest, RAT.ATC.airport[dest].traffic, TrafficPerHour) local text4=string.format("ATC %s: Flight %s landed. Welcome to %s.", dest, name, dest) env.info(RAT.id..text1) env.info(RAT.id..text2) env.info(RAT.id..text3) MESSAGE:New(text4, 10):ToAll() end end --- Creates a landing queue for all flights holding at airports. Aircraft with longest holding time gets first permission to land. -- @param #RAT self function RAT:_ATCQueue() for airport,_ in pairs(RAT.ATC.airport) do -- Local airport queue. local _queue={} -- Loop over all flights. for name,_ in pairs(RAT.ATC.flight) do --fvh local Tnow=timer.getTime() -- Update holding time (unless holing is set to onfinal=-100) if RAT.ATC.flight[name].holding>=0 then RAT.ATC.flight[name].holding=Tnow-RAT.ATC.flight[name].Tarrive end local hold=RAT.ATC.flight[name].holding local dest=RAT.ATC.flight[name].destination -- Flight is holding at this airport. if hold>=0 and airport==dest then _queue[#_queue+1]={name,hold} end end -- Sort queue w.r.t holding time in ascending order. local function compare(a,b) return a[2] > b[2] end table.sort(_queue, compare) -- Transfer queue to airport queue. RAT.ATC.airport[airport].queue={} for k,v in ipairs(_queue) do table.insert(RAT.ATC.airport[airport].queue, v[1]) end --fvh --for k,v in ipairs(RAT.ATC.airport[airport].queue) do --print(string.format("queue #%02i flight \"%s\" holding %d seconds",k, v, RAT.ATC.flight[v].holding)) --end end end ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ --- **AI** -- **AI Balancing will replace in multi player missions -- non-occupied human slots with AI groups, in order to provide an engaging simulation environment, -- even when there are hardly any players in the mission.** -- -- ![Banner Image](..\Presentations\AI_Balancer\Dia1.JPG) -- -- ==== -- -- # Demo Missions -- -- ### [AI_BALANCER Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/AIB%20-%20AI%20Balancing) -- -- ### [AI_BALANCER Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/AIB%20-%20AI%20Balancing) -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [AI_BALANCER YouTube Channel](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl2CJVIrL1TdAumuVS8n64B7) -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- * **[Dutch_Baron](https://forums.eagle.ru/member.php?u=112075)**: Working together with James has resulted in the creation of the AI_BALANCER class. James has shared his ideas on balancing AI with air units, and together we made a first design which you can use now :-) -- -- ==== -- -- @module AI_Balancer --- @type AI_BALANCER -- @field Core.Set#SET_CLIENT SetClient -- @field Functional.Spawn#SPAWN SpawnAI -- @field Wrapper.Group#GROUP Test -- @extends Core.Fsm#FSM_SET --- # AI_BALANCER class, extends @{Fsm#FSM_SET} -- -- The AI_BALANCER class monitors and manages as many replacement AI groups as there are -- CLIENTS in a SET_CLIENT collection, which are not occupied by human players. -- In other words, use AI_BALANCER to simulate human behaviour by spawning in replacement AI in multi player missions. -- -- The parent class @{Fsm#FSM_SET} manages the functionality to control the Finite State Machine (FSM). -- The mission designer can tailor the behaviour of the AI_BALANCER, by defining event and state transition methods. -- An explanation about state and event transition methods can be found in the @{FSM} module documentation. -- -- The mission designer can tailor the AI_BALANCER behaviour, by implementing a state or event handling method for the following: -- -- * @{#AI_BALANCER.OnAfterSpawned}( AISet, From, Event, To, AIGroup ): Define to add extra logic when an AI is spawned. -- -- ## 1. AI_BALANCER construction -- -- Create a new AI_BALANCER object with the @{#AI_BALANCER.New}() method: -- -- ## 2. AI_BALANCER is a FSM -- -- ![Process](..\Presentations\AI_Balancer\Dia13.JPG) -- -- ### 2.1. AI_BALANCER States -- -- * **Monitoring** ( Set ): Monitoring the Set if all AI is spawned for the Clients. -- * **Spawning** ( Set, ClientName ): There is a new AI group spawned with ClientName as the name of reference. -- * **Spawned** ( Set, AIGroup ): A new AI has been spawned. You can handle this event to customize the AI behaviour with other AI FSMs or own processes. -- * **Destroying** ( Set, AIGroup ): The AI is being destroyed. -- * **Returning** ( Set, AIGroup ): The AI is returning to the airbase specified by the ReturnToAirbase methods. Handle this state to customize the return behaviour of the AI, if any. -- -- ### 2.2. AI_BALANCER Events -- -- * **Monitor** ( Set ): Every 10 seconds, the Monitor event is triggered to monitor the Set. -- * **Spawn** ( Set, ClientName ): Triggers when there is a new AI group to be spawned with ClientName as the name of reference. -- * **Spawned** ( Set, AIGroup ): Triggers when a new AI has been spawned. You can handle this event to customize the AI behaviour with other AI FSMs or own processes. -- * **Destroy** ( Set, AIGroup ): The AI is being destroyed. -- * **Return** ( Set, AIGroup ): The AI is returning to the airbase specified by the ReturnToAirbase methods. -- -- ## 3. AI_BALANCER spawn interval for replacement AI -- -- Use the method @{#AI_BALANCER.InitSpawnInterval}() to set the earliest and latest interval in seconds that is waited until a new replacement AI is spawned. -- -- ## 4. AI_BALANCER returns AI to Airbases -- -- By default, When a human player joins a slot that is AI_BALANCED, the AI group will be destroyed by default. -- However, there are 2 additional options that you can use to customize the destroy behaviour. -- When a human player joins a slot, you can configure to let the AI return to: -- -- * @{#AI_BALANCER.ReturnToHomeAirbase}: Returns the AI to the **home** @{Airbase#AIRBASE}. -- * @{#AI_BALANCER.ReturnToNearestAirbases}: Returns the AI to the **nearest friendly** @{Airbase#AIRBASE}. -- -- Note that when AI returns to an airbase, the AI_BALANCER will trigger the **Return** event and the AI will return, -- otherwise the AI_BALANCER will trigger a **Destroy** event, and the AI will be destroyed. -- -- @field #AI_BALANCER AI_BALANCER = { ClassName = "AI_BALANCER", PatrolZones = {}, AIGroups = {}, Earliest = 5, -- Earliest a new AI can be spawned is in 5 seconds. Latest = 60, -- Latest a new AI can be spawned is in 60 seconds. } --- Creates a new AI_BALANCER object -- @param #AI_BALANCER self -- @param Core.Set#SET_CLIENT SetClient A SET\_CLIENT object that will contain the CLIENT objects to be monitored if they are alive or not (joined by a player). -- @param Functional.Spawn#SPAWN SpawnAI The default Spawn object to spawn new AI Groups when needed. -- @return #AI_BALANCER function AI_BALANCER:New( SetClient, SpawnAI ) -- Inherits from BASE local self = BASE:Inherit( self, FSM_SET:New( SET_GROUP:New() ) ) -- AI.AI_Balancer#AI_BALANCER -- TODO: Define the OnAfterSpawned event self:SetStartState( "None" ) self:AddTransition( "*", "Monitor", "Monitoring" ) self:AddTransition( "*", "Spawn", "Spawning" ) self:AddTransition( "Spawning", "Spawned", "Spawned" ) self:AddTransition( "*", "Destroy", "Destroying" ) self:AddTransition( "*", "Return", "Returning" ) self.SetClient = SetClient self.SetClient:FilterOnce() self.SpawnAI = SpawnAI self.SpawnQueue = {} self.ToNearestAirbase = false self.ToHomeAirbase = false self:__Monitor( 1 ) return self end --- Sets the earliest to the latest interval in seconds how long AI_BALANCER will wait to spawn a new AI. -- Provide 2 identical seconds if the interval should be a fixed amount of seconds. -- @param #AI_BALANCER self -- @param #number Earliest The earliest a new AI can be spawned in seconds. -- @param #number Latest The latest a new AI can be spawned in seconds. -- @return self function AI_BALANCER:InitSpawnInterval( Earliest, Latest ) self.Earliest = Earliest self.Latest = Latest return self end --- Returns the AI to the nearest friendly @{Airbase#AIRBASE}. -- @param #AI_BALANCER self -- @param Dcs.DCSTypes#Distance ReturnThresholdRange If there is an enemy @{Client#CLIENT} within the ReturnThresholdRange given in meters, the AI will not return to the nearest @{Airbase#AIRBASE}. -- @param Core.Set#SET_AIRBASE ReturnAirbaseSet The SET of @{Set#SET_AIRBASE}s to evaluate where to return to. function AI_BALANCER:ReturnToNearestAirbases( ReturnThresholdRange, ReturnAirbaseSet ) self.ToNearestAirbase = true self.ReturnThresholdRange = ReturnThresholdRange self.ReturnAirbaseSet = ReturnAirbaseSet end --- Returns the AI to the home @{Airbase#AIRBASE}. -- @param #AI_BALANCER self -- @param Dcs.DCSTypes#Distance ReturnThresholdRange If there is an enemy @{Client#CLIENT} within the ReturnThresholdRange given in meters, the AI will not return to the nearest @{Airbase#AIRBASE}. function AI_BALANCER:ReturnToHomeAirbase( ReturnThresholdRange ) self.ToHomeAirbase = true self.ReturnThresholdRange = ReturnThresholdRange end --- @param #AI_BALANCER self -- @param Core.Set#SET_GROUP SetGroup -- @param #string ClientName -- @param Wrapper.Group#GROUP AIGroup function AI_BALANCER:onenterSpawning( SetGroup, From, Event, To, ClientName ) -- OK, Spawn a new group from the default SpawnAI object provided. local AIGroup = self.SpawnAI:Spawn() -- Wrapper.Group#GROUP if AIGroup then AIGroup:E( "Spawning new AIGroup" ) --TODO: need to rework UnitName thing ... SetGroup:Add( ClientName, AIGroup ) self.SpawnQueue[ClientName] = nil -- Fire the Spawned event. The first parameter is the AIGroup just Spawned. -- Mission designers can catch this event to bind further actions to the AIGroup. self:Spawned( AIGroup ) end end --- @param #AI_BALANCER self -- @param Core.Set#SET_GROUP SetGroup -- @param Wrapper.Group#GROUP AIGroup function AI_BALANCER:onenterDestroying( SetGroup, From, Event, To, ClientName, AIGroup ) AIGroup:Destroy() SetGroup:Flush() SetGroup:Remove( ClientName ) SetGroup:Flush() end --- @param #AI_BALANCER self -- @param Core.Set#SET_GROUP SetGroup -- @param Wrapper.Group#GROUP AIGroup function AI_BALANCER:onenterReturning( SetGroup, From, Event, To, AIGroup ) local AIGroupTemplate = AIGroup:GetTemplate() if self.ToHomeAirbase == true then local WayPointCount = #AIGroupTemplate.route.points local SwitchWayPointCommand = AIGroup:CommandSwitchWayPoint( 1, WayPointCount, 1 ) AIGroup:SetCommand( SwitchWayPointCommand ) AIGroup:MessageToRed( "Returning to home base ...", 30 ) else -- Okay, we need to send this Group back to the nearest base of the Coalition of the AI. --TODO: i need to rework the POINT_VEC2 thing. local PointVec2 = POINT_VEC2:New( AIGroup:GetVec2().x, AIGroup:GetVec2().y ) local ClosestAirbase = self.ReturnAirbaseSet:FindNearestAirbaseFromPointVec2( PointVec2 ) self:T( ClosestAirbase.AirbaseName ) AIGroup:MessageToRed( "Returning to " .. ClosestAirbase:GetName().. " ...", 30 ) local RTBRoute = AIGroup:RouteReturnToAirbase( ClosestAirbase ) AIGroupTemplate.route = RTBRoute AIGroup:Respawn( AIGroupTemplate ) end end --- @param #AI_BALANCER self function AI_BALANCER:onenterMonitoring( SetGroup ) self:T2( { self.SetClient:Count() } ) --self.SetClient:Flush() self.SetClient:ForEachClient( --- @param Wrapper.Client#CLIENT Client function( Client ) self:T3(Client.ClientName) local AIGroup = self.Set:Get( Client.UnitName ) -- Wrapper.Group#GROUP if Client:IsAlive() then if AIGroup and AIGroup:IsAlive() == true then if self.ToNearestAirbase == false and self.ToHomeAirbase == false then self:Destroy( Client.UnitName, AIGroup ) else -- We test if there is no other CLIENT within the self.ReturnThresholdRange of the first unit of the AI group. -- If there is a CLIENT, the AI stays engaged and will not return. -- If there is no CLIENT within the self.ReturnThresholdRange, then the unit will return to the Airbase return method selected. local PlayerInRange = { Value = false } local RangeZone = ZONE_RADIUS:New( 'RangeZone', AIGroup:GetVec2(), self.ReturnThresholdRange ) self:T2( RangeZone ) _DATABASE:ForEachPlayer( --- @param Wrapper.Unit#UNIT RangeTestUnit function( RangeTestUnit, RangeZone, AIGroup, PlayerInRange ) self:T2( { PlayerInRange, RangeTestUnit.UnitName, RangeZone.ZoneName } ) if RangeTestUnit:IsInZone( RangeZone ) == true then self:T2( "in zone" ) if RangeTestUnit:GetCoalition() ~= AIGroup:GetCoalition() then self:T2( "in range" ) PlayerInRange.Value = true end end end, --- @param Core.Zone#ZONE_RADIUS RangeZone -- @param Wrapper.Group#GROUP AIGroup function( RangeZone, AIGroup, PlayerInRange ) if PlayerInRange.Value == false then self:Return( AIGroup ) end end , RangeZone, AIGroup, PlayerInRange ) end self.Set:Remove( Client.UnitName ) end else if not AIGroup or not AIGroup:IsAlive() == true then self:T( "Client " .. Client.UnitName .. " not alive." ) if not self.SpawnQueue[Client.UnitName] then -- Spawn a new AI taking into account the spawn interval Earliest, Latest self:__Spawn( math.random( self.Earliest, self.Latest ), Client.UnitName ) self.SpawnQueue[Client.UnitName] = true self:E( "New AI Spawned for Client " .. Client.UnitName ) end end end return true end ) self:__Monitor( 10 ) end --- **AI** -- **AI A2A Air Patrolling or Staging.** -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- * **[Dutch_Baron](https://forums.eagle.ru/member.php?u=112075)**: Working together with James has resulted in the creation of the AI_BALANCER class. James has shared his ideas on balancing AI with air units, and together we made a first design which you can use now :-) -- * **[Pikey](https://forums.eagle.ru/member.php?u=62835)**: Testing and API concept review. -- -- ==== -- -- @module AI_A2A --BASE:TraceClass("AI_A2A") --- @type AI_A2A -- @extends Core.Fsm#FSM_CONTROLLABLE --- # AI_A2A class, extends @{Fsm#FSM_CONTROLLABLE} -- -- The AI_A2A class implements the core functions to operate an AI @{Group} A2A tasking. -- -- -- ## AI_A2A constructor -- -- * @{#AI_A2A.New}(): Creates a new AI_A2A object. -- -- ## 2. AI_A2A is a FSM -- -- ![Process](..\Presentations\AI_PATROL\Dia2.JPG) -- -- ### 2.1. AI_A2A States -- -- * **None** ( Group ): The process is not started yet. -- * **Patrolling** ( Group ): The AI is patrolling the Patrol Zone. -- * **Returning** ( Group ): The AI is returning to Base. -- * **Stopped** ( Group ): The process is stopped. -- * **Crashed** ( Group ): The AI has crashed or is dead. -- -- ### 2.2. AI_A2A Events -- -- * **Start** ( Group ): Start the process. -- * **Stop** ( Group ): Stop the process. -- * **Route** ( Group ): Route the AI to a new random 3D point within the Patrol Zone. -- * **RTB** ( Group ): Route the AI to the home base. -- * **Detect** ( Group ): The AI is detecting targets. -- * **Detected** ( Group ): The AI has detected new targets. -- * **Status** ( Group ): The AI is checking status (fuel and damage). When the tresholds have been reached, the AI will RTB. -- -- ## 3. Set or Get the AI controllable -- -- * @{#AI_A2A.SetControllable}(): Set the AIControllable. -- * @{#AI_A2A.GetControllable}(): Get the AIControllable. -- -- @field #AI_A2A AI_A2A = { ClassName = "AI_A2A", } --- Creates a new AI_A2A object -- @param #AI_A2A self -- @param Wrapper.Group#GROUP AIGroup The GROUP object to receive the A2A Process. -- @return #AI_A2A function AI_A2A:New( AIGroup ) -- Inherits from BASE local self = BASE:Inherit( self, FSM_CONTROLLABLE:New() ) -- #AI_A2A self:SetControllable( AIGroup ) self:SetFuelThreshold( .2, 60 ) self:SetDamageThreshold( 0.4 ) self:SetDisengageRadius( 70000 ) self:SetStartState( "Stopped" ) self:AddTransition( "*", "Start", "Started" ) --- Start Handler OnBefore for AI_A2A -- @function [parent=#AI_A2A] OnBeforeStart -- @param #AI_A2A self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- Start Handler OnAfter for AI_A2A -- @function [parent=#AI_A2A] OnAfterStart -- @param #AI_A2A self -- @param #string From -- @param #string Event -- @param #string To --- Start Trigger for AI_A2A -- @function [parent=#AI_A2A] Start -- @param #AI_A2A self --- Start Asynchronous Trigger for AI_A2A -- @function [parent=#AI_A2A] __Start -- @param #AI_A2A self -- @param #number Delay self:AddTransition( "*", "Stop", "Stopped" ) --- OnLeave Transition Handler for State Stopped. -- @function [parent=#AI_A2A] OnLeaveStopped -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Stopped. -- @function [parent=#AI_A2A] OnEnterStopped -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- OnBefore Transition Handler for Event Stop. -- @function [parent=#AI_A2A] OnBeforeStop -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Stop. -- @function [parent=#AI_A2A] OnAfterStop -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Stop. -- @function [parent=#AI_A2A] Stop -- @param #AI_A2A self --- Asynchronous Event Trigger for Event Stop. -- @function [parent=#AI_A2A] __Stop -- @param #AI_A2A self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Status", "*" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A. --- OnBefore Transition Handler for Event Status. -- @function [parent=#AI_A2A] OnBeforeStatus -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Status. -- @function [parent=#AI_A2A] OnAfterStatus -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Status. -- @function [parent=#AI_A2A] Status -- @param #AI_A2A self --- Asynchronous Event Trigger for Event Status. -- @function [parent=#AI_A2A] __Status -- @param #AI_A2A self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "RTB", "*" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A. --- OnBefore Transition Handler for Event RTB. -- @function [parent=#AI_A2A] OnBeforeRTB -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event RTB. -- @function [parent=#AI_A2A] OnAfterRTB -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event RTB. -- @function [parent=#AI_A2A] RTB -- @param #AI_A2A self --- Asynchronous Event Trigger for Event RTB. -- @function [parent=#AI_A2A] __RTB -- @param #AI_A2A self -- @param #number Delay The delay in seconds. --- OnLeave Transition Handler for State Returning. -- @function [parent=#AI_A2A] OnLeaveReturning -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Returning. -- @function [parent=#AI_A2A] OnEnterReturning -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. self:AddTransition( "Patrolling", "Refuel", "Refuelling" ) --- Refuel Handler OnBefore for AI_A2A -- @function [parent=#AI_A2A] OnBeforeRefuel -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- Refuel Handler OnAfter for AI_A2A -- @function [parent=#AI_A2A] OnAfterRefuel -- @param #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From -- @param #string Event -- @param #string To --- Refuel Trigger for AI_A2A -- @function [parent=#AI_A2A] Refuel -- @param #AI_A2A self --- Refuel Asynchronous Trigger for AI_A2A -- @function [parent=#AI_A2A] __Refuel -- @param #AI_A2A self -- @param #number Delay self:AddTransition( "*", "Takeoff", "Airborne" ) self:AddTransition( "*", "Return", "Returning" ) self:AddTransition( "*", "Hold", "Holding" ) self:AddTransition( "*", "Home", "Home" ) self:AddTransition( "*", "LostControl", "LostControl" ) self:AddTransition( "*", "Fuel", "Fuel" ) self:AddTransition( "*", "Damaged", "Damaged" ) self:AddTransition( "*", "Eject", "*" ) self:AddTransition( "*", "Crash", "Crashed" ) self:AddTransition( "*", "PilotDead", "*" ) self.IdleCount = 0 return self end --- @param Wrapper.Group#GROUP self -- @param Core.Event#EVENTDATA EventData function GROUP:OnEventTakeoff( EventData, Fsm ) Fsm:Takeoff() self:UnHandleEvent( EVENTS.Takeoff ) end function AI_A2A:SetDispatcher( Dispatcher ) self.Dispatcher = Dispatcher end function AI_A2A:GetDispatcher() return self.Dispatcher end function AI_A2A:SetTargetDistance( Coordinate ) local CurrentCoord = self.Controllable:GetCoordinate() self.TargetDistance = CurrentCoord:Get2DDistance( Coordinate ) self.ClosestTargetDistance = ( not self.ClosestTargetDistance or self.ClosestTargetDistance > self.TargetDistance ) and self.TargetDistance or self.ClosestTargetDistance end function AI_A2A:ClearTargetDistance() self.TargetDistance = nil self.ClosestTargetDistance = nil end --- Sets (modifies) the minimum and maximum speed of the patrol. -- @param #AI_A2A self -- @param Dcs.DCSTypes#Speed PatrolMinSpeed The minimum speed of the @{Controllable} in km/h. -- @param Dcs.DCSTypes#Speed PatrolMaxSpeed The maximum speed of the @{Controllable} in km/h. -- @return #AI_A2A self function AI_A2A:SetSpeed( PatrolMinSpeed, PatrolMaxSpeed ) self:F2( { PatrolMinSpeed, PatrolMaxSpeed } ) self.PatrolMinSpeed = PatrolMinSpeed self.PatrolMaxSpeed = PatrolMaxSpeed end --- Sets the floor and ceiling altitude of the patrol. -- @param #AI_A2A self -- @param Dcs.DCSTypes#Altitude PatrolFloorAltitude The lowest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Altitude PatrolCeilingAltitude The highest altitude in meters where to execute the patrol. -- @return #AI_A2A self function AI_A2A:SetAltitude( PatrolFloorAltitude, PatrolCeilingAltitude ) self:F2( { PatrolFloorAltitude, PatrolCeilingAltitude } ) self.PatrolFloorAltitude = PatrolFloorAltitude self.PatrolCeilingAltitude = PatrolCeilingAltitude end --- Sets the home airbase. -- @param #AI_A2A self -- @param Wrapper.Airbase#AIRBASE HomeAirbase -- @return #AI_A2A self function AI_A2A:SetHomeAirbase( HomeAirbase ) self:F2( { HomeAirbase } ) self.HomeAirbase = HomeAirbase end --- Sets to refuel at the given tanker. -- @param #AI_A2A self -- @param Wrapper.Group#GROUP TankerName The group name of the tanker as defined within the Mission Editor or spawned. -- @return #AI_A2A self function AI_A2A:SetTanker( TankerName ) self:F2( { TankerName } ) self.TankerName = TankerName end --- Sets the disengage range, that when engaging a target beyond the specified range, the engagement will be cancelled and the plane will RTB. -- @param #AI_A2A self -- @param #number DisengageRadius The disengage range. -- @return #AI_A2A self function AI_A2A:SetDisengageRadius( DisengageRadius ) self:F2( { DisengageRadius } ) self.DisengageRadius = DisengageRadius end --- Set the status checking off. -- @param #AI_A2A self -- @return #AI_A2A self function AI_A2A:SetStatusOff() self:F2() self.CheckStatus = false end --- When the AI is out of fuel, it is required that a new AI is started, before the old AI can return to the home base. -- Therefore, with a parameter and a calculation of the distance to the home base, the fuel treshold is calculated. -- When the fuel treshold is reached, the AI will continue for a given time its patrol task in orbit, while a new AIControllable is targetted to the AI_A2A. -- Once the time is finished, the old AI will return to the base. -- @param #AI_A2A self -- @param #number PatrolFuelThresholdPercentage The treshold in percentage (between 0 and 1) when the AIControllable is considered to get out of fuel. -- @param #number PatrolOutOfFuelOrbitTime The amount of seconds the out of fuel AIControllable will orbit before returning to the base. -- @return #AI_A2A self function AI_A2A:SetFuelThreshold( PatrolFuelThresholdPercentage, PatrolOutOfFuelOrbitTime ) self.PatrolManageFuel = true self.PatrolFuelThresholdPercentage = PatrolFuelThresholdPercentage self.PatrolOutOfFuelOrbitTime = PatrolOutOfFuelOrbitTime self.Controllable:OptionRTBBingoFuel( false ) return self end --- When the AI is damaged beyond a certain treshold, it is required that the AI returns to the home base. -- However, damage cannot be foreseen early on. -- Therefore, when the damage treshold is reached, -- the AI will return immediately to the home base (RTB). -- Note that for groups, the average damage of the complete group will be calculated. -- So, in a group of 4 airplanes, 2 lost and 2 with damage 0.2, the damage treshold will be 0.25. -- @param #AI_A2A self -- @param #number PatrolDamageThreshold The treshold in percentage (between 0 and 1) when the AI is considered to be damaged. -- @return #AI_A2A self function AI_A2A:SetDamageThreshold( PatrolDamageThreshold ) self.PatrolManageDamage = true self.PatrolDamageThreshold = PatrolDamageThreshold return self end --- Defines a new patrol route using the @{Process_PatrolZone} parameters and settings. -- @param #AI_A2A self -- @return #AI_A2A self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A:onafterStart( Controllable, From, Event, To ) self:F2() self:__Status( 10 ) -- Check status status every 30 seconds. self:HandleEvent( EVENTS.PilotDead, self.OnPilotDead ) self:HandleEvent( EVENTS.Crash, self.OnCrash ) self:HandleEvent( EVENTS.Ejection, self.OnEjection ) Controllable:OptionROEHoldFire() Controllable:OptionROTVertical() end --- @param #AI_A2A self function AI_A2A:onbeforeStatus() return self.CheckStatus end --- @param #AI_A2A self function AI_A2A:onafterStatus() self:F( " Checking Status" ) if self.Controllable and self.Controllable:IsAlive() then local RTB = false local DistanceFromHomeBase = self.HomeAirbase:GetCoordinate():Get2DDistance( self.Controllable:GetCoordinate() ) if not self:Is( "Holding" ) and not self:Is( "Returning" ) then local DistanceFromHomeBase = self.HomeAirbase:GetCoordinate():Get2DDistance( self.Controllable:GetCoordinate() ) self:F({DistanceFromHomeBase=DistanceFromHomeBase}) if DistanceFromHomeBase > self.DisengageRadius then self:E( self.Controllable:GetName() .. " is too far from home base, RTB!" ) self:Hold( 300 ) RTB = false end end if self:Is( "Fuel" ) or self:Is( "Damaged" ) or self:Is( "LostControl" ) then if DistanceFromHomeBase < 5000 then self:E( self.Controllable:GetName() .. " is too far from home base, RTB!" ) self:Home( "Destroy" ) end end if not self:Is( "Fuel" ) and not self:Is( "Home" ) then local Fuel = self.Controllable:GetFuel() self:F({Fuel=Fuel}) if Fuel < self.PatrolFuelThresholdPercentage then if self.TankerName then self:E( self.Controllable:GetName() .. " is out of fuel: " .. Fuel .. " ... Refuelling at Tanker!" ) self:Refuel() else self:E( self.Controllable:GetName() .. " is out of fuel: " .. Fuel .. " ... RTB!" ) local OldAIControllable = self.Controllable local OrbitTask = OldAIControllable:TaskOrbitCircle( math.random( self.PatrolFloorAltitude, self.PatrolCeilingAltitude ), self.PatrolMinSpeed ) local TimedOrbitTask = OldAIControllable:TaskControlled( OrbitTask, OldAIControllable:TaskCondition(nil,nil,nil,nil,self.PatrolOutOfFuelOrbitTime,nil ) ) OldAIControllable:SetTask( TimedOrbitTask, 10 ) self:Fuel() RTB = true end else end end -- TODO: Check GROUP damage function. local Damage = self.Controllable:GetLife() local InitialLife = self.Controllable:GetLife0() self:F( { Damage = Damage, InitialLife = InitialLife, DamageThreshold = self.PatrolDamageThreshold } ) if ( Damage / InitialLife ) < self.PatrolDamageThreshold then self:E( self.Controllable:GetName() .. " is damaged: " .. Damage .. " ... RTB!" ) self:Damaged() RTB = true self:SetStatusOff() end -- Check if planes went RTB and are out of control. if self.Controllable:HasTask() == false then if not self:Is( "Started" ) and not self:Is( "Stopped" ) and not self:Is( "Home" ) then if self.IdleCount >= 2 then if Damage ~= InitialLife then self:Damaged() else self:E( self.Controllable:GetName() .. " control lost! " ) self:LostControl() end else self.IdleCount = self.IdleCount + 1 end end else self.IdleCount = 0 end if RTB == true then self:__RTB( 0.5 ) end self:__Status( 10 ) end end --- @param Wrapper.Group#GROUP AIGroup function AI_A2A.RTBRoute( AIGroup, Fsm ) AIGroup:F( { "AI_A2A.RTBRoute:", AIGroup:GetName() } ) if AIGroup:IsAlive() then Fsm:__RTB( 0.5 ) end end --- @param Wrapper.Group#GROUP AIGroup function AI_A2A.RTBHold( AIGroup, Fsm ) AIGroup:F( { "AI_A2A.RTBHold:", AIGroup:GetName() } ) if AIGroup:IsAlive() then Fsm:__RTB( 0.5 ) Fsm:Return() local Task = AIGroup:TaskOrbitCircle( 4000, 400 ) AIGroup:SetTask( Task ) end end --- @param #AI_A2A self -- @param Wrapper.Group#GROUP AIGroup function AI_A2A:onafterRTB( AIGroup, From, Event, To ) self:F( { AIGroup, From, Event, To } ) if AIGroup and AIGroup:IsAlive() then self:E( "Group " .. AIGroup:GetName() .. " ... RTB! ( " .. self:GetState() .. " )" ) self:ClearTargetDistance() AIGroup:ClearTasks() local EngageRoute = {} --- Calculate the target route point. local CurrentCoord = AIGroup:GetCoordinate() local ToTargetCoord = self.HomeAirbase:GetCoordinate() local ToTargetSpeed = math.random( self.PatrolMinSpeed, self.PatrolMaxSpeed ) local ToAirbaseAngle = CurrentCoord:GetAngleDegrees( CurrentCoord:GetDirectionVec3( ToTargetCoord ) ) local Distance = CurrentCoord:Get2DDistance( ToTargetCoord ) local ToAirbaseCoord = CurrentCoord:Translate( 5000, ToAirbaseAngle ) if Distance < 5000 then self:E( "RTB and near the airbase!" ) self:Home() return end --- Create a route point of type air. local ToRTBRoutePoint = ToAirbaseCoord:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, ToTargetSpeed, true ) self:F( { Angle = ToAirbaseAngle, ToTargetSpeed = ToTargetSpeed } ) self:T2( { self.MinSpeed, self.MaxSpeed, ToTargetSpeed } ) EngageRoute[#EngageRoute+1] = ToRTBRoutePoint EngageRoute[#EngageRoute+1] = ToRTBRoutePoint AIGroup:OptionROEHoldFire() AIGroup:OptionROTEvadeFire() --- Now we're going to do something special, we're going to call a function from a waypoint action at the AIControllable... AIGroup:WayPointInitialize( EngageRoute ) local Tasks = {} Tasks[#Tasks+1] = AIGroup:TaskFunction( "AI_A2A.RTBRoute", self ) EngageRoute[#EngageRoute].task = AIGroup:TaskCombo( Tasks ) --- NOW ROUTE THE GROUP! AIGroup:Route( EngageRoute, 0.5 ) end end --- @param #AI_A2A self -- @param Wrapper.Group#GROUP AIGroup function AI_A2A:onafterHome( AIGroup, From, Event, To ) self:F( { AIGroup, From, Event, To } ) self:E( "Group " .. self.Controllable:GetName() .. " ... Home! ( " .. self:GetState() .. " )" ) if AIGroup and AIGroup:IsAlive() then end end --- @param #AI_A2A self -- @param Wrapper.Group#GROUP AIGroup function AI_A2A:onafterHold( AIGroup, From, Event, To, HoldTime ) self:F( { AIGroup, From, Event, To } ) self:E( "Group " .. self.Controllable:GetName() .. " ... Holding! ( " .. self:GetState() .. " )" ) if AIGroup and AIGroup:IsAlive() then local OrbitTask = AIGroup:TaskOrbitCircle( math.random( self.PatrolFloorAltitude, self.PatrolCeilingAltitude ), self.PatrolMinSpeed ) local TimedOrbitTask = AIGroup:TaskControlled( OrbitTask, AIGroup:TaskCondition( nil, nil, nil, nil, HoldTime , nil ) ) local RTBTask = AIGroup:TaskFunction( "AI_A2A.RTBHold", self ) local OrbitHoldTask = AIGroup:TaskOrbitCircle( 4000, self.PatrolMinSpeed ) --AIGroup:SetState( AIGroup, "AI_A2A", self ) AIGroup:SetTask( AIGroup:TaskCombo( { TimedOrbitTask, RTBTask, OrbitHoldTask } ), 1 ) end end --- @param Wrapper.Group#GROUP AIGroup function AI_A2A.Resume( AIGroup, Fsm ) AIGroup:F( { "AI_A2A.Resume:", AIGroup:GetName() } ) if AIGroup:IsAlive() then Fsm:__RTB( 0.5 ) end end --- @param #AI_A2A self -- @param Wrapper.Group#GROUP AIGroup function AI_A2A:onafterRefuel( AIGroup, From, Event, To ) self:F( { AIGroup, From, Event, To } ) self:E( "Group " .. self.Controllable:GetName() .. " ... Refuelling! ( " .. self:GetState() .. " )" ) if AIGroup and AIGroup:IsAlive() then local Tanker = GROUP:FindByName( self.TankerName ) if Tanker:IsAlive() and Tanker:IsAirPlane() then local RefuelRoute = {} --- Calculate the target route point. local CurrentCoord = AIGroup:GetCoordinate() local ToRefuelCoord = Tanker:GetCoordinate() local ToRefuelSpeed = math.random( self.PatrolMinSpeed, self.PatrolMaxSpeed ) --- Create a route point of type air. local ToRefuelRoutePoint = ToRefuelCoord:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, ToRefuelSpeed, true ) self:F( { ToRefuelSpeed = ToRefuelSpeed } ) RefuelRoute[#RefuelRoute+1] = ToRefuelRoutePoint RefuelRoute[#RefuelRoute+1] = ToRefuelRoutePoint AIGroup:OptionROEHoldFire() AIGroup:OptionROTEvadeFire() local Tasks = {} Tasks[#Tasks+1] = AIGroup:TaskRefueling() Tasks[#Tasks+1] = AIGroup:TaskFunction( self:GetClassName() .. ".Resume", self ) RefuelRoute[#RefuelRoute].task = AIGroup:TaskCombo( Tasks ) AIGroup:Route( RefuelRoute, 0.5 ) else self:RTB() end end end --- @param #AI_A2A self function AI_A2A:onafterDead() self:SetStatusOff() end --- @param #AI_A2A self -- @param Core.Event#EVENTDATA EventData function AI_A2A:OnCrash( EventData ) if self.Controllable:IsAlive() and EventData.IniDCSGroupName == self.Controllable:GetName() then self:E( self.Controllable:GetUnits() ) if #self.Controllable:GetUnits() == 1 then self:__Crash( 1, EventData ) end end end --- @param #AI_A2A self -- @param Core.Event#EVENTDATA EventData function AI_A2A:OnEjection( EventData ) if self.Controllable:IsAlive() and EventData.IniDCSGroupName == self.Controllable:GetName() then self:__Eject( 1, EventData ) end end --- @param #AI_A2A self -- @param Core.Event#EVENTDATA EventData function AI_A2A:OnPilotDead( EventData ) if self.Controllable:IsAlive() and EventData.IniDCSGroupName == self.Controllable:GetName() then self:__PilotDead( 1, EventData ) end end --- **AI** -- **Air Patrolling or Staging.** -- -- ![Banner Image](..\Presentations\AI_PATROL\Dia1.JPG) -- -- === -- -- AI PATROL classes makes AI Groups execute an Patrol. -- -- There are the following types of PATROL classes defined: -- -- * @{#AI_A2A_PATROL}: Perform a PATROL in a zone. -- -- ==== -- -- # Demo Missions -- -- ### [AI_PATROL Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/PAT%20-%20Patrolling) -- -- ### [AI_PATROL Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/PAT%20-%20Patrolling) -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [AI_PATROL YouTube Channel](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl35HvYZKA6G22WMt7iI3zky) -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- * **[Dutch_Baron](https://forums.eagle.ru/member.php?u=112075)**: Working together with James has resulted in the creation of the AI_BALANCER class. James has shared his ideas on balancing AI with air units, and together we made a first design which you can use now :-) -- * **[Pikey](https://forums.eagle.ru/member.php?u=62835)**: Testing and API concept review. -- -- ==== -- -- @module AI_A2A_Patrol --- @type AI_A2A_PATROL -- @extends AI.AI_A2A#AI_A2A --- # AI_A2A_PATROL class, extends @{Fsm#FSM_CONTROLLABLE} -- -- The AI_A2A_PATROL class implements the core functions to patrol a @{Zone} by an AI @{Group} or @{Group}. -- -- ![Process](..\Presentations\AI_PATROL\Dia3.JPG) -- -- The AI_A2A_PATROL is assigned a @{Group} and this must be done before the AI_A2A_PATROL process can be started using the **Start** event. -- -- ![Process](..\Presentations\AI_PATROL\Dia4.JPG) -- -- The AI will fly towards the random 3D point within the patrol zone, using a random speed within the given altitude and speed limits. -- Upon arrival at the 3D point, a new random 3D point will be selected within the patrol zone using the given limits. -- -- ![Process](..\Presentations\AI_PATROL\Dia5.JPG) -- -- This cycle will continue. -- -- ![Process](..\Presentations\AI_PATROL\Dia6.JPG) -- -- During the patrol, the AI will detect enemy targets, which are reported through the **Detected** event. -- -- ![Process](..\Presentations\AI_PATROL\Dia9.JPG) -- ---- Note that the enemy is not engaged! To model enemy engagement, either tailor the **Detected** event, or -- use derived AI_ classes to model AI offensive or defensive behaviour. -- -- ![Process](..\Presentations\AI_PATROL\Dia10.JPG) -- -- Until a fuel or damage treshold has been reached by the AI, or when the AI is commanded to RTB. -- When the fuel treshold has been reached, the airplane will fly towards the nearest friendly airbase and will land. -- -- ![Process](..\Presentations\AI_PATROL\Dia11.JPG) -- -- ## 1. AI_A2A_PATROL constructor -- -- * @{#AI_A2A_PATROL.New}(): Creates a new AI_A2A_PATROL object. -- -- ## 2. AI_A2A_PATROL is a FSM -- -- ![Process](..\Presentations\AI_PATROL\Dia2.JPG) -- -- ### 2.1. AI_A2A_PATROL States -- -- * **None** ( Group ): The process is not started yet. -- * **Patrolling** ( Group ): The AI is patrolling the Patrol Zone. -- * **Returning** ( Group ): The AI is returning to Base. -- * **Stopped** ( Group ): The process is stopped. -- * **Crashed** ( Group ): The AI has crashed or is dead. -- -- ### 2.2. AI_A2A_PATROL Events -- -- * **Start** ( Group ): Start the process. -- * **Stop** ( Group ): Stop the process. -- * **Route** ( Group ): Route the AI to a new random 3D point within the Patrol Zone. -- * **RTB** ( Group ): Route the AI to the home base. -- * **Detect** ( Group ): The AI is detecting targets. -- * **Detected** ( Group ): The AI has detected new targets. -- * **Status** ( Group ): The AI is checking status (fuel and damage). When the tresholds have been reached, the AI will RTB. -- -- ## 3. Set or Get the AI controllable -- -- * @{#AI_A2A_PATROL.SetControllable}(): Set the AIControllable. -- * @{#AI_A2A_PATROL.GetControllable}(): Get the AIControllable. -- -- ## 4. Set the Speed and Altitude boundaries of the AI controllable -- -- * @{#AI_A2A_PATROL.SetSpeed}(): Set the patrol speed boundaries of the AI, for the next patrol. -- * @{#AI_A2A_PATROL.SetAltitude}(): Set altitude boundaries of the AI, for the next patrol. -- -- ## 5. Manage the detection process of the AI controllable -- -- The detection process of the AI controllable can be manipulated. -- Detection requires an amount of CPU power, which has an impact on your mission performance. -- Only put detection on when absolutely necessary, and the frequency of the detection can also be set. -- -- * @{#AI_A2A_PATROL.SetDetectionOn}(): Set the detection on. The AI will detect for targets. -- * @{#AI_A2A_PATROL.SetDetectionOff}(): Set the detection off, the AI will not detect for targets. The existing target list will NOT be erased. -- -- The detection frequency can be set with @{#AI_A2A_PATROL.SetRefreshTimeInterval}( seconds ), where the amount of seconds specify how much seconds will be waited before the next detection. -- Use the method @{#AI_A2A_PATROL.GetDetectedUnits}() to obtain a list of the @{Unit}s detected by the AI. -- -- The detection can be filtered to potential targets in a specific zone. -- Use the method @{#AI_A2A_PATROL.SetDetectionZone}() to set the zone where targets need to be detected. -- Note that when the zone is too far away, or the AI is not heading towards the zone, or the AI is too high, no targets may be detected -- according the weather conditions. -- -- ## 6. Manage the "out of fuel" in the AI_A2A_PATROL -- -- When the AI is out of fuel, it is required that a new AI is started, before the old AI can return to the home base. -- Therefore, with a parameter and a calculation of the distance to the home base, the fuel treshold is calculated. -- When the fuel treshold is reached, the AI will continue for a given time its patrol task in orbit, -- while a new AI is targetted to the AI_A2A_PATROL. -- Once the time is finished, the old AI will return to the base. -- Use the method @{#AI_A2A_PATROL.ManageFuel}() to have this proces in place. -- -- ## 7. Manage "damage" behaviour of the AI in the AI_A2A_PATROL -- -- When the AI is damaged, it is required that a new Patrol is started. However, damage cannon be foreseen early on. -- Therefore, when the damage treshold is reached, the AI will return immediately to the home base (RTB). -- Use the method @{#AI_A2A_PATROL.ManageDamage}() to have this proces in place. -- -- === -- -- @field #AI_A2A_PATROL AI_A2A_PATROL = { ClassName = "AI_A2A_PATROL", } --- Creates a new AI_A2A_PATROL object -- @param #AI_A2A_PATROL self -- @param Wrapper.Group#GROUP AIPatrol -- @param Core.Zone#ZONE_BASE PatrolZone The @{Zone} where the patrol needs to be executed. -- @param Dcs.DCSTypes#Altitude PatrolFloorAltitude The lowest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Altitude PatrolCeilingAltitude The highest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Speed PatrolMinSpeed The minimum speed of the @{Group} in km/h. -- @param Dcs.DCSTypes#Speed PatrolMaxSpeed The maximum speed of the @{Group} in km/h. -- @param Dcs.DCSTypes#AltitudeType PatrolAltType The altitude type ("RADIO"=="AGL", "BARO"=="ASL"). Defaults to RADIO -- @return #AI_A2A_PATROL self -- @usage -- -- Define a new AI_A2A_PATROL Object. This PatrolArea will patrol a Group within PatrolZone between 3000 and 6000 meters, with a variying speed between 600 and 900 km/h. -- PatrolZone = ZONE:New( 'PatrolZone' ) -- PatrolSpawn = SPAWN:New( 'Patrol Group' ) -- PatrolArea = AI_A2A_PATROL:New( PatrolZone, 3000, 6000, 600, 900 ) function AI_A2A_PATROL:New( AIPatrol, PatrolZone, PatrolFloorAltitude, PatrolCeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, PatrolAltType ) -- Inherits from BASE local self = BASE:Inherit( self, AI_A2A:New( AIPatrol ) ) -- #AI_A2A_PATROL self.PatrolZone = PatrolZone self.PatrolFloorAltitude = PatrolFloorAltitude self.PatrolCeilingAltitude = PatrolCeilingAltitude self.PatrolMinSpeed = PatrolMinSpeed self.PatrolMaxSpeed = PatrolMaxSpeed -- defafult PatrolAltType to "RADIO" if not specified self.PatrolAltType = PatrolAltType or "RADIO" self:AddTransition( { "Started", "Airborne", "Refuelling" }, "Patrol", "Patrolling" ) --- OnBefore Transition Handler for Event Patrol. -- @function [parent=#AI_A2A_PATROL] OnBeforePatrol -- @param #AI_A2A_PATROL self -- @param Wrapper.Group#GROUP AIPatrol The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Patrol. -- @function [parent=#AI_A2A_PATROL] OnAfterPatrol -- @param #AI_A2A_PATROL self -- @param Wrapper.Group#GROUP AIPatrol The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Patrol. -- @function [parent=#AI_A2A_PATROL] Patrol -- @param #AI_A2A_PATROL self --- Asynchronous Event Trigger for Event Patrol. -- @function [parent=#AI_A2A_PATROL] __Patrol -- @param #AI_A2A_PATROL self -- @param #number Delay The delay in seconds. --- OnLeave Transition Handler for State Patrolling. -- @function [parent=#AI_A2A_PATROL] OnLeavePatrolling -- @param #AI_A2A_PATROL self -- @param Wrapper.Group#GROUP AIPatrol The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Patrolling. -- @function [parent=#AI_A2A_PATROL] OnEnterPatrolling -- @param #AI_A2A_PATROL self -- @param Wrapper.Group#GROUP AIPatrol The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. self:AddTransition( "Patrolling", "Route", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_PATROL. --- OnBefore Transition Handler for Event Route. -- @function [parent=#AI_A2A_PATROL] OnBeforeRoute -- @param #AI_A2A_PATROL self -- @param Wrapper.Group#GROUP AIPatrol The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Route. -- @function [parent=#AI_A2A_PATROL] OnAfterRoute -- @param #AI_A2A_PATROL self -- @param Wrapper.Group#GROUP AIPatrol The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Route. -- @function [parent=#AI_A2A_PATROL] Route -- @param #AI_A2A_PATROL self --- Asynchronous Event Trigger for Event Route. -- @function [parent=#AI_A2A_PATROL] __Route -- @param #AI_A2A_PATROL self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Reset", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_PATROL. return self end --- Sets (modifies) the minimum and maximum speed of the patrol. -- @param #AI_A2A_PATROL self -- @param Dcs.DCSTypes#Speed PatrolMinSpeed The minimum speed of the @{Group} in km/h. -- @param Dcs.DCSTypes#Speed PatrolMaxSpeed The maximum speed of the @{Group} in km/h. -- @return #AI_A2A_PATROL self function AI_A2A_PATROL:SetSpeed( PatrolMinSpeed, PatrolMaxSpeed ) self:F2( { PatrolMinSpeed, PatrolMaxSpeed } ) self.PatrolMinSpeed = PatrolMinSpeed self.PatrolMaxSpeed = PatrolMaxSpeed end --- Sets the floor and ceiling altitude of the patrol. -- @param #AI_A2A_PATROL self -- @param Dcs.DCSTypes#Altitude PatrolFloorAltitude The lowest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Altitude PatrolCeilingAltitude The highest altitude in meters where to execute the patrol. -- @return #AI_A2A_PATROL self function AI_A2A_PATROL:SetAltitude( PatrolFloorAltitude, PatrolCeilingAltitude ) self:F2( { PatrolFloorAltitude, PatrolCeilingAltitude } ) self.PatrolFloorAltitude = PatrolFloorAltitude self.PatrolCeilingAltitude = PatrolCeilingAltitude end --- Defines a new patrol route using the @{Process_PatrolZone} parameters and settings. -- @param #AI_A2A_PATROL self -- @return #AI_A2A_PATROL self -- @param Wrapper.Group#GROUP AIPatrol The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_PATROL:onafterPatrol( AIPatrol, From, Event, To ) self:F2() self:ClearTargetDistance() self:__Route( 1 ) AIPatrol:OnReSpawn( function( PatrolGroup ) self:E( "ReSpawn" ) self:__Reset( 1 ) self:__Route( 5 ) end ) end --- @param Wrapper.Group#GROUP AIPatrol -- This statis method is called from the route path within the last task at the last waaypoint of the AIPatrol. -- Note that this method is required, as triggers the next route when patrolling for the AIPatrol. function AI_A2A_PATROL.PatrolRoute( AIPatrol, Fsm ) AIPatrol:F( { "AI_A2A_PATROL.PatrolRoute:", AIPatrol:GetName() } ) if AIPatrol:IsAlive() then Fsm:Route() end end --- Defines a new patrol route using the @{Process_PatrolZone} parameters and settings. -- @param #AI_A2A_PATROL self -- @param Wrapper.Group#GROUP AIPatrol The Group managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_PATROL:onafterRoute( AIPatrol, From, Event, To ) self:F2() -- When RTB, don't allow anymore the routing. if From == "RTB" then return end if AIPatrol:IsAlive() then local PatrolRoute = {} --- Calculate the target route point. local CurrentCoord = AIPatrol:GetCoordinate() local ToTargetCoord = self.PatrolZone:GetRandomPointVec2() ToTargetCoord:SetAlt( math.random( self.PatrolFloorAltitude, self.PatrolCeilingAltitude ) ) self:SetTargetDistance( ToTargetCoord ) -- For RTB status check local ToTargetSpeed = math.random( self.PatrolMinSpeed, self.PatrolMaxSpeed ) --- Create a route point of type air. local ToPatrolRoutePoint = ToTargetCoord:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, ToTargetSpeed, true ) PatrolRoute[#PatrolRoute+1] = ToPatrolRoutePoint PatrolRoute[#PatrolRoute+1] = ToPatrolRoutePoint local Tasks = {} Tasks[#Tasks+1] = AIPatrol:TaskFunction( "AI_A2A_PATROL.PatrolRoute", self ) PatrolRoute[#PatrolRoute].task = AIPatrol:TaskCombo( Tasks ) AIPatrol:OptionROEReturnFire() AIPatrol:OptionROTEvadeFire() AIPatrol:Route( PatrolRoute, 0.5 ) end end --- @param Wrapper.Group#GROUP AIPatrol function AI_A2A_PATROL.Resume( AIPatrol ) AIPatrol:F( { "AI_A2A_PATROL.Resume:", AIPatrol:GetName() } ) if AIPatrol:IsAlive() then local _AI_A2A = AIPatrol:GetState( AIPatrol, "AI_A2A" ) -- #AI_A2A _AI_A2A:__Reset( 1 ) _AI_A2A:__Route( 5 ) end end --- **AI** -- **Execute Combat Air Patrol (CAP).** -- -- ![Banner Image](..\Presentations\AI_CAP\Dia1.JPG) -- -- === -- -- AI CAP classes makes AI Groups execute a Combat Air Patrol. -- -- There are the following types of CAP classes defined: -- -- * @{#AI_A2A_CAP}: Perform a CAP in a zone. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- * **[Quax](https://forums.eagle.ru/member.php?u=90530)**: Concept, Advice & Testing. -- * **[Pikey](https://forums.eagle.ru/member.php?u=62835)**: Concept, Advice & Testing. -- * **[Gunterlund](http://forums.eagle.ru:8080/member.php?u=75036)**: Test case revision. -- * **[Whisper](http://forums.eagle.ru/member.php?u=3829): Testing. -- * **[Delta99](https://forums.eagle.ru/member.php?u=125166): Testing. -- -- ==== -- -- @module AI_A2A_Cap --BASE:TraceClass("AI_A2A_CAP") --- @type AI_A2A_CAP -- @extends AI.AI_A2A_Patrol#AI_A2A_PATROL --- # AI_A2A_CAP class, extends @{AI_CAP#AI_PATROL_ZONE} -- -- The AI_A2A_CAP class implements the core functions to patrol a @{Zone} by an AI @{Group} or @{Group} -- and automatically engage any airborne enemies that are within a certain range or within a certain zone. -- -- ![Process](..\Presentations\AI_CAP\Dia3.JPG) -- -- The AI_A2A_CAP is assigned a @{Group} and this must be done before the AI_A2A_CAP process can be started using the **Start** event. -- -- ![Process](..\Presentations\AI_CAP\Dia4.JPG) -- -- The AI will fly towards the random 3D point within the patrol zone, using a random speed within the given altitude and speed limits. -- Upon arrival at the 3D point, a new random 3D point will be selected within the patrol zone using the given limits. -- -- ![Process](..\Presentations\AI_CAP\Dia5.JPG) -- -- This cycle will continue. -- -- ![Process](..\Presentations\AI_CAP\Dia6.JPG) -- -- During the patrol, the AI will detect enemy targets, which are reported through the **Detected** event. -- -- ![Process](..\Presentations\AI_CAP\Dia9.JPG) -- -- When enemies are detected, the AI will automatically engage the enemy. -- -- ![Process](..\Presentations\AI_CAP\Dia10.JPG) -- -- Until a fuel or damage treshold has been reached by the AI, or when the AI is commanded to RTB. -- When the fuel treshold has been reached, the airplane will fly towards the nearest friendly airbase and will land. -- -- ![Process](..\Presentations\AI_CAP\Dia13.JPG) -- -- ## 1. AI_A2A_CAP constructor -- -- * @{#AI_A2A_CAP.New}(): Creates a new AI_A2A_CAP object. -- -- ## 2. AI_A2A_CAP is a FSM -- -- ![Process](..\Presentations\AI_CAP\Dia2.JPG) -- -- ### 2.1 AI_A2A_CAP States -- -- * **None** ( Group ): The process is not started yet. -- * **Patrolling** ( Group ): The AI is patrolling the Patrol Zone. -- * **Engaging** ( Group ): The AI is engaging the bogeys. -- * **Returning** ( Group ): The AI is returning to Base.. -- -- ### 2.2 AI_A2A_CAP Events -- -- * **@{AI_Patrol#AI_PATROL_ZONE.Start}**: Start the process. -- * **@{AI_Patrol#AI_PATROL_ZONE.Route}**: Route the AI to a new random 3D point within the Patrol Zone. -- * **@{#AI_A2A_CAP.Engage}**: Let the AI engage the bogeys. -- * **@{#AI_A2A_CAP.Abort}**: Aborts the engagement and return patrolling in the patrol zone. -- * **@{AI_Patrol#AI_PATROL_ZONE.RTB}**: Route the AI to the home base. -- * **@{AI_Patrol#AI_PATROL_ZONE.Detect}**: The AI is detecting targets. -- * **@{AI_Patrol#AI_PATROL_ZONE.Detected}**: The AI has detected new targets. -- * **@{#AI_A2A_CAP.Destroy}**: The AI has destroyed a bogey @{Unit}. -- * **@{#AI_A2A_CAP.Destroyed}**: The AI has destroyed all bogeys @{Unit}s assigned in the CAS task. -- * **Status** ( Group ): The AI is checking status (fuel and damage). When the tresholds have been reached, the AI will RTB. -- -- ## 3. Set the Range of Engagement -- -- ![Range](..\Presentations\AI_CAP\Dia11.JPG) -- -- An optional range can be set in meters, -- that will define when the AI will engage with the detected airborne enemy targets. -- The range can be beyond or smaller than the range of the Patrol Zone. -- The range is applied at the position of the AI. -- Use the method @{AI_CAP#AI_A2A_CAP.SetEngageRange}() to define that range. -- -- ## 4. Set the Zone of Engagement -- -- ![Zone](..\Presentations\AI_CAP\Dia12.JPG) -- -- An optional @{Zone} can be set, -- that will define when the AI will engage with the detected airborne enemy targets. -- Use the method @{AI_Cap#AI_A2A_CAP.SetEngageZone}() to define that Zone. -- -- === -- -- @field #AI_A2A_CAP AI_A2A_CAP = { ClassName = "AI_A2A_CAP", } --- Creates a new AI_A2A_CAP object -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap -- @param Core.Zone#ZONE_BASE PatrolZone The @{Zone} where the patrol needs to be executed. -- @param Dcs.DCSTypes#Altitude PatrolFloorAltitude The lowest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Altitude PatrolCeilingAltitude The highest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Speed PatrolMinSpeed The minimum speed of the @{Group} in km/h. -- @param Dcs.DCSTypes#Speed PatrolMaxSpeed The maximum speed of the @{Group} in km/h. -- @param Dcs.DCSTypes#Speed EngageMinSpeed The minimum speed of the @{Group} in km/h when engaging a target. -- @param Dcs.DCSTypes#Speed EngageMaxSpeed The maximum speed of the @{Group} in km/h when engaging a target. -- @param Dcs.DCSTypes#AltitudeType PatrolAltType The altitude type ("RADIO"=="AGL", "BARO"=="ASL"). Defaults to RADIO -- @return #AI_A2A_CAP function AI_A2A_CAP:New( AICap, PatrolZone, PatrolFloorAltitude, PatrolCeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, EngageMinSpeed, EngageMaxSpeed, PatrolAltType ) -- Inherits from BASE local self = BASE:Inherit( self, AI_A2A_PATROL:New( AICap, PatrolZone, PatrolFloorAltitude, PatrolCeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, PatrolAltType ) ) -- #AI_A2A_CAP self.Accomplished = false self.Engaging = false self.EngageMinSpeed = EngageMinSpeed self.EngageMaxSpeed = EngageMaxSpeed self:AddTransition( { "Patrolling", "Engaging", "Returning", "Airborne" }, "Engage", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_CAP. --- OnBefore Transition Handler for Event Engage. -- @function [parent=#AI_A2A_CAP] OnBeforeEngage -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Engage. -- @function [parent=#AI_A2A_CAP] OnAfterEngage -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Engage. -- @function [parent=#AI_A2A_CAP] Engage -- @param #AI_A2A_CAP self --- Asynchronous Event Trigger for Event Engage. -- @function [parent=#AI_A2A_CAP] __Engage -- @param #AI_A2A_CAP self -- @param #number Delay The delay in seconds. --- OnLeave Transition Handler for State Engaging. -- @function [parent=#AI_A2A_CAP] OnLeaveEngaging -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Engaging. -- @function [parent=#AI_A2A_CAP] OnEnterEngaging -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. self:AddTransition( "Engaging", "Fired", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_CAP. --- OnBefore Transition Handler for Event Fired. -- @function [parent=#AI_A2A_CAP] OnBeforeFired -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Fired. -- @function [parent=#AI_A2A_CAP] OnAfterFired -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Fired. -- @function [parent=#AI_A2A_CAP] Fired -- @param #AI_A2A_CAP self --- Asynchronous Event Trigger for Event Fired. -- @function [parent=#AI_A2A_CAP] __Fired -- @param #AI_A2A_CAP self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Destroy", "*" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_CAP. --- OnBefore Transition Handler for Event Destroy. -- @function [parent=#AI_A2A_CAP] OnBeforeDestroy -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Destroy. -- @function [parent=#AI_A2A_CAP] OnAfterDestroy -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Destroy. -- @function [parent=#AI_A2A_CAP] Destroy -- @param #AI_A2A_CAP self --- Asynchronous Event Trigger for Event Destroy. -- @function [parent=#AI_A2A_CAP] __Destroy -- @param #AI_A2A_CAP self -- @param #number Delay The delay in seconds. self:AddTransition( "Engaging", "Abort", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_CAP. --- OnBefore Transition Handler for Event Abort. -- @function [parent=#AI_A2A_CAP] OnBeforeAbort -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Abort. -- @function [parent=#AI_A2A_CAP] OnAfterAbort -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Abort. -- @function [parent=#AI_A2A_CAP] Abort -- @param #AI_A2A_CAP self --- Asynchronous Event Trigger for Event Abort. -- @function [parent=#AI_A2A_CAP] __Abort -- @param #AI_A2A_CAP self -- @param #number Delay The delay in seconds. self:AddTransition( "Engaging", "Accomplish", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_CAP. --- OnBefore Transition Handler for Event Accomplish. -- @function [parent=#AI_A2A_CAP] OnBeforeAccomplish -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Accomplish. -- @function [parent=#AI_A2A_CAP] OnAfterAccomplish -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Accomplish. -- @function [parent=#AI_A2A_CAP] Accomplish -- @param #AI_A2A_CAP self --- Asynchronous Event Trigger for Event Accomplish. -- @function [parent=#AI_A2A_CAP] __Accomplish -- @param #AI_A2A_CAP self -- @param #number Delay The delay in seconds. return self end --- onafter State Transition for Event Patrol. -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AICap The AI Group managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_CAP:onafterStart( AICap, From, Event, To ) AICap:HandleEvent( EVENTS.Takeoff, nil, self ) end --- Set the Engage Zone which defines where the AI will engage bogies. -- @param #AI_A2A_CAP self -- @param Core.Zone#ZONE EngageZone The zone where the AI is performing CAP. -- @return #AI_A2A_CAP self function AI_A2A_CAP:SetEngageZone( EngageZone ) self:F2() if EngageZone then self.EngageZone = EngageZone else self.EngageZone = nil end end --- Set the Engage Range when the AI will engage with airborne enemies. -- @param #AI_A2A_CAP self -- @param #number EngageRange The Engage Range. -- @return #AI_A2A_CAP self function AI_A2A_CAP:SetEngageRange( EngageRange ) self:F2() if EngageRange then self.EngageRange = EngageRange else self.EngageRange = nil end end --- onafter State Transition for Event Patrol. -- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The AI Group managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_CAP:onafterPatrol( AICap, From, Event, To ) -- Call the parent Start event handler self:GetParent(self).onafterPatrol( self, AICap, From, Event, To ) self:HandleEvent( EVENTS.Dead ) end -- todo: need to fix this global function --- @param Wrapper.Group#GROUP AICap function AI_A2A_CAP.AttackRoute( AICap, Fsm ) AICap:F( { "AI_A2A_CAP.AttackRoute:", AICap:GetName() } ) if AICap:IsAlive() then Fsm:__Engage( 0.5 ) end end --- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_CAP:onbeforeEngage( AICap, From, Event, To ) if self.Accomplished == true then return false end end --- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The AI Group managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_CAP:onafterAbort( AICap, From, Event, To ) AICap:ClearTasks() self:__Route( 0.5 ) end --- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The AICap Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_CAP:onafterEngage( AICap, From, Event, To, AttackSetUnit ) self:F( { AICap, From, Event, To, AttackSetUnit} ) self.AttackSetUnit = AttackSetUnit or self.AttackSetUnit -- Core.Set#SET_UNIT local FirstAttackUnit = self.AttackSetUnit:GetFirst() -- Wrapper.Unit#UNIT if FirstAttackUnit and FirstAttackUnit:IsAlive() then -- If there is no attacker anymore, stop the engagement. if AICap:IsAlive() then local EngageRoute = {} --- Calculate the target route point. local CurrentCoord = AICap:GetCoordinate() local ToTargetCoord = self.AttackSetUnit:GetFirst():GetCoordinate() local ToTargetSpeed = math.random( self.EngageMinSpeed, self.EngageMaxSpeed ) local ToInterceptAngle = CurrentCoord:GetAngleDegrees( CurrentCoord:GetDirectionVec3( ToTargetCoord ) ) --- Create a route point of type air. local ToPatrolRoutePoint = CurrentCoord:Translate( 5000, ToInterceptAngle ):WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, ToTargetSpeed, true ) self:F( { Angle = ToInterceptAngle, ToTargetSpeed = ToTargetSpeed } ) self:T2( { self.MinSpeed, self.MaxSpeed, ToTargetSpeed } ) EngageRoute[#EngageRoute+1] = ToPatrolRoutePoint EngageRoute[#EngageRoute+1] = ToPatrolRoutePoint local AttackTasks = {} for AttackUnitID, AttackUnit in pairs( self.AttackSetUnit:GetSet() ) do local AttackUnit = AttackUnit -- Wrapper.Unit#UNIT self:T( { "Attacking Unit:", AttackUnit:GetName(), AttackUnit:IsAlive(), AttackUnit:IsAir() } ) if AttackUnit:IsAlive() and AttackUnit:IsAir() then AttackTasks[#AttackTasks+1] = AICap:TaskAttackUnit( AttackUnit ) end end if #AttackTasks == 0 then self:E("No targets found -> Going back to Patrolling") self:__Abort( 0.5 ) else AICap:OptionROEOpenFire() AICap:OptionROTEvadeFire() AttackTasks[#AttackTasks+1] = AICap:TaskFunction( "AI_A2A_CAP.AttackRoute", self ) EngageRoute[#EngageRoute].task = AICap:TaskCombo( AttackTasks ) end AICap:Route( EngageRoute, 0.5 ) end else self:E("No targets found -> Going back to Patrolling") self:__Abort( 0.5 ) end end --- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_CAP:onafterAccomplish( AICap, From, Event, To ) self.Accomplished = true self:SetDetectionOff() end --- @param #AI_A2A_CAP self -- @param Wrapper.Group#GROUP AICap The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Core.Event#EVENTDATA EventData function AI_A2A_CAP:onafterDestroy( AICap, From, Event, To, EventData ) if EventData.IniUnit then self.AttackUnits[EventData.IniUnit] = nil end end --- @param #AI_A2A_CAP self -- @param Core.Event#EVENTDATA EventData function AI_A2A_CAP:OnEventDead( EventData ) self:F( { "EventDead", EventData } ) if EventData.IniDCSUnit then if self.AttackUnits and self.AttackUnits[EventData.IniUnit] then self:__Destroy( 1, EventData ) end end end --- @param Wrapper.Group#GROUP AICap function AI_A2A_CAP.Resume( AICap ) AICap:F( { "AI_A2A_CAP.Resume:", AICap:GetName() } ) if AICap:IsAlive() then local _AI_A2A = AICap:GetState( AICap, "AI_A2A" ) -- #AI_A2A _AI_A2A:__Reset( 1 ) _AI_A2A:__Route( 5 ) end end --- **AI** -- **Execute Ground Controlled Interception (GCI).** -- -- ![Banner Image](..\Presentations\AI_GCI\Dia1.JPG) -- -- === -- -- AI A2A_INTEREPT class makes AI Groups execute an Intercept. -- -- There are the following types of GCI classes defined: -- -- * @{#AI_A2A_GCI}: Perform a GCI in a zone. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module AI_A2A_GCI --BASE:TraceClass("AI_A2A_GCI") --- @type AI_A2A_GCI -- @extends AI.AI_A2A#AI_A2A --- # AI_A2A_GCI class, extends @{AI_A2A#AI_A2A} -- -- The AI_A2A_GCI class implements the core functions to intercept intruders. The Engage function will intercept intruders. -- -- ![Process](..\Presentations\AI_GCI\Dia3.JPG) -- -- The AI_A2A_GCI is assigned a @{Group} and this must be done before the AI_A2A_GCI process can be started using the **Start** event. -- -- ![Process](..\Presentations\AI_GCI\Dia4.JPG) -- -- The AI will fly towards the random 3D point within the patrol zone, using a random speed within the given altitude and speed limits. -- Upon arrival at the 3D point, a new random 3D point will be selected within the patrol zone using the given limits. -- -- ![Process](..\Presentations\AI_GCI\Dia5.JPG) -- -- This cycle will continue. -- -- ![Process](..\Presentations\AI_GCI\Dia6.JPG) -- -- During the patrol, the AI will detect enemy targets, which are reported through the **Detected** event. -- -- ![Process](..\Presentations\AI_GCI\Dia9.JPG) -- -- When enemies are detected, the AI will automatically engage the enemy. -- -- ![Process](..\Presentations\AI_GCI\Dia10.JPG) -- -- Until a fuel or damage treshold has been reached by the AI, or when the AI is commanded to RTB. -- When the fuel treshold has been reached, the airplane will fly towards the nearest friendly airbase and will land. -- -- ![Process](..\Presentations\AI_GCI\Dia13.JPG) -- -- ## 1. AI_A2A_GCI constructor -- -- * @{#AI_A2A_GCI.New}(): Creates a new AI_A2A_GCI object. -- -- ## 2. AI_A2A_GCI is a FSM -- -- ![Process](..\Presentations\AI_GCI\Dia2.JPG) -- -- ### 2.1 AI_A2A_GCI States -- -- * **None** ( Group ): The process is not started yet. -- * **Patrolling** ( Group ): The AI is patrolling the Patrol Zone. -- * **Engaging** ( Group ): The AI is engaging the bogeys. -- * **Returning** ( Group ): The AI is returning to Base.. -- -- ### 2.2 AI_A2A_GCI Events -- -- * **@{AI_Patrol#AI_PATROL_ZONE.Start}**: Start the process. -- * **@{AI_Patrol#AI_PATROL_ZONE.Route}**: Route the AI to a new random 3D point within the Patrol Zone. -- * **@{#AI_A2A_GCI.Engage}**: Let the AI engage the bogeys. -- * **@{#AI_A2A_GCI.Abort}**: Aborts the engagement and return patrolling in the patrol zone. -- * **@{AI_Patrol#AI_PATROL_ZONE.RTB}**: Route the AI to the home base. -- * **@{AI_Patrol#AI_PATROL_ZONE.Detect}**: The AI is detecting targets. -- * **@{AI_Patrol#AI_PATROL_ZONE.Detected}**: The AI has detected new targets. -- * **@{#AI_A2A_GCI.Destroy}**: The AI has destroyed a bogey @{Unit}. -- * **@{#AI_A2A_GCI.Destroyed}**: The AI has destroyed all bogeys @{Unit}s assigned in the CAS task. -- * **Status** ( Group ): The AI is checking status (fuel and damage). When the tresholds have been reached, the AI will RTB. -- -- ## 3. Set the Range of Engagement -- -- ![Range](..\Presentations\AI_GCI\Dia11.JPG) -- -- An optional range can be set in meters, -- that will define when the AI will engage with the detected airborne enemy targets. -- The range can be beyond or smaller than the range of the Patrol Zone. -- The range is applied at the position of the AI. -- Use the method @{AI_GCI#AI_A2A_GCI.SetEngageRange}() to define that range. -- -- ## 4. Set the Zone of Engagement -- -- ![Zone](..\Presentations\AI_GCI\Dia12.JPG) -- -- An optional @{Zone} can be set, -- that will define when the AI will engage with the detected airborne enemy targets. -- Use the method @{AI_Cap#AI_A2A_GCI.SetEngageZone}() to define that Zone. -- -- === -- -- @field #AI_A2A_GCI AI_A2A_GCI = { ClassName = "AI_A2A_GCI", } --- Creates a new AI_A2A_GCI object -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept -- @return #AI_A2A_GCI function AI_A2A_GCI:New( AIIntercept, EngageMinSpeed, EngageMaxSpeed ) -- Inherits from BASE local self = BASE:Inherit( self, AI_A2A:New( AIIntercept ) ) -- #AI_A2A_GCI self.Accomplished = false self.Engaging = false self.EngageMinSpeed = EngageMinSpeed self.EngageMaxSpeed = EngageMaxSpeed self.PatrolMinSpeed = EngageMinSpeed self.PatrolMaxSpeed = EngageMaxSpeed self.PatrolAltType = "RADIO" self:AddTransition( { "Started", "Engaging", "Returning", "Airborne" }, "Engage", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_GCI. --- OnBefore Transition Handler for Event Engage. -- @function [parent=#AI_A2A_GCI] OnBeforeEngage -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Engage. -- @function [parent=#AI_A2A_GCI] OnAfterEngage -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Engage. -- @function [parent=#AI_A2A_GCI] Engage -- @param #AI_A2A_GCI self --- Asynchronous Event Trigger for Event Engage. -- @function [parent=#AI_A2A_GCI] __Engage -- @param #AI_A2A_GCI self -- @param #number Delay The delay in seconds. --- OnLeave Transition Handler for State Engaging. -- @function [parent=#AI_A2A_GCI] OnLeaveEngaging -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Engaging. -- @function [parent=#AI_A2A_GCI] OnEnterEngaging -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. self:AddTransition( "Engaging", "Fired", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_GCI. --- OnBefore Transition Handler for Event Fired. -- @function [parent=#AI_A2A_GCI] OnBeforeFired -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Fired. -- @function [parent=#AI_A2A_GCI] OnAfterFired -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Fired. -- @function [parent=#AI_A2A_GCI] Fired -- @param #AI_A2A_GCI self --- Asynchronous Event Trigger for Event Fired. -- @function [parent=#AI_A2A_GCI] __Fired -- @param #AI_A2A_GCI self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Destroy", "*" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_GCI. --- OnBefore Transition Handler for Event Destroy. -- @function [parent=#AI_A2A_GCI] OnBeforeDestroy -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Destroy. -- @function [parent=#AI_A2A_GCI] OnAfterDestroy -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Destroy. -- @function [parent=#AI_A2A_GCI] Destroy -- @param #AI_A2A_GCI self --- Asynchronous Event Trigger for Event Destroy. -- @function [parent=#AI_A2A_GCI] __Destroy -- @param #AI_A2A_GCI self -- @param #number Delay The delay in seconds. self:AddTransition( "Engaging", "Abort", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_GCI. --- OnBefore Transition Handler for Event Abort. -- @function [parent=#AI_A2A_GCI] OnBeforeAbort -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Abort. -- @function [parent=#AI_A2A_GCI] OnAfterAbort -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Abort. -- @function [parent=#AI_A2A_GCI] Abort -- @param #AI_A2A_GCI self --- Asynchronous Event Trigger for Event Abort. -- @function [parent=#AI_A2A_GCI] __Abort -- @param #AI_A2A_GCI self -- @param #number Delay The delay in seconds. self:AddTransition( "Engaging", "Accomplish", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_A2A_GCI. --- OnBefore Transition Handler for Event Accomplish. -- @function [parent=#AI_A2A_GCI] OnBeforeAccomplish -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Accomplish. -- @function [parent=#AI_A2A_GCI] OnAfterAccomplish -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Accomplish. -- @function [parent=#AI_A2A_GCI] Accomplish -- @param #AI_A2A_GCI self --- Asynchronous Event Trigger for Event Accomplish. -- @function [parent=#AI_A2A_GCI] __Accomplish -- @param #AI_A2A_GCI self -- @param #number Delay The delay in seconds. return self end --- onafter State Transition for Event Patrol. -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The AI Group managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_GCI:onafterStart( AIIntercept, From, Event, To ) AIIntercept:HandleEvent( EVENTS.Takeoff, nil, self ) end --- onafter State Transition for Event Patrol. -- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The AI Group managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_GCI:onafterEngage( AIIntercept, From, Event, To ) self:HandleEvent( EVENTS.Dead ) end -- todo: need to fix this global function --- @param Wrapper.Group#GROUP AIControllable function AI_A2A_GCI.InterceptRoute( AIIntercept, Fsm ) AIIntercept:F( { "AI_A2A_GCI.InterceptRoute:", AIIntercept:GetName() } ) if AIIntercept:IsAlive() then Fsm:__Engage( 0.5 ) --local Task = AIIntercept:TaskOrbitCircle( 4000, 400 ) --AIIntercept:SetTask( Task ) end end --- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_GCI:onbeforeEngage( AIIntercept, From, Event, To ) if self.Accomplished == true then return false end end --- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The AI Group managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_GCI:onafterAbort( AIIntercept, From, Event, To ) AIIntercept:ClearTasks() self:Return() self:__RTB( 0.5 ) end --- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The GroupGroup managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_GCI:onafterEngage( AIIntercept, From, Event, To, AttackSetUnit ) self:F( { AIIntercept, From, Event, To, AttackSetUnit} ) self.AttackSetUnit = AttackSetUnit or self.AttackSetUnit -- Core.Set#SET_UNIT local FirstAttackUnit = self.AttackSetUnit:GetFirst() if FirstAttackUnit and FirstAttackUnit:IsAlive() then if AIIntercept:IsAlive() then local EngageRoute = {} local CurrentCoord = AIIntercept:GetCoordinate() --- Calculate the target route point. local CurrentCoord = AIIntercept:GetCoordinate() local ToTargetCoord = self.AttackSetUnit:GetFirst():GetCoordinate() self:SetTargetDistance( ToTargetCoord ) -- For RTB status check local ToTargetSpeed = math.random( self.EngageMinSpeed, self.EngageMaxSpeed ) local ToInterceptAngle = CurrentCoord:GetAngleDegrees( CurrentCoord:GetDirectionVec3( ToTargetCoord ) ) --- Create a route point of type air. local ToPatrolRoutePoint = CurrentCoord:Translate( 15000, ToInterceptAngle ):WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, ToTargetSpeed, true ) self:F( { Angle = ToInterceptAngle, ToTargetSpeed = ToTargetSpeed } ) self:F( { self.EngageMinSpeed, self.EngageMaxSpeed, ToTargetSpeed } ) EngageRoute[#EngageRoute+1] = ToPatrolRoutePoint EngageRoute[#EngageRoute+1] = ToPatrolRoutePoint local AttackTasks = {} for AttackUnitID, AttackUnit in pairs( self.AttackSetUnit:GetSet() ) do local AttackUnit = AttackUnit -- Wrapper.Unit#UNIT if AttackUnit:IsAlive() and AttackUnit:IsAir() then self:T( { "Intercepting Unit:", AttackUnit:GetName(), AttackUnit:IsAlive(), AttackUnit:IsAir() } ) AttackTasks[#AttackTasks+1] = AIIntercept:TaskAttackUnit( AttackUnit ) end end if #AttackTasks == 0 then self:E("No targets found -> Going RTB") self:Return() self:__RTB( 0.5 ) else AIIntercept:OptionROEOpenFire() AIIntercept:OptionROTEvadeFire() AttackTasks[#AttackTasks+1] = AIIntercept:TaskFunction( "AI_A2A_GCI.InterceptRoute", self ) EngageRoute[#EngageRoute].task = AIIntercept:TaskCombo( AttackTasks ) end AIIntercept:Route( EngageRoute, 0.5 ) end else self:E("No targets found -> Going RTB") self:Return() self:__RTB( 0.5 ) end end --- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_A2A_GCI:onafterAccomplish( AIIntercept, From, Event, To ) self.Accomplished = true self:SetDetectionOff() end --- @param #AI_A2A_GCI self -- @param Wrapper.Group#GROUP AIIntercept The Group Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Core.Event#EVENTDATA EventData function AI_A2A_GCI:onafterDestroy( AIIntercept, From, Event, To, EventData ) if EventData.IniUnit then self.AttackUnits[EventData.IniUnit] = nil end end --- @param #AI_A2A_GCI self -- @param Core.Event#EVENTDATA EventData function AI_A2A_GCI:OnEventDead( EventData ) self:F( { "EventDead", EventData } ) if EventData.IniDCSUnit then if self.AttackUnits and self.AttackUnits[EventData.IniUnit] then self:__Destroy( 1, EventData ) end end end --- **AI** - The AI_A2A_DISPATCHER creates an automatic A2A defense system based on an EWR network targets and coordinating CAP and GCI. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia1.JPG) -- -- ==== -- -- # QUICK START GUIDE -- -- There are basically two classes available to model an A2A defense system. -- -- AI\_A2A\_DISPATCHER is the main A2A defense class that models the A2A defense system. -- AI\_A2A\_GCICAP derives or inherits from AI\_A2A\_DISPATCHER and is a more **noob** user friendly class, but is less flexible. -- -- Before you start using the AI\_A2A\_DISPATCHER or AI\_A2A\_GCICAP ask youself the following questions. -- -- ## 0. Do I need AI\_A2A\_DISPATCHER or do I need AI\_A2A\_GCICAP? -- -- AI\_A2A\_GCICAP, automates a lot of the below questions using the mission editor and requires minimal lua scripting. -- But the AI\_A2A\_GCICAP provides less flexibility and a lot of options are defaulted. -- With AI\_A2A\_DISPATCHER you can setup a much more **fine grained** A2A defense mechanism, but some more (easy) lua scripting is required. -- -- ## 1. Which Coalition am I modeling an A2A defense system for? blue or red? -- -- One AI\_A2A\_DISPATCHER object can create a defense system for **one coalition**, which is blue or red. -- If you want to create a **mutual defense system**, for both blue and red, then you need to create **two** AI\_A2A\_DISPATCHER **objects**, -- each governing their defense system. -- -- -- ## 2. Which type of EWR will I setup? Grouping based per AREA, per TYPE or per UNIT? (Later others will follow). -- -- The MOOSE framework leverages the @{Detection} classes to perform the EWR detection. -- Several types of @{Detection} classes exist, and the most common characteristics of these classes is that they: -- -- * Perform detections from multiple FACs as one co-operating entity. -- * Communicate with a Head Quarters, which consolidates each detection. -- * Groups detections based on a method (per area, per type or per unit). -- * Communicates detections. -- -- ## 3. Which EWR units will be used as part of the detection system? Only Ground or also Airborne? -- -- Typically EWR networks are setup using 55G6 EWR, 1L13 EWR, Hawk sr and Patriot str ground based radar units. -- These radars have different ranges and 55G6 EWR and 1L13 EWR radars are Eastern Bloc units (eg Russia, Ukraine, Georgia) while the Hawk and Patriot radars are Western (eg US). -- Additionally, ANY other radar capable unit can be part of the EWR network! Also AWACS airborne units, planes, helicopters can help to detect targets, as long as they have radar. -- The position of these units is very important as they need to provide enough coverage -- to pick up enemy aircraft as they approach so that CAP and GCI flights can be tasked to intercept them. -- -- ## 4. Is a border required? -- -- Is this a cold car or a hot war situation? In case of a cold war situation, a border can be set that will only trigger defenses -- if the border is crossed by enemy units. -- -- ## 5. What maximum range needs to be checked to allow defenses to engage any attacker? -- -- A good functioning defense will have a "maximum range" evaluated to the enemy when CAP will be engaged or GCI will be spawned. -- -- ## 6. Which Airbases, Carrier Ships, Farps will take part in the defense system for the Coalition? -- -- Carefully plan which airbases will take part in the coalition. Color each airbase in the color of the coalition. -- -- ## 7. Which Squadrons will I create and which name will I give each Squadron? -- -- The defense system works with Squadrons. Each Squadron must be given a unique name, that forms the **key** to the defense system. -- Several options and activities can be set per Squadron. -- -- ## 8. Where will the Squadrons be located? On Airbases? On Carrier Ships? On Farps? -- -- Squadrons are placed as the "home base" on an airfield, carrier or farp. -- Carefully plan where each Squadron will be located as part of the defense system. -- -- ## 9. Which plane models will I assign for each Squadron? Do I need one plane model or more plane models per squadron? -- -- Per Squadron, one or multiple plane models can be allocated as **Templates**. -- These are late activated groups with one airplane or helicopter that start with a specific name, called the **template prefix**. -- The A2A defense system will select from the given templates a random template to spawn a new plane (group). -- -- ## 10. Which payloads, skills and skins will these plane models have? -- -- Per Squadron, even if you have one plane model, you can still allocate multiple templates of one plane model, -- each having different payloads, skills and skins. -- The A2A defense system will select from the given templates a random template to spawn a new plane (group). -- -- ## 11. For each Squadron, which will perform CAP? -- -- Per Squadron, evaluate which Squadrons will perform CAP. -- Not all Squadrons need to perform CAP. -- -- ## 12. For each Squadron doing CAP, in which ZONE(s) will the CAP be performed? -- -- Per CAP, evaluate **where** the CAP will be performed, in other words, define the **zone**. -- Near the border or a bit further away? -- -- ## 13. For each Squadron doing CAP, which zone types will I create? -- -- Per CAP zone, evaluate whether you want: -- -- * simple trigger zones -- * polygon zones -- * moving zones -- -- Depending on the type of zone selected, a different @{Zone} object needs to be created from a ZONE_ class. -- -- ## 14. For each Squadron doing CAP, what are the time intervals and CAP amounts to be performed? -- -- For each CAP: -- -- * **How many** CAP you want to have airborne at the same time? -- * **How frequent** you want the defense mechanism to check whether to start a new CAP? -- -- ## 15. For each Squadron, which will perform GCI? -- -- For each Squadron, evaluate which Squadrons will perform GCI? -- Not all Squadrons need to perform GCI. -- -- ## 16. For each Squadron, which takeoff method will I use? -- -- For each Squadron, evaluate which takeoff method will be used: -- -- * Straight from the air -- * From the runway -- * From a parking spot with running engines -- * From a parking spot with cold engines -- -- **The default takeoff method is staight in the air.** -- -- ## 17. For each Squadron, which landing method will I use? -- -- For each Squadron, evaluate which landing method will be used: -- -- * Despawn near the airbase when returning -- * Despawn after landing on the runway -- * Despawn after engine shutdown after landing -- -- **The default landing method is despawn when near the airbase when returning.** -- -- ## 18. For each Squadron, which overhead will I use? -- -- For each Squadron, depending on the airplane type (modern, old) and payload, which overhead is required to provide any defense? -- In other words, if **X** attacker airplanes are detected, how many **Y** defense airplanes need to be spawned per squadron? -- The **Y** is dependent on the type of airplane (era), payload, fuel levels, skills etc. -- The overhead is a **factor** that will calculate dynamically how many **Y** defenses will be required based on **X** attackers detected. -- -- **The default overhead is 1. A value greater than 1, like 1.5 will increase the overhead with 50%, a value smaller than 1, like 0.5 will decrease the overhead with 50%.** -- -- ## 19. For each Squadron, which grouping will I use? -- -- When multiple targets are detected, how will defense airplanes be grouped when multiple defense airplanes are spawned for multiple attackers? -- Per one, two, three, four? -- -- **The default grouping is 1. That means, that each spawned defender will act individually.** -- -- === -- -- ### Authors: **Sven Van de Velde (FlightControl)** rework of GCICAP + introduction of new concepts (squadrons). -- ### Authors: **Stonehouse**, **SNAFU** in terms of the advice, documentation, and the original GCICAP script. -- -- @module AI_A2A_Dispatcher do -- AI_A2A_DISPATCHER --- AI_A2A_DISPATCHER class. -- @type AI_A2A_DISPATCHER -- @extends Tasking.DetectionManager#DETECTION_MANAGER --- # AI\_A2A\_DISPATCHER class, extends @{Tasking#DETECTION_MANAGER} -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia1.JPG) -- -- The @{#AI_A2A_DISPATCHER} class is designed to create an automatic air defence system for a coalition. -- -- ==== -- -- # Demo Missions -- -- ### [AI\_A2A\_DISPATCHER Demo Missions](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/release-2-2-pre/AID%20-%20AI%20Dispatching) -- -- ==== -- -- # YouTube Channel -- -- ### [DCS WORLD - MOOSE - A2A GCICAP - Build an automatic A2A Defense System](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl0S4KMNUUJpaUs6zZHjLKNx) -- -- === -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia3.JPG) -- -- It includes automatic spawning of Combat Air Patrol aircraft (CAP) and Ground Controlled Intercept aircraft (GCI) in response to enemy air movements that are detected by a ground based radar network. -- CAP flights will take off and proceed to designated CAP zones where they will remain on station until the ground radars direct them to intercept detected enemy aircraft or they run short of fuel and must return to base (RTB). When a CAP flight leaves their zone to perform an interception or return to base a new CAP flight will spawn to take their place. -- If all CAP flights are engaged or RTB then additional GCI interceptors will scramble to intercept unengaged enemy aircraft under ground radar control. -- With a little time and with a little work it provides the mission designer with a convincing and completely automatic air defence system. -- In short it is a plug in very flexible and configurable air defence module for DCS World. -- -- Note that in order to create a two way A2A defense system, two AI\_A2A\_DISPATCHER defense system may need to be created, for each coalition one. -- This is a good implementation, because maybe in the future, more coalitions may become available in DCS world. -- -- === -- -- # USAGE GUIDE -- -- ## 1. AI\_A2A\_DISPATCHER constructor: -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_1.JPG) -- -- -- The @{#AI_A2A_DISPATCHER.New}() method creates a new AI\_A2A\_DISPATCHER instance. -- -- ### 1.1. Define the **EWR network**: -- -- As part of the AI\_A2A\_DISPATCHER :New() constructor, an EWR network must be given as the first parameter. -- An EWR network, or, Early Warning Radar network, is used to early detect potential airborne targets and to understand the position of patrolling targets of the enemy. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia5.JPG) -- -- Typically EWR networks are setup using 55G6 EWR, 1L13 EWR, Hawk sr and Patriot str ground based radar units. -- These radars have different ranges and 55G6 EWR and 1L13 EWR radars are Eastern Bloc units (eg Russia, Ukraine, Georgia) while the Hawk and Patriot radars are Western (eg US). -- Additionally, ANY other radar capable unit can be part of the EWR network! Also AWACS airborne units, planes, helicopters can help to detect targets, as long as they have radar. -- The position of these units is very important as they need to provide enough coverage -- to pick up enemy aircraft as they approach so that CAP and GCI flights can be tasked to intercept them. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia7.JPG) -- -- Additionally in a hot war situation where the border is no longer respected the placement of radars has a big effect on how fast the war escalates. -- For example if they are a long way forward and can detect enemy planes on the ground and taking off -- they will start to vector CAP and GCI flights to attack them straight away which will immediately draw a response from the other coalition. -- Having the radars further back will mean a slower escalation because fewer targets will be detected and -- therefore less CAP and GCI flights will spawn and this will tend to make just the border area active rather than a melee over the whole map. -- It all depends on what the desired effect is. -- -- EWR networks are **dynamically constructed**, that is, they form part of the @{Functional#DETECTION_BASE} object that is given as the input parameter of the AI\_A2A\_DISPATCHER class. -- By defining in a **smart way the names or name prefixes of the groups** with EWR capable units, these groups will be **automatically added or deleted** from the EWR network, -- increasing or decreasing the radar coverage of the Early Warning System. -- -- See the following example to setup an EWR network containing EWR stations and AWACS. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_2.JPG) -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_3.JPG) -- -- -- Define a SET_GROUP object that builds a collection of groups that define the EWR network. -- -- Here we build the network with all the groups that have a name starting with DF CCCP AWACS and DF CCCP EWR. -- DetectionSetGroup = SET_GROUP:New() -- DetectionSetGroup:FilterPrefixes( { "DF CCCP AWACS", "DF CCCP EWR" } ) -- DetectionSetGroup:FilterStart() -- -- -- Setup the detection and group targets to a 30km range! -- Detection = DETECTION_AREAS:New( DetectionSetGroup, 30000 ) -- -- -- Setup the A2A dispatcher, and initialize it. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- The above example creates a SET_GROUP instance, and stores this in the variable (object) **DetectionSetGroup**. -- **DetectionSetGroup** is then being configured to filter all active groups with a group name starting with **DF CCCP AWACS** or **DF CCCP EWR** to be included in the Set. -- **DetectionSetGroup** is then being ordered to start the dynamic filtering. Note that any destroy or new spawn of a group with the above names will be removed or added to the Set. -- -- Then a new Detection object is created from the class DETECTION_AREAS. A grouping radius of 30000 is choosen, which is 30km. -- The **Detection** object is then passed to the @{#AI_A2A_DISPATCHER.New}() method to indicate the EWR network configuration and setup the A2A defense detection mechanism. -- -- You could build a **mutual defense system** like this: -- -- A2ADispatcher_Red = AI_A2A_DISPATCHER:New( EWR_Red ) -- A2ADispatcher_Blue = AI_A2A_DISPATCHER:New( EWR_Blue ) -- -- ### 2. Define the detected **target grouping radius**: -- -- The target grouping radius is a property of the Detection object, that was passed to the AI\_A2A\_DISPATCHER object, but can be changed. -- The grouping radius should not be too small, but also depends on the types of planes and the era of the simulation. -- Fast planes like in the 80s, need a larger radius than WWII planes. -- Typically I suggest to use 30000 for new generation planes and 10000 for older era aircraft. -- -- Note that detected targets are constantly re-grouped, that is, when certain detected aircraft are moving further than the group radius, then these aircraft will become a separate -- group being detected. This may result in additional GCI being started by the dispatcher! So don't make this value too small! -- -- ## 3. Set the **Engage Radius**: -- -- Define the **Engage Radius** to **engage any target by airborne friendlies**, -- which are executing **cap** or **returning** from an intercept mission. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia10.JPG) -- -- If there is a target area detected and reported, -- then any friendlies that are airborne near this target area, -- will be commanded to (re-)engage that target when available (if no other tasks were commanded). -- -- For example, if **50000** or **50km** is given as a value, then any friendly that is airborne within **50km** from the detected target, -- will be considered to receive the command to engage that target area. -- -- You need to evaluate the value of this parameter carefully: -- -- * If too small, more intercept missions may be triggered upon detected target areas. -- * If too large, any airborne cap may not be able to reach the detected target area in time, because it is too far. -- -- The **default** Engage Radius is defined as **100000** or **100km**. -- Use the method @{#AI_A2A_DISPATCHER.SetEngageRadius}() to set a specific Engage Radius. -- **The Engage Radius is defined for ALL squadrons which are operational.** -- -- Demonstration Mission: [AID-019 - AI_A2A - Engage Range Test](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/release-2-2-pre/AID%20-%20AI%20Dispatching/AID-019%20-%20AI_A2A%20-%20Engage%20Range%20Test) -- -- In this example an Engage Radius is set to various values. -- -- -- Set 50km as the radius to engage any target by airborne friendlies. -- A2ADispatcher:SetEngageRadius( 50000 ) -- -- -- Set 100km as the radius to engage any target by airborne friendlies. -- A2ADispatcher:SetEngageRadius() -- 100000 is the default value. -- -- -- ## 4. Set the **Ground Controlled Intercept Radius** or **Gci radius**: -- -- When targets are detected that are still really far off, you don't want the AI_A2A_DISPATCHER to launch intercepts just yet. -- You want it to wait until a certain Gci range is reached, which is the **distance of the closest airbase to target** -- being **smaller** than the **Ground Controlled Intercept radius** or **Gci radius**. -- -- The **default** Gci radius is defined as **200000** or **200km**. Override the default Gci radius when the era of the warfare is early, or, -- when you don't want to let the AI_A2A_DISPATCHER react immediately when a certain border or area is not being crossed. -- -- Use the method @{#AI_A2A_DISPATCHER.SetGciRadius}() to set a specific controlled ground intercept radius. -- **The Ground Controlled Intercept radius is defined for ALL squadrons which are operational.** -- -- Demonstration Mission: [AID-013 - AI_A2A - Intercept Test](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/release-2-2-pre/AID%20-%20AI%20Dispatching/AID-013%20-%20AI_A2A%20-%20Intercept%20Test) -- -- In these examples, the Gci Radius is set to various values: -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Set 100km as the radius to ground control intercept detected targets from the nearest airbase. -- A2ADispatcher:SetGciRadius( 100000 ) -- -- -- Set 200km as the radius to ground control intercept. -- A2ADispatcher:SetGciRadius() -- 200000 is the default value. -- -- ## 5. Set the **borders**: -- -- According to the tactical and strategic design of the mission broadly decide the shape and extent of red and blue territories. -- They should be laid out such that a border area is created between the two coalitions. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia4.JPG) -- -- **Define a border area to simulate a cold war scenario.** -- Use the method @{#AI_A2A_DISPATCHER.SetBorderZone}() to create a border zone for the dispatcher. -- -- A **cold war** is one where CAP aircraft patrol their territory but will not attack enemy aircraft or launch GCI aircraft unless enemy aircraft enter their territory. In other words the EWR may detect an enemy aircraft but will only send aircraft to attack it if it crosses the border. -- A **hot war** is one where CAP aircraft will intercept any detected enemy aircraft and GCI aircraft will launch against detected enemy aircraft without regard for territory. In other words if the ground radar can detect the enemy aircraft then it will send CAP and GCI aircraft to attack it. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia9.JPG) -- -- If it’s a cold war then the **borders of red and blue territory** need to be defined using a @{zone} object derived from @{Zone#ZONE_BASE}. -- If a hot war is chosen then **no borders** actually need to be defined using the helicopter units other than -- it makes it easier sometimes for the mission maker to envisage where the red and blue territories roughly are. -- In a hot war the borders are effectively defined by the ground based radar coverage of a coalition. -- -- Demonstration Mission: [AID-009 - AI_A2A - Border Test](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/release-2-2-pre/AID%20-%20AI%20Dispatching/AID-009 - AI_A2A - Border Test) -- -- In this example a border is set for the CCCP A2A dispatcher: -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_4.JPG) -- -- -- Setup the A2A dispatcher, and initialize it. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Setup the border. -- -- Initialize the dispatcher, setting up a border zone. This is a polygon, -- -- which takes the waypoints of a late activated group with the name CCCP Border as the boundaries of the border area. -- -- Any enemy crossing this border will be engaged. -- -- CCCPBorderZone = ZONE_POLYGON:New( "CCCP Border", GROUP:FindByName( "CCCP Border" ) ) -- A2ADispatcher:SetBorderZone( CCCPBorderZone ) -- -- ## 6. Squadrons: -- -- The AI\_A2A\_DISPATCHER works with **Squadrons**, that need to be defined using the different methods available. -- -- Use the method @{#AI_A2A_DISPATCHER.SetSquadron}() to **setup a new squadron** active at an airfield, -- while defining which plane types are being used by the squadron and how many resources are available. -- -- Squadrons: -- -- * Have name (string) that is the identifier or key of the squadron. -- * Have specific plane types. -- * Are located at one airbase. -- * Optionally have a limited set of resources. The default is that squadrons have **unlimited resources**. -- -- The name of the squadron given acts as the **squadron key** in the AI\_A2A\_DISPATCHER:Squadron...() methods. -- -- Additionally, squadrons have specific configuration options to: -- -- * Control how new aircraft are taking off from the airfield (in the air, cold, hot, at the runway). -- * Control how returning aircraft are landing at the airfield (in the air near the airbase, after landing, after engine shutdown). -- * Control the **grouping** of new aircraft spawned at the airfield. If there is more than one aircraft to be spawned, these may be grouped. -- * Control the **overhead** or defensive strength of the squadron. Depending on the types of planes and amount of resources, the mission designer can choose to increase or reduce the amount of planes spawned. -- -- For performance and bug workaround reasons within DCS, squadrons have different methods to spawn new aircraft or land returning or damaged aircraft. -- -- This example defines a couple of squadrons. Note the templates defined within the Mission Editor. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_5.JPG) -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_6.JPG) -- -- -- Setup the squadrons. -- A2ADispatcher:SetSquadron( "Mineralnye", AIRBASE.Caucasus.Mineralnye_Vody, { "SQ CCCP SU-27" }, 20 ) -- A2ADispatcher:SetSquadron( "Maykop", AIRBASE.Caucasus.Maykop_Khanskaya, { "SQ CCCP MIG-31" }, 20 ) -- A2ADispatcher:SetSquadron( "Mozdok", AIRBASE.Caucasus.Mozdok, { "SQ CCCP MIG-31" }, 20 ) -- A2ADispatcher:SetSquadron( "Sochi", AIRBASE.Caucasus.Sochi_Adler, { "SQ CCCP SU-27" }, 20 ) -- A2ADispatcher:SetSquadron( "Novo", AIRBASE.Caucasus.Novorossiysk, { "SQ CCCP SU-27" }, 20 ) -- -- ### 6.1. Set squadron take-off methods -- -- Use the various SetSquadronTakeoff... methods to control how squadrons are taking-off from the airfield: -- -- * @{#AI_A2A_DISPATCHER.SetSquadronTakeoff}() is the generic configuration method to control takeoff from the air, hot, cold or from the runway. See the method for further details. -- * @{#AI_A2A_DISPATCHER.SetSquadronTakeoffInAir}() will spawn new aircraft from the squadron directly in the air. -- * @{#AI_A2A_DISPATCHER.SetSquadronTakeoffFromParkingCold}() will spawn new aircraft in without running engines at a parking spot at the airfield. -- * @{#AI_A2A_DISPATCHER.SetSquadronTakeoffFromParkingHot}() will spawn new aircraft in with running engines at a parking spot at the airfield. -- * @{#AI_A2A_DISPATCHER.SetSquadronTakeoffFromRunway}() will spawn new aircraft at the runway at the airfield. -- -- **The default landing method is to spawn new aircraft directly in the air.** -- -- Use these methods to fine-tune for specific airfields that are known to create bottlenecks, or have reduced airbase efficiency. -- The more and the longer aircraft need to taxi at an airfield, the more risk there is that: -- -- * aircraft will stop waiting for each other or for a landing aircraft before takeoff. -- * aircraft may get into a "dead-lock" situation, where two aircraft are blocking each other. -- * aircraft may collide at the airbase. -- * aircraft may be awaiting the landing of a plane currently in the air, but never lands ... -- -- Currently within the DCS engine, the airfield traffic coordination is erroneous and contains a lot of bugs. -- If you experience while testing problems with aircraft take-off or landing, please use one of the above methods as a solution to workaround these issues! -- -- This example sets the default takeoff method to be from the runway. -- And for a couple of squadrons overrides this default method. -- -- -- Setup the Takeoff methods -- -- -- The default takeoff -- A2ADispatcher:SetDefaultTakeOffFromRunway() -- -- -- The individual takeoff per squadron -- A2ADispatcher:SetSquadronTakeoff( "Mineralnye", AI_A2A_DISPATCHER.Takeoff.Air ) -- A2ADispatcher:SetSquadronTakeoffInAir( "Sochi" ) -- A2ADispatcher:SetSquadronTakeoffFromRunway( "Mozdok" ) -- A2ADispatcher:SetSquadronTakeoffFromParkingCold( "Maykop" ) -- A2ADispatcher:SetSquadronTakeoffFromParkingHot( "Novo" ) -- -- -- ### 6.1. Set Squadron takeoff altitude when spawning new aircraft in the air. -- -- In the case of the @{#AI_A2A_DISPATCHER.SetSquadronTakeoffInAir}() there is also an other parameter that can be applied. -- That is modifying or setting the **altitude** from where planes spawn in the air. -- Use the method @{#AI_A2A_DISPATCHER.SetSquadronTakeoffInAirAltitude}() to set the altitude for a specific squadron. -- The default takeoff altitude can be modified or set using the method @{#AI_A2A_DISPATCHER.SetSquadronTakeoffInAirAltitude}(). -- As part of the method @{#AI_A2A_DISPATCHER.SetSquadronTakeoffInAir}() a parameter can be specified to set the takeoff altitude. -- If this parameter is not specified, then the default altitude will be used for the squadron. -- -- ### 6.2. Set squadron landing methods -- -- In analogy with takeoff, the landing methods are to control how squadrons land at the airfield: -- -- * @{#AI_A2A_DISPATCHER.SetSquadronLanding}() is the generic configuration method to control landing, namely despawn the aircraft near the airfield in the air, right after landing, or at engine shutdown. -- * @{#AI_A2A_DISPATCHER.SetSquadronLandingNearAirbase}() will despawn the returning aircraft in the air when near the airfield. -- * @{#AI_A2A_DISPATCHER.SetSquadronLandingAtRunway}() will despawn the returning aircraft directly after landing at the runway. -- * @{#AI_A2A_DISPATCHER.SetSquadronLandingAtEngineShutdown}() will despawn the returning aircraft when the aircraft has returned to its parking spot and has turned off its engines. -- -- You can use these methods to minimize the airbase coodination overhead and to increase the airbase efficiency. -- When there are lots of aircraft returning for landing, at the same airbase, the takeoff process will be halted, which can cause a complete failure of the -- A2A defense system, as no new CAP or GCI planes can takeoff. -- Note that the method @{#AI_A2A_DISPATCHER.SetSquadronLandingNearAirbase}() will only work for returning aircraft, not for damaged or out of fuel aircraft. -- Damaged or out-of-fuel aircraft are returning to the nearest friendly airbase and will land, and are out of control from ground control. -- -- This example defines the default landing method to be at the runway. -- And for a couple of squadrons overrides this default method. -- -- -- Setup the Landing methods -- -- -- The default landing method -- A2ADispatcher:SetDefaultLandingAtRunway() -- -- -- The individual landing per squadron -- A2ADispatcher:SetSquadronLandingAtRunway( "Mineralnye" ) -- A2ADispatcher:SetSquadronLandingNearAirbase( "Sochi" ) -- A2ADispatcher:SetSquadronLandingAtEngineShutdown( "Mozdok" ) -- A2ADispatcher:SetSquadronLandingNearAirbase( "Maykop" ) -- A2ADispatcher:SetSquadronLanding( "Novo", AI_A2A_DISPATCHER.Landing.AtRunway ) -- -- -- ### 6.3. Set squadron grouping -- -- Use the method @{#AI_A2A_DISPATCHER.SetSquadronGrouping}() to set the grouping of CAP or GCI flights that will take-off when spawned. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia12.JPG) -- -- In the case of GCI, the @{#AI_A2A_DISPATCHER.SetSquadronGrouping}() method has additional behaviour. When there aren't enough CAP flights airborne, a GCI will be initiated for the remaining -- targets to be engaged. Depending on the grouping parameter, the spawned flights for GCI are grouped into this setting. -- For example with a group setting of 2, if 3 targets are detected and cannot be engaged by CAP or any airborne flight, -- a GCI needs to be started, the GCI flights will be grouped as follows: Group 1 of 2 flights and Group 2 of one flight! -- -- Even more ... If one target has been detected, and the overhead is 1.5, grouping is 1, then two groups of planes will be spawned, with one unit each! -- -- The **grouping value is set for a Squadron**, and can be **dynamically adjusted** during mission execution, so to adjust the defense flights grouping when the tactical situation changes. -- -- ### 6.4. Overhead and Balance the effectiveness of the air defenses in case of GCI. -- -- The effectiveness can be set with the **overhead parameter**. This is a number that is used to calculate the amount of Units that dispatching command will allocate to GCI in surplus of detected amount of units. -- The **default value** of the overhead parameter is 1.0, which means **equal balance**. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia11.JPG) -- -- However, depending on the (type of) aircraft (strength and payload) in the squadron and the amount of resources available, this parameter can be changed. -- -- The @{#AI_A2A_DISPATCHER.SetSquadronOverhead}() method can be used to tweak the defense strength, -- taking into account the plane types of the squadron. -- -- For example, a MIG-31 with full long-distance A2A missiles payload, may still be less effective than a F-15C with short missiles... -- So in this case, one may want to use the @{#AI_A2A_DISPATCHER.SetOverhead}() method to allocate more defending planes as the amount of detected attacking planes. -- The overhead must be given as a decimal value with 1 as the neutral value, which means that overhead values: -- -- * Higher than 1.0, for example 1.5, will increase the defense unit amounts. For 4 planes detected, 6 planes will be spawned. -- * Lower than 1, for example 0.75, will decrease the defense unit amounts. For 4 planes detected, only 3 planes will be spawned. -- -- The amount of defending units is calculated by multiplying the amount of detected attacking planes as part of the detected group -- multiplied by the Overhead and rounded up to the smallest integer. -- -- For example ... If one target has been detected, and the overhead is 1.5, grouping is 1, then two groups of planes will be spawned, with one unit each! -- -- The **overhead value is set for a Squadron**, and can be **dynamically adjusted** during mission execution, so to adjust the defense overhead when the tactical situation changes. -- -- ## 6.5. Squadron fuel treshold. -- -- When an airplane gets **out of fuel** to a certain %-tage, which is by default **15% (0.15)**, there are two possible actions that can be taken: -- - The defender will go RTB, and will be replaced with a new defender if possible. -- - The defender will refuel at a tanker, if a tanker has been specified for the squadron. -- -- Use the method @{#AI_A2A_DISPATCHER.SetSquadronFuelThreshold}() to set the **squadron fuel treshold** of spawned airplanes for all squadrons. -- -- ## 7. Setup a squadron for CAP -- -- ### 7.1. Set the CAP zones -- -- CAP zones are patrol areas where Combat Air Patrol (CAP) flights loiter until they either return to base due to low fuel or are assigned an interception task by ground control. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia6.JPG) -- -- * As the CAP flights wander around within the zone waiting to be tasked, these zones need to be large enough that the aircraft are not constantly turning -- but do not have to be big and numerous enough to completely cover a border. -- -- * CAP zones can be of any type, and are derived from the @{Zone#ZONE_BASE} class. Zones can be @{Zone#ZONE}, @{Zone#ZONE_POLYGON}, @{Zone#ZONE_UNIT}, @{Zone#ZONE_GROUP}, etc. -- This allows to setup **static, moving and/or complex zones** wherein aircraft will perform the CAP. -- -- * Typically 20000-50000 metres width is used and they are spaced so that aircraft in the zone waiting for tasks don’t have to far to travel to protect their coalitions important targets. -- These targets are chosen as part of the mission design and might be an important airfield or town etc. -- Zone size is also determined somewhat by territory size, plane types -- (eg WW2 aircraft might mean smaller zones or more zones because they are slower and take longer to intercept enemy aircraft). -- -- * In a **cold war** it is important to make sure a CAP zone doesn’t intrude into enemy territory as otherwise CAP flights will likely cross borders -- and spark a full scale conflict which will escalate rapidly. -- -- * CAP flights do not need to be in the CAP zone before they are “on station” and ready for tasking. -- -- * Typically if a CAP flight is tasked and therefore leaves their zone empty while they go off and intercept their target another CAP flight will spawn to take their place. -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia7.JPG) -- -- The following example illustrates how CAP zones are coded: -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_8.JPG) -- -- -- CAP Squadron execution. -- CAPZoneEast = ZONE_POLYGON:New( "CAP Zone East", GROUP:FindByName( "CAP Zone East" ) ) -- A2ADispatcher:SetSquadronCap( "Mineralnye", CAPZoneEast, 4000, 10000, 500, 600, 800, 900 ) -- A2ADispatcher:SetSquadronCapInterval( "Mineralnye", 2, 30, 60, 1 ) -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_7.JPG) -- -- CAPZoneWest = ZONE_POLYGON:New( "CAP Zone West", GROUP:FindByName( "CAP Zone West" ) ) -- A2ADispatcher:SetSquadronCap( "Sochi", CAPZoneWest, 4000, 8000, 600, 800, 800, 1200, "BARO" ) -- A2ADispatcher:SetSquadronCapInterval( "Sochi", 2, 30, 120, 1 ) -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_9.JPG) -- -- CAPZoneMiddle = ZONE:New( "CAP Zone Middle") -- A2ADispatcher:SetSquadronCap( "Maykop", CAPZoneMiddle, 4000, 8000, 600, 800, 800, 1200, "RADIO" ) -- A2ADispatcher:SetSquadronCapInterval( "Sochi", 2, 30, 120, 1 ) -- -- Note the different @{Zone} MOOSE classes being used to create zones of different types. Please click the @{Zone} link for more information about the different zone types. -- Zones can be circles, can be setup in the mission editor using trigger zones, but can also be setup in the mission editor as polygons and in this case GROUP objects are being used! -- -- ## 7.2. Set the squadron to execute CAP: -- -- The method @{#AI_A2A_DISPATCHER.SetSquadronCap}() defines a CAP execution for a squadron. -- -- Setting-up a CAP zone also requires specific parameters: -- -- * The minimum and maximum altitude -- * The minimum speed and maximum patrol speed -- * The minimum and maximum engage speed -- * The type of altitude measurement -- -- These define how the squadron will perform the CAP while partrolling. Different terrain types requires different types of CAP. -- -- The @{#AI_A2A_DISPATCHER.SetSquadronCapInterval}() method specifies **how much** and **when** CAP flights will takeoff. -- -- It is recommended not to overload the air defense with CAP flights, as these will decrease the performance of the overall system. -- -- For example, the following setup will create a CAP for squadron "Sochi": -- -- A2ADispatcher:SetSquadronCap( "Sochi", CAPZoneWest, 4000, 8000, 600, 800, 800, 1200, "BARO" ) -- A2ADispatcher:SetSquadronCapInterval( "Sochi", 2, 30, 120, 1 ) -- -- ## 7.3. Squadron tanker to refuel when executing CAP and defender is out of fuel. -- -- Instead of sending CAP to RTB when out of fuel, you can let CAP refuel in mid air using a tanker. -- This greatly increases the efficiency of your CAP operations. -- -- In the mission editor, setup a group with task Refuelling. A tanker unit of the correct coalition will be automatically selected. -- Then, use the method @{#AI_A2A_DISPATCHER.SetDefaultTanker}() to set the default tanker for the refuelling. -- You can also specify a specific tanker for refuelling for a squadron by using the method @{#AI_A2A_DISPATCHER.SetSquadronTanker}(). -- -- When the tanker specified is alive and in the air, the tanker will be used for refuelling. -- -- For example, the following setup will create a CAP for squadron "Gelend" with a refuel task for the squadron: -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_10.JPG) -- -- -- Define the CAP -- A2ADispatcher:SetSquadron( "Gelend", AIRBASE.Caucasus.Gelendzhik, { "SQ CCCP SU-30" }, 20 ) -- A2ADispatcher:SetSquadronCap( "Gelend", ZONE:New( "PatrolZoneGelend" ), 4000, 8000, 600, 800, 1000, 1300 ) -- A2ADispatcher:SetSquadronCapInterval( "Gelend", 2, 30, 600, 1 ) -- A2ADispatcher:SetSquadronGci( "Gelend", 900, 1200 ) -- -- -- Setup the Refuelling for squadron "Gelend", at tanker (group) "TankerGelend" when the fuel in the tank of the CAP defenders is less than 80%. -- A2ADispatcher:SetSquadronFuelThreshold( "Gelend", 0.8 ) -- A2ADispatcher:SetSquadronTanker( "Gelend", "TankerGelend" ) -- -- ## 8. Setup a squadron for GCI: -- -- The method @{#AI_A2A_DISPATCHER.SetSquadronGci}() defines a GCI execution for a squadron. -- -- Setting-up a GCI readiness also requires specific parameters: -- -- * The minimum speed and maximum patrol speed -- -- Essentially this controls how many flights of GCI aircraft can be active at any time. -- Note allowing large numbers of active GCI flights can adversely impact mission performance on low or medium specification hosts/servers. -- GCI needs to be setup at strategic airbases. Too far will mean that the aircraft need to fly a long way to reach the intruders, -- too short will mean that the intruders may have alraedy passed the ideal interception point! -- -- For example, the following setup will create a GCI for squadron "Sochi": -- -- A2ADispatcher:SetSquadronGci( "Mozdok", 900, 1200 ) -- -- ## 9. Other configuration options -- -- ### 9.1. Set a tactical display panel: -- -- Every 30 seconds, a tactical display panel can be shown that illustrates what the status is of the different groups controlled by AI\_A2A\_DISPATCHER. -- Use the method @{#AI_A2A_DISPATCHER.SetTacticalDisplay}() to switch on the tactical display panel. The default will not show this panel. -- Note that there may be some performance impact if this panel is shown. -- -- ## 10. Defaults settings. -- -- This provides a good overview of the different parameters that are setup or hardcoded by default. -- For some default settings, a method is available that allows you to tweak the defaults. -- -- ## 10.1. Default takeoff method. -- -- The default **takeoff method** is set to **in the air**, which means that new spawned airplanes will be spawned directly in the air above the airbase by default. -- -- **The default takeoff method can be set for ALL squadrons that don't have an individual takeoff method configured.** -- -- * @{#AI_A2A_DISPATCHER.SetDefaultTakeoff}() is the generic configuration method to control takeoff by default from the air, hot, cold or from the runway. See the method for further details. -- * @{#AI_A2A_DISPATCHER.SetDefaultTakeoffInAir}() will spawn by default new aircraft from the squadron directly in the air. -- * @{#AI_A2A_DISPATCHER.SetDefaultTakeoffFromParkingCold}() will spawn by default new aircraft in without running engines at a parking spot at the airfield. -- * @{#AI_A2A_DISPATCHER.SetDefaultTakeoffFromParkingHot}() will spawn by default new aircraft in with running engines at a parking spot at the airfield. -- * @{#AI_A2A_DISPATCHER.SetDefaultTakeoffFromRunway}() will spawn by default new aircraft at the runway at the airfield. -- -- ## 10.2. Default landing method. -- -- The default **landing method** is set to **near the airbase**, which means that returning airplanes will be despawned directly in the air by default. -- -- The default landing method can be set for ALL squadrons that don't have an individual landing method configured. -- -- * @{#AI_A2A_DISPATCHER.SetDefaultLanding}() is the generic configuration method to control by default landing, namely despawn the aircraft near the airfield in the air, right after landing, or at engine shutdown. -- * @{#AI_A2A_DISPATCHER.SetDefaultLandingNearAirbase}() will despawn by default the returning aircraft in the air when near the airfield. -- * @{#AI_A2A_DISPATCHER.SetDefaultLandingAtRunway}() will despawn by default the returning aircraft directly after landing at the runway. -- * @{#AI_A2A_DISPATCHER.SetDefaultLandingAtEngineShutdown}() will despawn by default the returning aircraft when the aircraft has returned to its parking spot and has turned off its engines. -- -- ## 10.3. Default overhead. -- -- The default **overhead** is set to **1**. That essentially means that there isn't any overhead set by default. -- -- The default overhead value can be set for ALL squadrons that don't have an individual overhead value configured. -- -- Use the @{#AI_A2A_DISPATCHER.SetDefaultOverhead}() method can be used to set the default overhead or defense strength for ALL squadrons. -- -- ## 10.4. Default grouping. -- -- The default **grouping** is set to **one airplane**. That essentially means that there won't be any grouping applied by default. -- -- The default grouping value can be set for ALL squadrons that don't have an individual grouping value configured. -- -- Use the method @{#AI_A2A_DISPATCHER.SetDefaultGrouping}() to set the **default grouping** of spawned airplanes for all squadrons. -- -- ## 10.5. Default RTB fuel treshold. -- -- When an airplane gets **out of fuel** to a certain %-tage, which is **15% (0.15)**, it will go RTB, and will be replaced with a new airplane when applicable. -- -- Use the method @{#AI_A2A_DISPATCHER.SetDefaultFuelThreshold}() to set the **default fuel treshold** of spawned airplanes for all squadrons. -- -- ## 10.6. Default RTB damage treshold. -- -- When an airplane is **damaged** to a certain %-tage, which is **40% (0.40)**, it will go RTB, and will be replaced with a new airplane when applicable. -- -- Use the method @{#AI_A2A_DISPATCHER.SetDefaultDamageThreshold}() to set the **default damage treshold** of spawned airplanes for all squadrons. -- -- ## 10.7. Default settings for CAP. -- -- ### 10.7.1. Default CAP Time Interval. -- -- CAP is time driven, and will evaluate in random time intervals if a new CAP needs to be spawned. -- The **default CAP time interval** is between **180** and **600** seconds. -- -- Use the method @{#AI_A2A_DISPATCHER.SetDefaultCapTimeInterval}() to set the **default CAP time interval** of spawned airplanes for all squadrons. -- Note that you can still change the CAP limit and CAP time intervals for each CAP individually using the @{#AI_A2A_DISPATCHER.SetSquadronCapTimeInterval}() method. -- -- ### 10.7.2. Default CAP limit. -- -- Multiple CAP can be airborne at the same time for one squadron, which is controlled by the **CAP limit**. -- The **default CAP limit** is 1 CAP per squadron to be airborne at the same time. -- Note that the default CAP limit is used when a Squadron CAP is defined, and cannot be changed afterwards. -- So, ensure that you set the default CAP limit **before** you spawn the Squadron CAP. -- -- Use the method @{#AI_A2A_DISPATCHER.SetDefaultCapTimeInterval}() to set the **default CAP time interval** of spawned airplanes for all squadrons. -- Note that you can still change the CAP limit and CAP time intervals for each CAP individually using the @{#AI_A2A_DISPATCHER.SetSquadronCapTimeInterval}() method. -- -- ## 10.7.3. Default tanker for refuelling when executing CAP. -- -- Instead of sending CAP to RTB when out of fuel, you can let CAP refuel in mid air using a tanker. -- This greatly increases the efficiency of your CAP operations. -- -- In the mission editor, setup a group with task Refuelling. A tanker unit of the correct coalition will be automatically selected. -- Then, use the method @{#AI_A2A_DISPATCHER.SetDefaultTanker}() to set the tanker for the dispatcher. -- Use the method @{#AI_A2A_DISPATCHER.SetDefaultFuelTreshold}() to set the %-tage left in the defender airplane tanks when a refuel action is needed. -- -- When the tanker specified is alive and in the air, the tanker will be used for refuelling. -- -- For example, the following setup will set the default refuel tanker to "Tanker": -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_DISPATCHER-ME_11.JPG) -- -- -- Define the CAP -- A2ADispatcher:SetSquadron( "Sochi", AIRBASE.Caucasus.Sochi_Adler, { "SQ CCCP SU-34" }, 20 ) -- A2ADispatcher:SetSquadronCap( "Sochi", ZONE:New( "PatrolZone" ), 4000, 8000, 600, 800, 1000, 1300 ) -- A2ADispatcher:SetSquadronCapInterval("Sochi", 2, 30, 600, 1 ) -- A2ADispatcher:SetSquadronGci( "Sochi", 900, 1200 ) -- -- -- Set the default tanker for refuelling to "Tanker", when the default fuel treshold has reached 90% fuel left. -- A2ADispatcher:SetDefaultFuelThreshold( 0.9 ) -- A2ADispatcher:SetDefaultTanker( "Tanker" ) -- -- ## 10.8. Default settings for GCI. -- -- ## 10.8.1. Optimal intercept point calculation. -- -- When intruders are detected, the intrusion path of the attackers can be monitored by the EWR. -- Although defender planes might be on standby at the airbase, it can still take some time to get the defenses up in the air if there aren't any defenses airborne. -- This time can easily take 2 to 3 minutes, and even then the defenders still need to fly towards the target, which takes also time. -- -- Therefore, an optimal **intercept point** is calculated which takes a couple of parameters: -- -- * The average bearing of the intruders for an amount of seconds. -- * The average speed of the intruders for an amount of seconds. -- * An assumed time it takes to get planes operational at the airbase. -- -- The **intercept point** will determine: -- -- * If there are any friendlies close to engage the target. These can be defenders performing CAP or defenders in RTB. -- * The optimal airbase from where defenders will takeoff for GCI. -- -- Use the method @{#AI_A2A_DISPATCHER.SetIntercept}() to modify the assumed intercept delay time to calculate a valid interception. -- -- ## 10.8.2. Default Disengage Radius. -- -- The radius to **disengage any target** when the **distance** of the defender to the **home base** is larger than the specified meters. -- The default Disengage Radius is **300km** (300000 meters). Note that the Disengage Radius is applicable to ALL squadrons! -- -- Use the method @{#AI_A2A_DISPATCHER.SetDisengageRadius}() to modify the default Disengage Radius to another distance setting. -- -- -- ## 11. Q & A: -- -- ### 11.1. Which countries will be selected for each coalition? -- -- Which countries are assigned to a coalition influences which units are available to the coalition. -- For example because the mission calls for a EWR radar on the blue side the Ukraine might be chosen as a blue country -- so that the 55G6 EWR radar unit is available to blue. -- Some countries assign different tasking to aircraft, for example Germany assigns the CAP task to F-4E Phantoms but the USA does not. -- Therefore if F4s are wanted as a coalition’s CAP or GCI aircraft Germany will need to be assigned to that coalition. -- -- ### 11.2. Country, type, load out, skill and skins for CAP and GCI aircraft? -- -- * Note these can be from any countries within the coalition but must be an aircraft with one of the main tasks being “CAP”. -- * Obviously skins which are selected must be available to all players that join the mission otherwise they will see a default skin. -- * Load outs should be appropriate to a CAP mission eg perhaps drop tanks for CAP flights and extra missiles for GCI flights. -- * These decisions will eventually lead to template aircraft units being placed as late activation units that the script will use as templates for spawning CAP and GCI flights. Up to 4 different aircraft configurations can be chosen for each coalition. The spawned aircraft will inherit the characteristics of the template aircraft. -- * The selected aircraft type must be able to perform the CAP tasking for the chosen country. -- -- -- @field #AI_A2A_DISPATCHER AI_A2A_DISPATCHER = { ClassName = "AI_A2A_DISPATCHER", Detection = nil, } --- Enumerator for spawns at airbases -- @type AI_A2A_DISPATCHER.Takeoff -- @extends Wrapper.Group#GROUP.Takeoff --- @field #AI_A2A_DISPATCHER.Takeoff Takeoff AI_A2A_DISPATCHER.Takeoff = GROUP.Takeoff --- Defnes Landing location. -- @field Landing AI_A2A_DISPATCHER.Landing = { NearAirbase = 1, AtRunway = 2, AtEngineShutdown = 3, } --- AI_A2A_DISPATCHER constructor. -- This is defining the A2A DISPATCHER for one coaliton. -- The Dispatcher works with a @{Functional#Detection} object that is taking of the detection of targets using the EWR units. -- The Detection object is polymorphic, depending on the type of detection object choosen, the detection will work differently. -- @param #AI_A2A_DISPATCHER self -- @param Functional.Detection#DETECTION_BASE Detection The DETECTION object that will detects targets using the the Early Warning Radar network. -- @return #AI_A2A_DISPATCHER self -- @usage -- -- -- Setup the Detection, using DETECTION_AREAS. -- -- First define the SET of GROUPs that are defining the EWR network. -- -- Here with prefixes DF CCCP AWACS, DF CCCP EWR. -- DetectionSetGroup = SET_GROUP:New() -- DetectionSetGroup:FilterPrefixes( { "DF CCCP AWACS", "DF CCCP EWR" } ) -- DetectionSetGroup:FilterStart() -- -- -- Define the DETECTION_AREAS, using the DetectionSetGroup, with a 30km grouping radius. -- Detection = DETECTION_AREAS:New( DetectionSetGroup, 30000 ) -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- function AI_A2A_DISPATCHER:New( Detection ) -- Inherits from DETECTION_MANAGER local self = BASE:Inherit( self, DETECTION_MANAGER:New( nil, Detection ) ) -- #AI_A2A_DISPATCHER self.Detection = Detection -- Functional.Detection#DETECTION_AREAS -- This table models the DefenderSquadron templates. self.DefenderSquadrons = {} -- The Defender Squadrons. self.DefenderSpawns = {} self.DefenderTasks = {} -- The Defenders Tasks. self.DefenderDefault = {} -- The Defender Default Settings over all Squadrons. -- TODO: Check detection through radar. self.Detection:FilterCategories( { Unit.Category.AIRPLANE, Unit.Category.HELICOPTER } ) --self.Detection:InitDetectRadar( true ) self.Detection:SetRefreshTimeInterval( 30 ) self:SetEngageRadius() self:SetGciRadius() self:SetIntercept( 300 ) -- A default intercept delay time of 300 seconds. self:SetDisengageRadius( 300000 ) -- The default Disengage Radius is 300 km. self:SetDefaultTakeoff( AI_A2A_DISPATCHER.Takeoff.Air ) self:SetDefaultTakeoffInAirAltitude( 500 ) -- Default takeoff is 500 meters above the ground. self:SetDefaultLanding( AI_A2A_DISPATCHER.Landing.NearAirbase ) self:SetDefaultOverhead( 1 ) self:SetDefaultGrouping( 1 ) self:SetDefaultFuelThreshold( 0.15, 0 ) -- 15% of fuel remaining in the tank will trigger the airplane to return to base or refuel. self:SetDefaultDamageThreshold( 0.4 ) -- When 40% of damage, go RTB. self:SetDefaultCapTimeInterval( 180, 600 ) -- Between 180 and 600 seconds. self:SetDefaultCapLimit( 1 ) -- Maximum one CAP per squadron. self:AddTransition( "Started", "Assign", "Started" ) --- OnAfter Transition Handler for Event Assign. -- @function [parent=#AI_A2A_DISPATCHER] OnAfterAssign -- @param #AI_A2A_DISPATCHER self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Tasking.Task_A2A#AI_A2A Task -- @param Wrapper.Unit#UNIT TaskUnit -- @param #string PlayerName self:AddTransition( "*", "CAP", "*" ) --- CAP Handler OnBefore for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] OnBeforeCAP -- @param #AI_A2A_DISPATCHER self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- CAP Handler OnAfter for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] OnAfterCAP -- @param #AI_A2A_DISPATCHER self -- @param #string From -- @param #string Event -- @param #string To --- CAP Trigger for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] CAP -- @param #AI_A2A_DISPATCHER self --- CAP Asynchronous Trigger for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] __CAP -- @param #AI_A2A_DISPATCHER self -- @param #number Delay self:AddTransition( "*", "GCI", "*" ) --- GCI Handler OnBefore for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] OnBeforeGCI -- @param #AI_A2A_DISPATCHER self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- GCI Handler OnAfter for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] OnAfterGCI -- @param #AI_A2A_DISPATCHER self -- @param #string From -- @param #string Event -- @param #string To --- GCI Trigger for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] GCI -- @param #AI_A2A_DISPATCHER self --- GCI Asynchronous Trigger for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] __GCI -- @param #AI_A2A_DISPATCHER self -- @param #number Delay self:AddTransition( "*", "ENGAGE", "*" ) --- ENGAGE Handler OnBefore for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] OnBeforeENGAGE -- @param #AI_A2A_DISPATCHER self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- ENGAGE Handler OnAfter for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] OnAfterENGAGE -- @param #AI_A2A_DISPATCHER self -- @param #string From -- @param #string Event -- @param #string To --- ENGAGE Trigger for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] ENGAGE -- @param #AI_A2A_DISPATCHER self --- ENGAGE Asynchronous Trigger for AI_A2A_DISPATCHER -- @function [parent=#AI_A2A_DISPATCHER] __ENGAGE -- @param #AI_A2A_DISPATCHER self -- @param #number Delay -- Subscribe to the CRASH event so that when planes are shot -- by a Unit from the dispatcher, they will be removed from the detection... -- This will avoid the detection to still "know" the shot unit until the next detection. -- Otherwise, a new intercept or engage may happen for an already shot plane! self:HandleEvent( EVENTS.Crash, self.OnEventCrashOrDead ) self:HandleEvent( EVENTS.Dead, self.OnEventCrashOrDead ) self:HandleEvent( EVENTS.Land ) self:HandleEvent( EVENTS.EngineShutdown ) self:SetTacticalDisplay( false ) self:__Start( 5 ) return self end --- @param #AI_A2A_DISPATCHER self -- @param Core.Event#EVENTDATA EventData function AI_A2A_DISPATCHER:OnEventCrashOrDead( EventData ) self.Detection:ForgetDetectedUnit( EventData.IniUnitName ) end --- @param #AI_A2A_DISPATCHER self -- @param Core.Event#EVENTDATA EventData function AI_A2A_DISPATCHER:OnEventLand( EventData ) self:E( "Landed" ) local DefenderUnit = EventData.IniUnit local Defender = EventData.IniGroup local Squadron = self:GetSquadronFromDefender( Defender ) if Squadron then self:F( { SquadronName = Squadron.Name } ) local LandingMethod = self:GetSquadronLanding( Squadron.Name ) if LandingMethod == AI_A2A_DISPATCHER.Landing.AtRunway then local DefenderSize = Defender:GetSize() if DefenderSize == 1 then self:RemoveDefenderFromSquadron( Squadron, Defender ) end DefenderUnit:Destroy() return end if DefenderUnit:GetLife() ~= DefenderUnit:GetLife0() then -- Damaged units cannot be repaired anymore. DefenderUnit:Destroy() return end if DefenderUnit:GetFuel() <= self.DefenderDefault.FuelThreshold then DefenderUnit:Destroy() return end end end --- @param #AI_A2A_DISPATCHER self -- @param Core.Event#EVENTDATA EventData function AI_A2A_DISPATCHER:OnEventEngineShutdown( EventData ) local DefenderUnit = EventData.IniUnit local Defender = EventData.IniGroup local Squadron = self:GetSquadronFromDefender( Defender ) if Squadron then self:F( { SquadronName = Squadron.Name } ) local LandingMethod = self:GetSquadronLanding( Squadron.Name ) if LandingMethod == AI_A2A_DISPATCHER.Landing.AtEngineShutdown then local DefenderSize = Defender:GetSize() if DefenderSize == 1 then self:RemoveDefenderFromSquadron( Squadron, Defender ) end DefenderUnit:Destroy() end end end --- Define the radius to engage any target by airborne friendlies, which are executing cap or returning from an intercept mission. -- If there is a target area detected and reported, then any friendlies that are airborne near this target area, -- will be commanded to (re-)engage that target when available (if no other tasks were commanded). -- -- For example, if 100000 is given as a value, then any friendly that is airborne within 100km from the detected target, -- will be considered to receive the command to engage that target area. -- -- You need to evaluate the value of this parameter carefully: -- -- * If too small, more intercept missions may be triggered upon detected target areas. -- * If too large, any airborne cap may not be able to reach the detected target area in time, because it is too far. -- -- **Use the method @{#AI_A2A_DISPATCHER.SetEngageRadius}() to modify the default Engage Radius for ALL squadrons.** -- -- Demonstration Mission: [AID-019 - AI_A2A - Engage Range Test](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/release-2-2-pre/AID%20-%20AI%20Dispatching/AID-019%20-%20AI_A2A%20-%20Engage%20Range%20Test) -- -- @param #AI_A2A_DISPATCHER self -- @param #number EngageRadius (Optional, Default = 100000) The radius to report friendlies near the target. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Set 50km as the radius to engage any target by airborne friendlies. -- A2ADispatcher:SetEngageRadius( 50000 ) -- -- -- Set 100km as the radius to engage any target by airborne friendlies. -- A2ADispatcher:SetEngageRadius() -- 100000 is the default value. -- function AI_A2A_DISPATCHER:SetEngageRadius( EngageRadius ) self.Detection:SetFriendliesRange( EngageRadius or 100000 ) return self end --- Define the radius to disengage any target when the distance to the home base is larger than the specified meters. -- @param #AI_A2A_DISPATCHER self -- @param #number DisengageRadius (Optional, Default = 300000) The radius to disengage a target when too far from the home base. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Set 50km as the Disengage Radius. -- A2ADispatcher:SetDisengageRadius( 50000 ) -- -- -- Set 100km as the Disengage Radius. -- A2ADispatcher:SetDisngageRadius() -- 300000 is the default value. -- function AI_A2A_DISPATCHER:SetDisengageRadius( DisengageRadius ) self.DisengageRadius = DisengageRadius or 300000 return self end --- Define the radius to check if a target can be engaged by an ground controlled intercept. -- When targets are detected that are still really far off, you don't want the AI_A2A_DISPATCHER to launch intercepts just yet. -- You want it to wait until a certain Gci range is reached, which is the **distance of the closest airbase to target** -- being **smaller** than the **Ground Controlled Intercept radius** or **Gci radius**. -- -- The **default** Gci radius is defined as **200000** or **200km**. Override the default Gci radius when the era of the warfare is early, or, -- when you don't want to let the AI_A2A_DISPATCHER react immediately when a certain border or area is not being crossed. -- -- Use the method @{#AI_A2A_DISPATCHER.SetGciRadius}() to set a specific controlled ground intercept radius. -- **The Ground Controlled Intercept radius is defined for ALL squadrons which are operational.** -- -- Demonstration Mission: [AID-013 - AI_A2A - Intercept Test](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/release-2-2-pre/AID%20-%20AI%20Dispatching/AID-013%20-%20AI_A2A%20-%20Intercept%20Test) -- -- @param #AI_A2A_DISPATCHER self -- @param #number GciRadius (Optional, Default = 200000) The radius to ground control intercept detected targets from the nearest airbase. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Set 100km as the radius to ground control intercept detected targets from the nearest airbase. -- A2ADispatcher:SetGciRadius( 100000 ) -- -- -- Set 200km as the radius to ground control intercept. -- A2ADispatcher:SetGciRadius() -- 200000 is the default value. -- function AI_A2A_DISPATCHER:SetGciRadius( GciRadius ) self.GciRadius = GciRadius or 200000 return self end --- Define a border area to simulate a **cold war** scenario. -- A **cold war** is one where CAP aircraft patrol their territory but will not attack enemy aircraft or launch GCI aircraft unless enemy aircraft enter their territory. In other words the EWR may detect an enemy aircraft but will only send aircraft to attack it if it crosses the border. -- A **hot war** is one where CAP aircraft will intercept any detected enemy aircraft and GCI aircraft will launch against detected enemy aircraft without regard for territory. In other words if the ground radar can detect the enemy aircraft then it will send CAP and GCI aircraft to attack it. -- If it’s a cold war then the **borders of red and blue territory** need to be defined using a @{zone} object derived from @{Zone#ZONE_BASE}. This method needs to be used for this. -- If a hot war is chosen then **no borders** actually need to be defined using the helicopter units other than it makes it easier sometimes for the mission maker to envisage where the red and blue territories roughly are. In a hot war the borders are effectively defined by the ground based radar coverage of a coalition. Set the noborders parameter to 1 -- @param #AI_A2A_DISPATCHER self -- @param Core.Zone#ZONE_BASE BorderZone An object derived from ZONE_BASE, or a list of objects derived from ZONE_BASE. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Set one ZONE_POLYGON object as the border for the A2A dispatcher. -- local BorderZone = ZONE_POLYGON( "CCCP Border", GROUP:FindByName( "CCCP Border" ) ) -- The GROUP object is a late activate helicopter unit. -- A2ADispatcher:SetBorderZone( BorderZone ) -- -- or -- -- -- Set two ZONE_POLYGON objects as the border for the A2A dispatcher. -- local BorderZone1 = ZONE_POLYGON( "CCCP Border1", GROUP:FindByName( "CCCP Border1" ) ) -- The GROUP object is a late activate helicopter unit. -- local BorderZone2 = ZONE_POLYGON( "CCCP Border2", GROUP:FindByName( "CCCP Border2" ) ) -- The GROUP object is a late activate helicopter unit. -- A2ADispatcher:SetBorderZone( { BorderZone1, BorderZone2 } ) -- -- function AI_A2A_DISPATCHER:SetBorderZone( BorderZone ) self.Detection:SetAcceptZones( BorderZone ) return self end --- Display a tactical report every 30 seconds about which aircraft are: -- * Patrolling -- * Engaging -- * Returning -- * Damaged -- * Out of Fuel -- * ... -- @param #AI_A2A_DISPATCHER self -- @param #boolean TacticalDisplay Provide a value of **true** to display every 30 seconds a tactical overview. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Now Setup the Tactical Display for debug mode. -- A2ADispatcher:SetTacticalDisplay( true ) -- function AI_A2A_DISPATCHER:SetTacticalDisplay( TacticalDisplay ) self.TacticalDisplay = TacticalDisplay return self end --- Set the default damage treshold when defenders will RTB. -- The default damage treshold is by default set to 40%, which means that when the airplane is 40% damaged, it will go RTB. -- @param #AI_A2A_DISPATCHER self -- @param #number DamageThreshold A decimal number between 0 and 1, that expresses the %-tage of the damage treshold before going RTB. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Now Setup the default damage treshold. -- A2ADispatcher:SetDefaultDamageThreshold( 0.90 ) -- Go RTB when the airplane 90% damaged. -- function AI_A2A_DISPATCHER:SetDefaultDamageThreshold( DamageThreshold ) self.DefenderDefault.DamageThreshold = DamageThreshold return self end --- Set the default CAP time interval for squadrons, which will be used to determine a random CAP timing. -- The default CAP time interval is between 180 and 600 seconds. -- @param #AI_A2A_DISPATCHER self -- @param #number CapMinSeconds The minimum amount of seconds for the random time interval. -- @param #number CapMaxSeconds The maximum amount of seconds for the random time interval. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Now Setup the default CAP time interval. -- A2ADispatcher:SetDefaultCapTimeInterval( 300, 1200 ) -- Between 300 and 1200 seconds. -- function AI_A2A_DISPATCHER:SetDefaultCapTimeInterval( CapMinSeconds, CapMaxSeconds ) self.DefenderDefault.CapMinSeconds = CapMinSeconds self.DefenderDefault.CapMaxSeconds = CapMaxSeconds return self end --- Set the default CAP limit for squadrons, which will be used to determine how many CAP can be airborne at the same time for the squadron. -- The default CAP limit is 1 CAP, which means one CAP group being spawned. -- @param #AI_A2A_DISPATCHER self -- @param #number CapLimit The maximum amount of CAP that can be airborne at the same time for the squadron. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Now Setup the default CAP limit. -- A2ADispatcher:SetDefaultCapLimit( 2 ) -- Maximum 2 CAP per squadron. -- function AI_A2A_DISPATCHER:SetDefaultCapLimit( CapLimit ) self.DefenderDefault.CapLimit = CapLimit return self end function AI_A2A_DISPATCHER:SetIntercept( InterceptDelay ) self.DefenderDefault.InterceptDelay = InterceptDelay local Detection = self.Detection -- Functional.Detection#DETECTION_AREAS Detection:SetIntercept( true, InterceptDelay ) return self end --- Calculates which AI friendlies are nearby the area -- @param #AI_A2A_DISPATCHER self -- @param DetectedItem -- @return #number, Core.CommandCenter#REPORT function AI_A2A_DISPATCHER:GetAIFriendliesNearBy( DetectedItem ) local FriendliesNearBy = self.Detection:GetFriendliesDistance( DetectedItem ) return FriendliesNearBy end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:GetDefenderTasks() return self.DefenderTasks or {} end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:GetDefenderTask( Defender ) return self.DefenderTasks[Defender] end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:GetDefenderTaskFsm( Defender ) return self:GetDefenderTask( Defender ).Fsm end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:GetDefenderTaskTarget( Defender ) return self:GetDefenderTask( Defender ).Target end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:GetDefenderTaskSquadronName( Defender ) return self:GetDefenderTask( Defender ).SquadronName end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:ClearDefenderTask( Defender ) if Defender:IsAlive() and self.DefenderTasks[Defender] then local Target = self.DefenderTasks[Defender].Target local Message = "Clearing (" .. self.DefenderTasks[Defender].Type .. ") " Message = Message .. Defender:GetName() if Target then Message = Message .. ( Target and ( " from " .. Target.Index .. " [" .. Target.Set:Count() .. "]" ) ) or "" end self:F( { Target = Message } ) end self.DefenderTasks[Defender] = nil return self end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:ClearDefenderTaskTarget( Defender ) local DefenderTask = self:GetDefenderTask( Defender ) if Defender:IsAlive() and DefenderTask then local Target = DefenderTask.Target local Message = "Clearing (" .. DefenderTask.Type .. ") " Message = Message .. Defender:GetName() if Target then Message = Message .. ( Target and ( " from " .. Target.Index .. " [" .. Target.Set:Count() .. "]" ) ) or "" end self:F( { Target = Message } ) end if Defender and DefenderTask and DefenderTask.Target then DefenderTask.Target = nil end -- if Defender and DefenderTask then -- if DefenderTask.Fsm:Is( "Fuel" ) -- or DefenderTask.Fsm:Is( "LostControl") -- or DefenderTask.Fsm:Is( "Damaged" ) then -- self:ClearDefenderTask( Defender ) -- end -- end return self end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:SetDefenderTask( SquadronName, Defender, Type, Fsm, Target ) self:F( { SquadronName = SquadronName, Defender = Defender:GetName() } ) self.DefenderTasks[Defender] = self.DefenderTasks[Defender] or {} self.DefenderTasks[Defender].Type = Type self.DefenderTasks[Defender].Fsm = Fsm self.DefenderTasks[Defender].SquadronName = SquadronName if Target then self:SetDefenderTaskTarget( Defender, Target ) end return self end --- -- @param #AI_A2A_DISPATCHER self -- @param Wrapper.Group#GROUP AIGroup function AI_A2A_DISPATCHER:SetDefenderTaskTarget( Defender, AttackerDetection ) local Message = "(" .. self.DefenderTasks[Defender].Type .. ") " Message = Message .. Defender:GetName() Message = Message .. ( AttackerDetection and ( " target " .. AttackerDetection.Index .. " [" .. AttackerDetection.Set:Count() .. "]" ) ) or "" self:F( { AttackerDetection = Message } ) if AttackerDetection then self.DefenderTasks[Defender].Target = AttackerDetection end return self end --- This is the main method to define Squadrons programmatically. -- Squadrons: -- -- * Have a **name or key** that is the identifier or key of the squadron. -- * Have **specific plane types** defined by **templates**. -- * Are **located at one specific airbase**. Multiple squadrons can be located at one airbase through. -- * Optionally have a limited set of **resources**. The default is that squadrons have unlimited resources. -- -- The name of the squadron given acts as the **squadron key** in the AI\_A2A\_DISPATCHER:Squadron...() methods. -- -- Additionally, squadrons have specific configuration options to: -- -- * Control how new aircraft are **taking off** from the airfield (in the air, cold, hot, at the runway). -- * Control how returning aircraft are **landing** at the airfield (in the air near the airbase, after landing, after engine shutdown). -- * Control the **grouping** of new aircraft spawned at the airfield. If there is more than one aircraft to be spawned, these may be grouped. -- * Control the **overhead** or defensive strength of the squadron. Depending on the types of planes and amount of resources, the mission designer can choose to increase or reduce the amount of planes spawned. -- -- For performance and bug workaround reasons within DCS, squadrons have different methods to spawn new aircraft or land returning or damaged aircraft. -- -- @param #AI_A2A_DISPATCHER self -- -- @param #string SquadronName A string (text) that defines the squadron identifier or the key of the Squadron. -- It can be any name, for example `"104th Squadron"` or `"SQ SQUADRON1"`, whatever. -- As long as you remember that this name becomes the identifier of your squadron you have defined. -- You need to use this name in other methods too! -- -- @param #string AirbaseName The airbase name where you want to have the squadron located. -- You need to specify here EXACTLY the name of the airbase as you see it in the mission editor. -- Examples are `"Batumi"` or `"Tbilisi-Lochini"`. -- EXACTLY the airbase name, between quotes `""`. -- To ease the airbase naming when using the LDT editor and IntelliSense, the @{Airbase#AIRBASE} class contains enumerations of the airbases of each map. -- -- * Caucasus: @{Airbase#AIRBASE.Caucaus} -- * Nevada or NTTR: @{Airbase#AIRBASE.Nevada} -- * Normandy: @{Airbase#AIRBASE.Normandy} -- -- @param #string TemplatePrefixes A string or an array of strings specifying the **prefix names of the templates** (not going to explain what is templates here again). -- Examples are `{ "104th", "105th" }` or `"104th"` or `"Template 1"` or `"BLUE PLANES"`. -- Just remember that your template (groups late activated) need to start with the prefix you have specified in your code. -- If you have only one prefix name for a squadron, you don't need to use the `{ }`, otherwise you need to use the brackets. -- -- @param #number Resources (optional) A number that specifies how many resources are in stock of the squadron. If not specified, the squadron will have infinite resources available. -- -- @usage -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- @usage -- -- This will create squadron "Squadron1" at "Batumi" airbase, and will use plane types "SQ1" and has 40 planes in stock... -- A2ADispatcher:SetSquadron( "Squadron1", "Batumi", "SQ1", 40 ) -- -- @usage -- -- This will create squadron "Sq 1" at "Batumi" airbase, and will use plane types "Mig-29" and "Su-27" and has 20 planes in stock... -- -- Note that in this implementation, the A2A dispatcher will select a random plane type when a new plane (group) needs to be spawned for defenses. -- -- Note the usage of the {} for the airplane templates list. -- A2ADispatcher:SetSquadron( "Sq 1", "Batumi", { "Mig-29", "Su-27" }, 40 ) -- -- @usage -- -- This will create 2 squadrons "104th" and "23th" at "Batumi" airbase, and will use plane types "Mig-29" and "Su-27" respectively and each squadron has 10 planes in stock... -- A2ADispatcher:SetSquadron( "104th", "Batumi", "Mig-29", 10 ) -- A2ADispatcher:SetSquadron( "23th", "Batumi", "Su-27", 10 ) -- -- @usage -- -- This is an example like the previous, but now with infinite resources. -- -- The Resources parameter is not given in the SetSquadron method. -- A2ADispatcher:SetSquadron( "104th", "Batumi", "Mig-29" ) -- A2ADispatcher:SetSquadron( "23th", "Batumi", "Su-27" ) -- -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetSquadron( SquadronName, AirbaseName, TemplatePrefixes, Resources ) self.DefenderSquadrons[SquadronName] = self.DefenderSquadrons[SquadronName] or {} local DefenderSquadron = self.DefenderSquadrons[SquadronName] DefenderSquadron.Name = SquadronName DefenderSquadron.Airbase = AIRBASE:FindByName( AirbaseName ) if not DefenderSquadron.Airbase then error( "Cannot find airbase with name:" .. AirbaseName ) end DefenderSquadron.Spawn = {} if type( TemplatePrefixes ) == "string" then local SpawnTemplate = TemplatePrefixes self.DefenderSpawns[SpawnTemplate] = self.DefenderSpawns[SpawnTemplate] or SPAWN:New( SpawnTemplate ) -- :InitCleanUp( 180 ) DefenderSquadron.Spawn[1] = self.DefenderSpawns[SpawnTemplate] else for TemplateID, SpawnTemplate in pairs( TemplatePrefixes ) do self.DefenderSpawns[SpawnTemplate] = self.DefenderSpawns[SpawnTemplate] or SPAWN:New( SpawnTemplate ) -- :InitCleanUp( 180 ) DefenderSquadron.Spawn[#DefenderSquadron.Spawn+1] = self.DefenderSpawns[SpawnTemplate] end end DefenderSquadron.Resources = Resources DefenderSquadron.TemplatePrefixes = TemplatePrefixes self:E( { Squadron = {SquadronName, AirbaseName, TemplatePrefixes, Resources } } ) return self end --- Get an item from the Squadron table. -- @param #AI_A2A_DISPATCHER self -- @return #table function AI_A2A_DISPATCHER:GetSquadron( SquadronName ) local DefenderSquadron = self.DefenderSquadrons[SquadronName] if not DefenderSquadron then error( "Unknown Squadron:" .. SquadronName ) end return DefenderSquadron end --- Set a CAP for a Squadron. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The squadron name. -- @param Core.Zone#ZONE_BASE Zone The @{Zone} object derived from @{Zone#ZONE_BASE} that defines the zone wherein the CAP will be executed. -- @param #number FloorAltitude The minimum altitude at which the cap can be executed. -- @param #number CeilingAltitude the maximum altitude at which the cap can be executed. -- @param #number PatrolMinSpeed The minimum speed at which the cap can be executed. -- @param #number PatrolMaxSpeed The maximum speed at which the cap can be executed. -- @param #number EngageMinSpeed The minimum speed at which the engage can be executed. -- @param #number EngageMaxSpeed The maximum speed at which the engage can be executed. -- @param #number AltType The altitude type, which is a string "BARO" defining Barometric or "RADIO" defining radio controlled altitude. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- CAP Squadron execution. -- CAPZoneEast = ZONE_POLYGON:New( "CAP Zone East", GROUP:FindByName( "CAP Zone East" ) ) -- A2ADispatcher:SetSquadronCap( "Mineralnye", CAPZoneEast, 4000, 10000, 500, 600, 800, 900 ) -- A2ADispatcher:SetSquadronCapInterval( "Mineralnye", 2, 30, 60, 1 ) -- -- CAPZoneWest = ZONE_POLYGON:New( "CAP Zone West", GROUP:FindByName( "CAP Zone West" ) ) -- A2ADispatcher:SetSquadronCap( "Sochi", CAPZoneWest, 4000, 8000, 600, 800, 800, 1200, "BARO" ) -- A2ADispatcher:SetSquadronCapInterval( "Sochi", 2, 30, 120, 1 ) -- -- CAPZoneMiddle = ZONE:New( "CAP Zone Middle") -- A2ADispatcher:SetSquadronCap( "Maykop", CAPZoneMiddle, 4000, 8000, 600, 800, 800, 1200, "RADIO" ) -- A2ADispatcher:SetSquadronCapInterval( "Sochi", 2, 30, 120, 1 ) -- function AI_A2A_DISPATCHER:SetSquadronCap( SquadronName, Zone, FloorAltitude, CeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, EngageMinSpeed, EngageMaxSpeed, AltType ) self.DefenderSquadrons[SquadronName] = self.DefenderSquadrons[SquadronName] or {} self.DefenderSquadrons[SquadronName].Cap = self.DefenderSquadrons[SquadronName].Cap or {} local DefenderSquadron = self:GetSquadron( SquadronName ) local Cap = self.DefenderSquadrons[SquadronName].Cap Cap.Name = SquadronName Cap.Zone = Zone Cap.FloorAltitude = FloorAltitude Cap.CeilingAltitude = CeilingAltitude Cap.PatrolMinSpeed = PatrolMinSpeed Cap.PatrolMaxSpeed = PatrolMaxSpeed Cap.EngageMinSpeed = EngageMinSpeed Cap.EngageMaxSpeed = EngageMaxSpeed Cap.AltType = AltType self:SetSquadronCapInterval( SquadronName, self.DefenderDefault.CapLimit, self.DefenderDefault.CapMinSeconds, self.DefenderDefault.CapMaxSeconds, 1 ) self:E( { CAP = { SquadronName, Zone, FloorAltitude, CeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, EngageMinSpeed, EngageMaxSpeed, AltType } } ) -- Add the CAP to the EWR network. local RecceSet = self.Detection:GetDetectionSetGroup() RecceSet:FilterPrefixes( DefenderSquadron.TemplatePrefixes ) RecceSet:FilterStart() self.Detection:SetFriendlyPrefixes( DefenderSquadron.TemplatePrefixes ) return self end --- Set the squadron CAP parameters. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The squadron name. -- @param #number CapLimit (optional) The maximum amount of CAP groups to be spawned. Note that a CAP is a group, so can consist out of 1 to 4 airplanes. The default is 1 CAP group. -- @param #number LowInterval (optional) The minimum time boundary in seconds when a new CAP will be spawned. The default is 180 seconds. -- @param #number HighInterval (optional) The maximum time boundary in seconds when a new CAP will be spawned. The default is 600 seconds. -- @param #number Probability Is not in use, you can skip this parameter. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- CAP Squadron execution. -- CAPZoneEast = ZONE_POLYGON:New( "CAP Zone East", GROUP:FindByName( "CAP Zone East" ) ) -- A2ADispatcher:SetSquadronCap( "Mineralnye", CAPZoneEast, 4000, 10000, 500, 600, 800, 900 ) -- A2ADispatcher:SetSquadronCapInterval( "Mineralnye", 2, 30, 60, 1 ) -- -- CAPZoneWest = ZONE_POLYGON:New( "CAP Zone West", GROUP:FindByName( "CAP Zone West" ) ) -- A2ADispatcher:SetSquadronCap( "Sochi", CAPZoneWest, 4000, 8000, 600, 800, 800, 1200, "BARO" ) -- A2ADispatcher:SetSquadronCapInterval( "Sochi", 2, 30, 120, 1 ) -- -- CAPZoneMiddle = ZONE:New( "CAP Zone Middle") -- A2ADispatcher:SetSquadronCap( "Maykop", CAPZoneMiddle, 4000, 8000, 600, 800, 800, 1200, "RADIO" ) -- A2ADispatcher:SetSquadronCapInterval( "Sochi", 2, 30, 120, 1 ) -- function AI_A2A_DISPATCHER:SetSquadronCapInterval( SquadronName, CapLimit, LowInterval, HighInterval, Probability ) self.DefenderSquadrons[SquadronName] = self.DefenderSquadrons[SquadronName] or {} self.DefenderSquadrons[SquadronName].Cap = self.DefenderSquadrons[SquadronName].Cap or {} local DefenderSquadron = self:GetSquadron( SquadronName ) local Cap = self.DefenderSquadrons[SquadronName].Cap if Cap then Cap.LowInterval = LowInterval or 180 Cap.HighInterval = HighInterval or 600 Cap.Probability = Probability or 1 Cap.CapLimit = CapLimit or 1 Cap.Scheduler = Cap.Scheduler or SCHEDULER:New( self ) local Scheduler = Cap.Scheduler -- Core.Scheduler#SCHEDULER local ScheduleID = Cap.ScheduleID local Variance = ( Cap.HighInterval - Cap.LowInterval ) / 2 local Repeat = Cap.LowInterval + Variance local Randomization = Variance / Repeat local Start = math.random( 1, Cap.HighInterval ) if ScheduleID then Scheduler:Stop( ScheduleID ) end Cap.ScheduleID = Scheduler:Schedule( self, self.SchedulerCAP, { SquadronName }, Start, Repeat, Randomization ) else error( "This squadron does not exist:" .. SquadronName ) end end --- -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The squadron name. -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:GetCAPDelay( SquadronName ) self.DefenderSquadrons[SquadronName] = self.DefenderSquadrons[SquadronName] or {} self.DefenderSquadrons[SquadronName].Cap = self.DefenderSquadrons[SquadronName].Cap or {} local DefenderSquadron = self:GetSquadron( SquadronName ) local Cap = self.DefenderSquadrons[SquadronName].Cap if Cap then return math.random( Cap.LowInterval, Cap.HighInterval ) else error( "This squadron does not exist:" .. SquadronName ) end end --- -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The squadron name. -- @return #table DefenderSquadron function AI_A2A_DISPATCHER:CanCAP( SquadronName ) self:F({SquadronName = SquadronName}) self.DefenderSquadrons[SquadronName] = self.DefenderSquadrons[SquadronName] or {} self.DefenderSquadrons[SquadronName].Cap = self.DefenderSquadrons[SquadronName].Cap or {} local DefenderSquadron = self:GetSquadron( SquadronName ) if ( not DefenderSquadron.Resources ) or ( DefenderSquadron.Resources and DefenderSquadron.Resources > 0 ) then local Cap = DefenderSquadron.Cap if Cap then local CapCount = self:CountCapAirborne( SquadronName ) self:E( { CapCount = CapCount } ) if CapCount < Cap.CapLimit then local Probability = math.random() if Probability <= Cap.Probability then return DefenderSquadron end end end end return nil end --- -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The squadron name. -- @return #table DefenderSquadron function AI_A2A_DISPATCHER:CanGCI( SquadronName ) self:F({SquadronName = SquadronName}) self.DefenderSquadrons[SquadronName] = self.DefenderSquadrons[SquadronName] or {} self.DefenderSquadrons[SquadronName].Gci = self.DefenderSquadrons[SquadronName].Gci or {} local DefenderSquadron = self:GetSquadron( SquadronName ) if ( not DefenderSquadron.Resources ) or ( DefenderSquadron.Resources and DefenderSquadron.Resources > 0 ) then local Gci = DefenderSquadron.Gci if Gci then return DefenderSquadron end end return nil end --- -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The squadron name. -- @param #number EngageMinSpeed The minimum speed at which the gci can be executed. -- @param #number EngageMaxSpeed The maximum speed at which the gci can be executed. -- @usage -- -- -- GCI Squadron execution. -- A2ADispatcher:SetSquadronGci( "Mozdok", 900, 1200 ) -- A2ADispatcher:SetSquadronGci( "Novo", 900, 2100 ) -- A2ADispatcher:SetSquadronGci( "Maykop", 900, 1200 ) -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetSquadronGci( SquadronName, EngageMinSpeed, EngageMaxSpeed ) self.DefenderSquadrons[SquadronName] = self.DefenderSquadrons[SquadronName] or {} self.DefenderSquadrons[SquadronName].Gci = self.DefenderSquadrons[SquadronName].Gci or {} local Intercept = self.DefenderSquadrons[SquadronName].Gci Intercept.Name = SquadronName Intercept.EngageMinSpeed = EngageMinSpeed Intercept.EngageMaxSpeed = EngageMaxSpeed self:E( { GCI = { SquadronName, EngageMinSpeed, EngageMaxSpeed } } ) end --- Defines the default amount of extra planes that will take-off as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #number Overhead The %-tage of Units that dispatching command will allocate to intercept in surplus of detected amount of units. -- The default overhead is 1, so equal balance. The @{#AI_A2A_DISPATCHER.SetOverhead}() method can be used to tweak the defense strength, -- taking into account the plane types of the squadron. For example, a MIG-31 with full long-distance A2A missiles payload, may still be less effective than a F-15C with short missiles... -- So in this case, one may want to use the Overhead method to allocate more defending planes as the amount of detected attacking planes. -- The overhead must be given as a decimal value with 1 as the neutral value, which means that Overhead values: -- -- * Higher than 1, will increase the defense unit amounts. -- * Lower than 1, will decrease the defense unit amounts. -- -- The amount of defending units is calculated by multiplying the amount of detected attacking planes as part of the detected group -- multiplied by the Overhead and rounded up to the smallest integer. -- -- The Overhead value set for a Squadron, can be programmatically adjusted (by using this SetOverhead method), to adjust the defense overhead during mission execution. -- -- See example below. -- -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- An overhead of 1,5 with 1 planes detected, will allocate 2 planes ( 1 * 1,5 ) = 1,5 => rounded up gives 2. -- -- An overhead of 1,5 with 2 planes detected, will allocate 3 planes ( 2 * 1,5 ) = 3 => rounded up gives 3. -- -- An overhead of 1,5 with 3 planes detected, will allocate 5 planes ( 3 * 1,5 ) = 4,5 => rounded up gives 5 planes. -- -- An overhead of 1,5 with 4 planes detected, will allocate 6 planes ( 4 * 1,5 ) = 6 => rounded up gives 6 planes. -- -- A2ADispatcher:SetDefaultOverhead( 1.5 ) -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetDefaultOverhead( Overhead ) self.DefenderDefault.Overhead = Overhead return self end --- Defines the amount of extra planes that will take-off as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @param #number Overhead The %-tage of Units that dispatching command will allocate to intercept in surplus of detected amount of units. -- The default overhead is 1, so equal balance. The @{#AI_A2A_DISPATCHER.SetOverhead}() method can be used to tweak the defense strength, -- taking into account the plane types of the squadron. For example, a MIG-31 with full long-distance A2A missiles payload, may still be less effective than a F-15C with short missiles... -- So in this case, one may want to use the Overhead method to allocate more defending planes as the amount of detected attacking planes. -- The overhead must be given as a decimal value with 1 as the neutral value, which means that Overhead values: -- -- * Higher than 1, will increase the defense unit amounts. -- * Lower than 1, will decrease the defense unit amounts. -- -- The amount of defending units is calculated by multiplying the amount of detected attacking planes as part of the detected group -- multiplied by the Overhead and rounded up to the smallest integer. -- -- The Overhead value set for a Squadron, can be programmatically adjusted (by using this SetOverhead method), to adjust the defense overhead during mission execution. -- -- See example below. -- -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- An overhead of 1,5 with 1 planes detected, will allocate 2 planes ( 1 * 1,5 ) = 1,5 => rounded up gives 2. -- -- An overhead of 1,5 with 2 planes detected, will allocate 3 planes ( 2 * 1,5 ) = 3 => rounded up gives 3. -- -- An overhead of 1,5 with 3 planes detected, will allocate 5 planes ( 3 * 1,5 ) = 4,5 => rounded up gives 5 planes. -- -- An overhead of 1,5 with 4 planes detected, will allocate 6 planes ( 4 * 1,5 ) = 6 => rounded up gives 6 planes. -- -- A2ADispatcher:SetSquadronOverhead( "SquadronName", 1.5 ) -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetSquadronOverhead( SquadronName, Overhead ) local DefenderSquadron = self:GetSquadron( SquadronName ) DefenderSquadron.Overhead = Overhead return self end --- Sets the default grouping of new airplanes spawned. -- Grouping will trigger how new airplanes will be grouped if more than one airplane is spawned for defense. -- @param #AI_A2A_DISPATCHER self -- @param #number Grouping The level of grouping that will be applied of the CAP or GCI defenders. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Set a grouping by default per 2 airplanes. -- A2ADispatcher:SetDefaultGrouping( 2 ) -- -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetDefaultGrouping( Grouping ) self.DefenderDefault.Grouping = Grouping return self end --- Sets the grouping of new airplanes spawned. -- Grouping will trigger how new airplanes will be grouped if more than one airplane is spawned for defense. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @param #number Grouping The level of grouping that will be applied of the CAP or GCI defenders. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Set a grouping per 2 airplanes. -- A2ADispatcher:SetSquadronGrouping( "SquadronName", 2 ) -- -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetSquadronGrouping( SquadronName, Grouping ) local DefenderSquadron = self:GetSquadron( SquadronName ) DefenderSquadron.Grouping = Grouping return self end --- Defines the default method at which new flights will spawn and take-off as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #number Takeoff From the airbase hot, from the airbase cold, in the air, from the runway. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights by default take-off in the air. -- A2ADispatcher:SetDefaultTakeoff( AI_A2A_Dispatcher.Takeoff.Air ) -- -- -- Let new flights by default take-off from the runway. -- A2ADispatcher:SetDefaultTakeoff( AI_A2A_Dispatcher.Takeoff.Runway ) -- -- -- Let new flights by default take-off from the airbase hot. -- A2ADispatcher:SetDefaultTakeoff( AI_A2A_Dispatcher.Takeoff.Hot ) -- -- -- Let new flights by default take-off from the airbase cold. -- A2ADispatcher:SetDefaultTakeoff( AI_A2A_Dispatcher.Takeoff.Cold ) -- -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetDefaultTakeoff( Takeoff ) self.DefenderDefault.Takeoff = Takeoff return self end --- Defines the method at which new flights will spawn and take-off as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @param #number Takeoff From the airbase hot, from the airbase cold, in the air, from the runway. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights take-off in the air. -- A2ADispatcher:SetSquadronTakeoff( "SquadronName", AI_A2A_Dispatcher.Takeoff.Air ) -- -- -- Let new flights take-off from the runway. -- A2ADispatcher:SetSquadronTakeoff( "SquadronName", AI_A2A_Dispatcher.Takeoff.Runway ) -- -- -- Let new flights take-off from the airbase hot. -- A2ADispatcher:SetSquadronTakeoff( "SquadronName", AI_A2A_Dispatcher.Takeoff.Hot ) -- -- -- Let new flights take-off from the airbase cold. -- A2ADispatcher:SetSquadronTakeoff( "SquadronName", AI_A2A_Dispatcher.Takeoff.Cold ) -- -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetSquadronTakeoff( SquadronName, Takeoff ) local DefenderSquadron = self:GetSquadron( SquadronName ) DefenderSquadron.Takeoff = Takeoff return self end --- Gets the default method at which new flights will spawn and take-off as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @return #number Takeoff From the airbase hot, from the airbase cold, in the air, from the runway. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights by default take-off in the air. -- local TakeoffMethod = A2ADispatcher:GetDefaultTakeoff() -- if TakeOffMethod == , AI_A2A_Dispatcher.Takeoff.InAir then -- ... -- end -- function AI_A2A_DISPATCHER:GetDefaultTakeoff( ) return self.DefenderDefault.Takeoff end --- Gets the method at which new flights will spawn and take-off as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @return #number Takeoff From the airbase hot, from the airbase cold, in the air, from the runway. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights take-off in the air. -- local TakeoffMethod = A2ADispatcher:GetSquadronTakeoff( "SquadronName" ) -- if TakeOffMethod == , AI_A2A_Dispatcher.Takeoff.InAir then -- ... -- end -- function AI_A2A_DISPATCHER:GetSquadronTakeoff( SquadronName ) local DefenderSquadron = self:GetSquadron( SquadronName ) return DefenderSquadron.Takeoff or self.DefenderDefault.Takeoff end --- Sets flights to default take-off in the air, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights by default take-off in the air. -- A2ADispatcher:SetDefaultTakeoffInAir() -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetDefaultTakeoffInAir() self:SetDefaultTakeoff( AI_A2A_DISPATCHER.Takeoff.Air ) return self end --- Sets flights to take-off in the air, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @param #number TakeoffAltitude (optional) The altitude in meters above the ground. If not given, the default takeoff altitude will be used. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights take-off in the air. -- A2ADispatcher:SetSquadronTakeoffInAir( "SquadronName" ) -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetSquadronTakeoffInAir( SquadronName, TakeoffAltitude ) self:SetSquadronTakeoff( SquadronName, AI_A2A_DISPATCHER.Takeoff.Air ) if TakeoffAltitude then self:SetSquadronTakeoffInAirAltitude( SquadronName, TakeoffAltitude ) end return self end --- Sets flights by default to take-off from the runway, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights by default take-off from the runway. -- A2ADispatcher:SetDefaultTakeoffFromRunway() -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetDefaultTakeoffFromRunway() self:SetDefaultTakeoff( AI_A2A_DISPATCHER.Takeoff.Runway ) return self end --- Sets flights to take-off from the runway, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights take-off from the runway. -- A2ADispatcher:SetSquadronTakeoffFromRunway( "SquadronName" ) -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetSquadronTakeoffFromRunway( SquadronName ) self:SetSquadronTakeoff( SquadronName, AI_A2A_DISPATCHER.Takeoff.Runway ) return self end --- Sets flights by default to take-off from the airbase at a hot location, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights by default take-off at a hot parking spot. -- A2ADispatcher:SetDefaultTakeoffFromParkingHot() -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetDefaultTakeoffFromParkingHot() self:SetDefaultTakeoff( AI_A2A_DISPATCHER.Takeoff.Hot ) return self end --- Sets flights to take-off from the airbase at a hot location, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights take-off in the air. -- A2ADispatcher:SetSquadronTakeoffFromParkingHot( "SquadronName" ) -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetSquadronTakeoffFromParkingHot( SquadronName ) self:SetSquadronTakeoff( SquadronName, AI_A2A_DISPATCHER.Takeoff.Hot ) return self end --- Sets flights to by default take-off from the airbase at a cold location, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights take-off from a cold parking spot. -- A2ADispatcher:SetDefaultTakeoffFromParkingCold() -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetDefaultTakeoffFromParkingCold() self:SetDefaultTakeoff( AI_A2A_DISPATCHER.Takeoff.Cold ) return self end --- Sets flights to take-off from the airbase at a cold location, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights take-off from a cold parking spot. -- A2ADispatcher:SetSquadronTakeoffFromParkingCold( "SquadronName" ) -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetSquadronTakeoffFromParkingCold( SquadronName ) self:SetSquadronTakeoff( SquadronName, AI_A2A_DISPATCHER.Takeoff.Cold ) return self end --- Defines the default altitude where airplanes will spawn in the air and take-off as part of the defense system, when the take-off in the air method has been selected. -- @param #AI_A2A_DISPATCHER self -- @param #number TakeoffAltitude The altitude in meters above the ground. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Set the default takeoff altitude when taking off in the air. -- A2ADispatcher:SetDefaultTakeoffInAirAltitude( 2000 ) -- This makes planes start at 2000 meters above the ground. -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetDefaultTakeoffInAirAltitude( TakeoffAltitude ) self.DefenderDefault.TakeoffAltitude = TakeoffAltitude return self end --- Defines the default altitude where airplanes will spawn in the air and take-off as part of the defense system, when the take-off in the air method has been selected. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @param #number TakeoffAltitude The altitude in meters above the ground. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Set the default takeoff altitude when taking off in the air. -- A2ADispatcher:SetSquadronTakeoffInAirAltitude( "SquadronName", 2000 ) -- This makes planes start at 2000 meters above the ground. -- -- @return #AI_A2A_DISPATCHER -- function AI_A2A_DISPATCHER:SetSquadronTakeoffInAirAltitude( SquadronName, TakeoffAltitude ) local DefenderSquadron = self:GetSquadron( SquadronName ) DefenderSquadron.TakeoffAltitude = TakeoffAltitude return self end --- Defines the default method at which flights will land and despawn as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #number Landing The landing method which can be NearAirbase, AtRunway, AtEngineShutdown -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights by default despawn near the airbase when returning. -- A2ADispatcher:SetDefaultLanding( AI_A2A_Dispatcher.Landing.NearAirbase ) -- -- -- Let new flights by default despawn after landing land at the runway. -- A2ADispatcher:SetDefaultLanding( AI_A2A_Dispatcher.Landing.AtRunway ) -- -- -- Let new flights by default despawn after landing and parking, and after engine shutdown. -- A2ADispatcher:SetDefaultLanding( AI_A2A_Dispatcher.Landing.AtEngineShutdown ) -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetDefaultLanding( Landing ) self.DefenderDefault.Landing = Landing return self end --- Defines the method at which flights will land and despawn as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @param #number Landing The landing method which can be NearAirbase, AtRunway, AtEngineShutdown -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights despawn near the airbase when returning. -- A2ADispatcher:SetSquadronLanding( "SquadronName", AI_A2A_Dispatcher.Landing.NearAirbase ) -- -- -- Let new flights despawn after landing land at the runway. -- A2ADispatcher:SetSquadronLanding( "SquadronName", AI_A2A_Dispatcher.Landing.AtRunway ) -- -- -- Let new flights despawn after landing and parking, and after engine shutdown. -- A2ADispatcher:SetSquadronLanding( "SquadronName", AI_A2A_Dispatcher.Landing.AtEngineShutdown ) -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetSquadronLanding( SquadronName, Landing ) local DefenderSquadron = self:GetSquadron( SquadronName ) DefenderSquadron.Landing = Landing return self end --- Gets the default method at which flights will land and despawn as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @return #number Landing The landing method which can be NearAirbase, AtRunway, AtEngineShutdown -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights by default despawn near the airbase when returning. -- local LandingMethod = A2ADispatcher:GetDefaultLanding( AI_A2A_Dispatcher.Landing.NearAirbase ) -- if LandingMethod == AI_A2A_Dispatcher.Landing.NearAirbase then -- ... -- end -- function AI_A2A_DISPATCHER:GetDefaultLanding() return self.DefenderDefault.Landing end --- Gets the method at which flights will land and despawn as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @return #number Landing The landing method which can be NearAirbase, AtRunway, AtEngineShutdown -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let new flights despawn near the airbase when returning. -- local LandingMethod = A2ADispatcher:GetSquadronLanding( "SquadronName", AI_A2A_Dispatcher.Landing.NearAirbase ) -- if LandingMethod == AI_A2A_Dispatcher.Landing.NearAirbase then -- ... -- end -- function AI_A2A_DISPATCHER:GetSquadronLanding( SquadronName ) local DefenderSquadron = self:GetSquadron( SquadronName ) return DefenderSquadron.Landing or self.DefenderDefault.Landing end --- Sets flights by default to land and despawn near the airbase in the air, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let flights by default to land near the airbase and despawn. -- A2ADispatcher:SetDefaultLandingNearAirbase() -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetDefaultLandingNearAirbase() self:SetDefaultLanding( AI_A2A_DISPATCHER.Landing.NearAirbase ) return self end --- Sets flights to land and despawn near the airbase in the air, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let flights to land near the airbase and despawn. -- A2ADispatcher:SetSquadronLandingNearAirbase( "SquadronName" ) -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetSquadronLandingNearAirbase( SquadronName ) self:SetSquadronLanding( SquadronName, AI_A2A_DISPATCHER.Landing.NearAirbase ) return self end --- Sets flights by default to land and despawn at the runway, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let flights by default land at the runway and despawn. -- A2ADispatcher:SetDefaultLandingAtRunway() -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetDefaultLandingAtRunway() self:SetDefaultLanding( AI_A2A_DISPATCHER.Landing.AtRunway ) return self end --- Sets flights to land and despawn at the runway, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let flights land at the runway and despawn. -- A2ADispatcher:SetSquadronLandingAtRunway( "SquadronName" ) -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetSquadronLandingAtRunway( SquadronName ) self:SetSquadronLanding( SquadronName, AI_A2A_DISPATCHER.Landing.AtRunway ) return self end --- Sets flights by default to land and despawn at engine shutdown, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let flights by default land and despawn at engine shutdown. -- A2ADispatcher:SetDefaultLandingAtEngineShutdown() -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetDefaultLandingAtEngineShutdown() self:SetDefaultLanding( AI_A2A_DISPATCHER.Landing.AtEngineShutdown ) return self end --- Sets flights to land and despawn at engine shutdown, as part of the defense system. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @usage: -- -- local A2ADispatcher = AI_A2A_DISPATCHER:New( ... ) -- -- -- Let flights land and despawn at engine shutdown. -- A2ADispatcher:SetSquadronLandingAtEngineShutdown( "SquadronName" ) -- -- @return #AI_A2A_DISPATCHER function AI_A2A_DISPATCHER:SetSquadronLandingAtEngineShutdown( SquadronName ) self:SetSquadronLanding( SquadronName, AI_A2A_DISPATCHER.Landing.AtEngineShutdown ) return self end --- Set the default fuel treshold when defenders will RTB or Refuel in the air. -- The fuel treshold is by default set to 15%, which means that an airplane will stay in the air until 15% of its fuel has been consumed. -- @param #AI_A2A_DISPATCHER self -- @param #number FuelThreshold A decimal number between 0 and 1, that expresses the %-tage of the treshold of fuel remaining in the tank when the plane will go RTB or Refuel. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Now Setup the default fuel treshold. -- A2ADispatcher:SetDefaultRefuelThreshold( 0.30 ) -- Go RTB when only 30% of fuel remaining in the tank. -- function AI_A2A_DISPATCHER:SetDefaultFuelThreshold( FuelThreshold ) self.DefenderDefault.FuelThreshold = FuelThreshold return self end --- Set the fuel treshold for the squadron when defenders will RTB or Refuel in the air. -- The fuel treshold is by default set to 15%, which means that an airplane will stay in the air until 15% of its fuel has been consumed. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @param #number FuelThreshold A decimal number between 0 and 1, that expresses the %-tage of the treshold of fuel remaining in the tank when the plane will go RTB or Refuel. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Now Setup the default fuel treshold. -- A2ADispatcher:SetSquadronRefuelThreshold( "SquadronName", 0.30 ) -- Go RTB when only 30% of fuel remaining in the tank. -- function AI_A2A_DISPATCHER:SetSquadronFuelThreshold( SquadronName, FuelThreshold ) local DefenderSquadron = self:GetSquadron( SquadronName ) DefenderSquadron.FuelThreshold = FuelThreshold return self end --- Set the default tanker where defenders will Refuel in the air. -- @param #AI_A2A_DISPATCHER self -- @param #strig TankerName A string defining the group name of the Tanker as defined within the Mission Editor. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Now Setup the default fuel treshold. -- A2ADispatcher:SetDefaultRefuelThreshold( 0.30 ) -- Go RTB when only 30% of fuel remaining in the tank. -- -- -- Now Setup the default tanker. -- A2ADispatcher:SetDefaultTanker( "Tanker" ) -- The group name of the tanker is "Tanker" in the Mission Editor. function AI_A2A_DISPATCHER:SetDefaultTanker( TankerName ) self.DefenderDefault.TankerName = TankerName return self end --- Set the squadron tanker where defenders will Refuel in the air. -- @param #AI_A2A_DISPATCHER self -- @param #string SquadronName The name of the squadron. -- @param #strig TankerName A string defining the group name of the Tanker as defined within the Mission Editor. -- @return #AI_A2A_DISPATCHER -- @usage -- -- -- Now Setup the A2A dispatcher, and initialize it using the Detection object. -- A2ADispatcher = AI_A2A_DISPATCHER:New( Detection ) -- -- -- Now Setup the squadron fuel treshold. -- A2ADispatcher:SetSquadronRefuelThreshold( "SquadronName", 0.30 ) -- Go RTB when only 30% of fuel remaining in the tank. -- -- -- Now Setup the squadron tanker. -- A2ADispatcher:SetSquadronTanker( "SquadronName", "Tanker" ) -- The group name of the tanker is "Tanker" in the Mission Editor. function AI_A2A_DISPATCHER:SetSquadronTanker( SquadronName, TankerName ) local DefenderSquadron = self:GetSquadron( SquadronName ) DefenderSquadron.TankerName = TankerName return self end --- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:AddDefenderToSquadron( Squadron, Defender, Size ) self.Defenders = self.Defenders or {} local DefenderName = Defender:GetName() self.Defenders[ DefenderName ] = Squadron if Squadron.Resources then Squadron.Resources = Squadron.Resources - Size end self:E( { DefenderName = DefenderName, SquadronResources = Squadron.Resources } ) end --- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:RemoveDefenderFromSquadron( Squadron, Defender ) self.Defenders = self.Defenders or {} local DefenderName = Defender:GetName() if Squadron.Resources then Squadron.Resources = Squadron.Resources + Defender:GetSize() end self.Defenders[ DefenderName ] = nil self:F( { DefenderName = DefenderName, SquadronResources = Squadron.Resources } ) end function AI_A2A_DISPATCHER:GetSquadronFromDefender( Defender ) self.Defenders = self.Defenders or {} local DefenderName = Defender:GetName() self:F( { DefenderName = DefenderName } ) return self.Defenders[ DefenderName ] end --- Creates an SWEEP task when there are targets for it. -- @param #AI_A2A_DISPATCHER self -- @param Functional.Detection#DETECTION_BASE.DetectedItem DetectedItem -- @return Set#SET_UNIT TargetSetUnit: The target set of units. -- @return #nil If there are no targets to be set. function AI_A2A_DISPATCHER:EvaluateSWEEP( DetectedItem ) self:F( { DetectedItem.ItemID } ) local DetectedSet = DetectedItem.Set local DetectedZone = DetectedItem.Zone if DetectedItem.IsDetected == false then -- Here we're doing something advanced... We're copying the DetectedSet. local TargetSetUnit = SET_UNIT:New() TargetSetUnit:SetDatabase( DetectedSet ) TargetSetUnit:FilterOnce() -- Filter but don't do any events!!! Elements are added manually upon each detection. return TargetSetUnit end return nil end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:CountCapAirborne( SquadronName ) local CapCount = 0 local DefenderSquadron = self.DefenderSquadrons[SquadronName] if DefenderSquadron then for AIGroup, DefenderTask in pairs( self:GetDefenderTasks() ) do if DefenderTask.SquadronName == SquadronName then if DefenderTask.Type == "CAP" then if AIGroup:IsAlive() then -- Check if the CAP is patrolling or engaging. If not, this is not a valid CAP, even if it is alive! -- The CAP could be damaged, lost control, or out of fuel! if DefenderTask.Fsm:Is( "Patrolling" ) or DefenderTask.Fsm:Is( "Engaging" ) or DefenderTask.Fsm:Is( "Refuelling" )then CapCount = CapCount + 1 end end end end end end return CapCount end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:CountDefendersEngaged( AttackerDetection ) -- First, count the active AIGroups Units, targetting the DetectedSet local DefenderCount = 0 self:E( "Counting Defenders Engaged for Attacker:" ) local DetectedSet = AttackerDetection.Set DetectedSet:Flush() local DefenderTasks = self:GetDefenderTasks() for DefenderGroup, DefenderTask in pairs( DefenderTasks ) do local Defender = DefenderGroup -- Wrapper.Group#GROUP local DefenderTaskTarget = DefenderTask.Target local DefenderSquadronName = DefenderTask.SquadronName if DefenderTaskTarget and DefenderTaskTarget.Index == AttackerDetection.Index then local Squadron = self:GetSquadron( DefenderSquadronName ) local SquadronOverhead = Squadron.Overhead or self.DefenderDefault.Overhead local DefenderSize = Defender:GetInitialSize() DefenderCount = DefenderCount + DefenderSize / SquadronOverhead self:F( "Defender Group Name: " .. Defender:GetName() .. ", Size: " .. DefenderSize ) end end self:F( { DefenderCount = DefenderCount } ) return DefenderCount end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:CountDefendersToBeEngaged( AttackerDetection, DefenderCount ) local Friendlies = nil local AttackerSet = AttackerDetection.Set local AttackerCount = AttackerSet:Count() local DefenderFriendlies = self:GetAIFriendliesNearBy( AttackerDetection ) for FriendlyDistance, AIFriendly in UTILS.spairs( DefenderFriendlies or {} ) do -- We only allow to ENGAGE targets as long as the Units on both sides are balanced. if AttackerCount > DefenderCount then local Friendly = AIFriendly:GetGroup() -- Wrapper.Group#GROUP if Friendly and Friendly:IsAlive() then -- Ok, so we have a friendly near the potential target. -- Now we need to check if the AIGroup has a Task. local DefenderTask = self:GetDefenderTask( Friendly ) if DefenderTask then -- The Task should be CAP or GCI if DefenderTask.Type == "CAP" or DefenderTask.Type == "GCI" then -- If there is no target, then add the AIGroup to the ResultAIGroups for Engagement to the AttackerSet if DefenderTask.Target == nil then if DefenderTask.Fsm:Is( "Returning" ) or DefenderTask.Fsm:Is( "Patrolling" ) then Friendlies = Friendlies or {} Friendlies[Friendly] = Friendly DefenderCount = DefenderCount + Friendly:GetSize() self:F( { Friendly = Friendly:GetName(), FriendlyDistance = FriendlyDistance } ) end end end end end else break end end return Friendlies end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:onafterCAP( From, Event, To, SquadronName ) self:F({SquadronName = SquadronName}) self.DefenderSquadrons[SquadronName] = self.DefenderSquadrons[SquadronName] or {} self.DefenderSquadrons[SquadronName].Cap = self.DefenderSquadrons[SquadronName].Cap or {} local DefenderSquadron = self:CanCAP( SquadronName ) if DefenderSquadron then local Cap = DefenderSquadron.Cap if Cap then local Spawn = DefenderSquadron.Spawn[ math.random( 1, #DefenderSquadron.Spawn ) ] -- Functional.Spawn#SPAWN local DefenderGrouping = DefenderSquadron.Grouping or self.DefenderDefault.Grouping Spawn:InitGrouping( DefenderGrouping ) local TakeoffMethod = self:GetSquadronTakeoff( SquadronName ) local DefenderCAP = Spawn:SpawnAtAirbase( DefenderSquadron.Airbase, TakeoffMethod, DefenderSquadron.TakeoffAltitude or self.DefenderDefault.TakeoffAltitude ) self:AddDefenderToSquadron( DefenderSquadron, DefenderCAP, DefenderGrouping ) if DefenderCAP then local Fsm = AI_A2A_CAP:New( DefenderCAP, Cap.Zone, Cap.FloorAltitude, Cap.CeilingAltitude, Cap.PatrolMinSpeed, Cap.PatrolMaxSpeed, Cap.EngageMinSpeed, Cap.EngageMaxSpeed, Cap.AltType ) Fsm:SetDispatcher( self ) Fsm:SetHomeAirbase( DefenderSquadron.Airbase ) Fsm:SetFuelThreshold( DefenderSquadron.FuelThreshold or self.DefenderDefault.FuelThreshold, 60 ) Fsm:SetDamageThreshold( self.DefenderDefault.DamageThreshold ) Fsm:SetDisengageRadius( self.DisengageRadius ) Fsm:SetTanker( DefenderSquadron.TankerName or self.DefenderDefault.TankerName ) Fsm:Start() self:SetDefenderTask( SquadronName, DefenderCAP, "CAP", Fsm ) function Fsm:onafterTakeoff( Defender, From, Event, To ) self:F({"GCI Birth", Defender:GetName()}) --self:GetParent(self).onafterBirth( self, Defender, From, Event, To ) local Dispatcher = Fsm:GetDispatcher() -- #AI_A2A_DISPATCHER local Squadron = Dispatcher:GetSquadronFromDefender( Defender ) if Squadron then Fsm:__Patrol( 2 ) -- Start Patrolling end end function Fsm:onafterRTB( Defender, From, Event, To ) self:F({"CAP RTB", Defender:GetName()}) self:GetParent(self).onafterRTB( self, Defender, From, Event, To ) local Dispatcher = self:GetDispatcher() -- #AI_A2A_DISPATCHER Dispatcher:ClearDefenderTaskTarget( Defender ) end --- @param #AI_A2A_DISPATCHER self function Fsm:onafterHome( Defender, From, Event, To, Action ) self:E({"CAP Home", Defender:GetName()}) self:GetParent(self).onafterHome( self, Defender, From, Event, To ) local Dispatcher = self:GetDispatcher() -- #AI_A2A_DISPATCHER local Squadron = Dispatcher:GetSquadronFromDefender( Defender ) if Action and Action == "Destroy" then Dispatcher:RemoveDefenderFromSquadron( Squadron, Defender ) Defender:Destroy() end if Dispatcher:GetSquadronLanding( Squadron.Name ) == AI_A2A_DISPATCHER.Landing.NearAirbase then Dispatcher:RemoveDefenderFromSquadron( Squadron, Defender ) Defender:Destroy() end end end end end end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:onafterENGAGE( From, Event, To, AttackerDetection, Defenders ) if Defenders then for DefenderID, Defender in pairs( Defenders ) do local Fsm = self:GetDefenderTaskFsm( Defender ) Fsm:__Engage( 1, AttackerDetection.Set ) -- Engage on the TargetSetUnit self:SetDefenderTaskTarget( Defender, AttackerDetection ) end end end --- -- @param #AI_A2A_DISPATCHER self function AI_A2A_DISPATCHER:onafterGCI( From, Event, To, AttackerDetection, DefendersMissing, DefenderFriendlies ) self:F( { From, Event, To, AttackerDetection.Index, DefendersMissing, DefenderFriendlies } ) local AttackerSet = AttackerDetection.Set local AttackerUnit = AttackerSet:GetFirst() if AttackerUnit and AttackerUnit:IsAlive() then local AttackerCount = AttackerSet:Count() local DefenderCount = 0 for DefenderID, DefenderGroup in pairs( DefenderFriendlies or {} ) do local Fsm = self:GetDefenderTaskFsm( DefenderGroup ) Fsm:__Engage( 1, AttackerSet ) -- Engage on the TargetSetUnit self:SetDefenderTaskTarget( DefenderGroup, AttackerDetection ) DefenderCount = DefenderCount + DefenderGroup:GetSize() end self:F( { DefenderCount = DefenderCount, DefendersMissing = DefendersMissing } ) DefenderCount = DefendersMissing local ClosestDistance = 0 local ClosestDefenderSquadronName = nil local BreakLoop = false while( DefenderCount > 0 and not BreakLoop ) do self:F( { DefenderSquadrons = self.DefenderSquadrons } ) for SquadronName, DefenderSquadron in pairs( self.DefenderSquadrons or {} ) do self:F( { GCI = DefenderSquadron.Gci } ) for InterceptID, Intercept in pairs( DefenderSquadron.Gci or {} ) do self:F( { DefenderSquadron } ) local SpawnCoord = DefenderSquadron.Airbase:GetCoordinate() -- Core.Point#COORDINATE local AttackerCoord = AttackerUnit:GetCoordinate() local InterceptCoord = AttackerDetection.InterceptCoord self:F( { InterceptCoord = InterceptCoord } ) if InterceptCoord then local InterceptDistance = SpawnCoord:Get2DDistance( InterceptCoord ) local AirbaseDistance = SpawnCoord:Get2DDistance( AttackerCoord ) self:F( { InterceptDistance = InterceptDistance, AirbaseDistance = AirbaseDistance, InterceptCoord = InterceptCoord } ) if ClosestDistance == 0 or InterceptDistance < ClosestDistance then -- Only intercept if the distance to target is smaller or equal to the GciRadius limit. if AirbaseDistance <= self.GciRadius then ClosestDistance = InterceptDistance ClosestDefenderSquadronName = SquadronName end end end end end if ClosestDefenderSquadronName then local DefenderSquadron = self:CanGCI( ClosestDefenderSquadronName ) if DefenderSquadron then local Gci = self.DefenderSquadrons[ClosestDefenderSquadronName].Gci if Gci then local DefenderOverhead = DefenderSquadron.Overhead or self.DefenderDefault.Overhead local DefenderGrouping = DefenderSquadron.Grouping or self.DefenderDefault.Grouping local DefendersNeeded = math.ceil( DefenderCount * DefenderOverhead ) self:F( { Overhead = DefenderOverhead, SquadronOverhead = DefenderSquadron.Overhead , DefaultOverhead = self.DefenderDefault.Overhead } ) self:F( { Grouping = DefenderGrouping, SquadronGrouping = DefenderSquadron.Grouping, DefaultGrouping = self.DefenderDefault.Grouping } ) self:F( { DefendersCount = DefenderCount, DefendersNeeded = DefendersNeeded } ) -- DefenderSquadron.Resources can have the value nil, which expresses unlimited resources. -- DefendersNeeded cannot exceed DefenderSquadron.Resources! if DefenderSquadron.Resources and DefendersNeeded > DefenderSquadron.Resources then DefendersNeeded = DefenderSquadron.Resources BreakLoop = true end while ( DefendersNeeded > 0 ) do local Spawn = DefenderSquadron.Spawn[ math.random( 1, #DefenderSquadron.Spawn ) ] -- Functional.Spawn#SPAWN local DefenderGrouping = ( DefenderGrouping < DefendersNeeded ) and DefenderGrouping or DefendersNeeded if DefenderGrouping then Spawn:InitGrouping( DefenderGrouping ) else Spawn:InitGrouping() end local TakeoffMethod = self:GetSquadronTakeoff( ClosestDefenderSquadronName ) local DefenderGCI = Spawn:SpawnAtAirbase( DefenderSquadron.Airbase, TakeoffMethod, DefenderSquadron.TakeoffAltitude or self.DefenderDefault.TakeoffAltitude ) -- Wrapper.Group#GROUP self:E( { GCIDefender = DefenderGCI:GetName() } ) DefendersNeeded = DefendersNeeded - DefenderGrouping self:AddDefenderToSquadron( DefenderSquadron, DefenderGCI, DefenderGrouping ) if DefenderGCI then DefenderCount = DefenderCount - DefenderGrouping / DefenderOverhead local Fsm = AI_A2A_GCI:New( DefenderGCI, Gci.EngageMinSpeed, Gci.EngageMaxSpeed ) Fsm:SetDispatcher( self ) Fsm:SetHomeAirbase( DefenderSquadron.Airbase ) Fsm:SetFuelThreshold( DefenderSquadron.FuelThreshold or self.DefenderDefault.FuelThreshold, 60 ) Fsm:SetDamageThreshold( self.DefenderDefault.DamageThreshold ) Fsm:SetDisengageRadius( self.DisengageRadius ) Fsm:Start() self:SetDefenderTask( ClosestDefenderSquadronName, DefenderGCI, "GCI", Fsm, AttackerDetection ) function Fsm:onafterTakeoff( Defender, From, Event, To ) self:F({"GCI Birth", Defender:GetName()}) --self:GetParent(self).onafterBirth( self, Defender, From, Event, To ) local Dispatcher = Fsm:GetDispatcher() -- #AI_A2A_DISPATCHER local Squadron = Dispatcher:GetSquadronFromDefender( Defender ) local DefenderTarget = Dispatcher:GetDefenderTaskTarget( Defender ) if DefenderTarget then Fsm:__Engage( 2, DefenderTarget.Set ) -- Engage on the TargetSetUnit end end function Fsm:onafterRTB( Defender, From, Event, To ) self:F({"GCI RTB", Defender:GetName()}) self:GetParent(self).onafterRTB( self, Defender, From, Event, To ) local Dispatcher = self:GetDispatcher() -- #AI_A2A_DISPATCHER Dispatcher:ClearDefenderTaskTarget( Defender ) end --- @param #AI_A2A_DISPATCHER self function Fsm:onafterLostControl( Defender, From, Event, To ) self:F({"GCI LostControl", Defender:GetName()}) self:GetParent(self).onafterHome( self, Defender, From, Event, To ) local Dispatcher = Fsm:GetDispatcher() -- #AI_A2A_DISPATCHER local Squadron = Dispatcher:GetSquadronFromDefender( Defender ) if Defender:IsAboveRunway() then Dispatcher:RemoveDefenderFromSquadron( Squadron, Defender ) Defender:Destroy() end end --- @param #AI_A2A_DISPATCHER self function Fsm:onafterHome( Defender, From, Event, To, Action ) self:F({"GCI Home", Defender:GetName()}) self:GetParent(self).onafterHome( self, Defender, From, Event, To ) local Dispatcher = self:GetDispatcher() -- #AI_A2A_DISPATCHER local Squadron = Dispatcher:GetSquadronFromDefender( Defender ) if Action and Action == "Destroy" then Dispatcher:RemoveDefenderFromSquadron( Squadron, Defender ) Defender:Destroy() end if Dispatcher:GetSquadronLanding( Squadron.Name ) == AI_A2A_DISPATCHER.Landing.NearAirbase then Dispatcher:RemoveDefenderFromSquadron( Squadron, Defender ) Defender:Destroy() end end end -- if DefenderGCI then end -- while ( DefendersNeeded > 0 ) do end else -- No more resources, try something else. -- Subject for a later enhancement to try to depart from another squadron and disable this one. BreakLoop = true break end else -- There isn't any closest airbase anymore, break the loop. break end end -- if DefenderSquadron then end -- if AttackerUnit end --- Creates an ENGAGE task when there are human friendlies airborne near the targets. -- @param #AI_A2A_DISPATCHER self -- @param Functional.Detection#DETECTION_BASE.DetectedItem DetectedItem -- @return Set#SET_UNIT TargetSetUnit: The target set of units. -- @return #nil If there are no targets to be set. function AI_A2A_DISPATCHER:EvaluateENGAGE( DetectedItem ) self:F( { DetectedItem.ItemID } ) -- First, count the active AIGroups Units, targetting the DetectedSet local DefenderCount = self:CountDefendersEngaged( DetectedItem ) local DefenderGroups = self:CountDefendersToBeEngaged( DetectedItem, DefenderCount ) self:F( { DefenderCount = DefenderCount } ) -- Only allow ENGAGE when: -- 1. There are friendly units near the detected attackers. -- 2. There is sufficient fuel -- 3. There is sufficient ammo -- 4. The plane is not damaged if DefenderGroups and DetectedItem.IsDetected == true then return DefenderGroups end return nil, nil end --- Creates an GCI task when there are targets for it. -- @param #AI_A2A_DISPATCHER self -- @param Functional.Detection#DETECTION_BASE.DetectedItem DetectedItem -- @return Set#SET_UNIT TargetSetUnit: The target set of units. -- @return #nil If there are no targets to be set. function AI_A2A_DISPATCHER:EvaluateGCI( DetectedItem ) self:F( { DetectedItem.ItemID } ) local AttackerSet = DetectedItem.Set local AttackerCount = AttackerSet:Count() -- First, count the active AIGroups Units, targetting the DetectedSet local DefenderCount = self:CountDefendersEngaged( DetectedItem ) local DefendersMissing = AttackerCount - DefenderCount self:F( { AttackerCount = AttackerCount, DefenderCount = DefenderCount, DefendersMissing = DefendersMissing } ) local Friendlies = self:CountDefendersToBeEngaged( DetectedItem, DefenderCount ) if DetectedItem.IsDetected == true then return DefendersMissing, Friendlies end return nil, nil end --- Assigns A2A AI Tasks in relation to the detected items. -- @param #AI_A2A_DISPATCHER self -- @param Functional.Detection#DETECTION_BASE Detection The detection created by the @{Detection#DETECTION_BASE} derived object. -- @return #boolean Return true if you want the task assigning to continue... false will cancel the loop. function AI_A2A_DISPATCHER:ProcessDetected( Detection ) local AreaMsg = {} local TaskMsg = {} local ChangeMsg = {} local TaskReport = REPORT:New() for AIGroup, DefenderTask in pairs( self:GetDefenderTasks() ) do local AIGroup = AIGroup -- Wrapper.Group#GROUP if not AIGroup:IsAlive() then local DefenderTaskFsm = self:GetDefenderTaskFsm( AIGroup ) self:E( { Defender = AIGroup:GetName(), DefenderState = DefenderTaskFsm:GetState() } ) if not DefenderTaskFsm:Is( "Started" ) then self:ClearDefenderTask( AIGroup ) end else if DefenderTask.Target then local AttackerItem = Detection:GetDetectedItem( DefenderTask.Target.Index ) if not AttackerItem then self:F( { "Removing obsolete Target:", DefenderTask.Target.Index } ) self:ClearDefenderTaskTarget( AIGroup ) else if DefenderTask.Target.Set then local AttackerCount = DefenderTask.Target.Set:Count() if AttackerCount == 0 then self:F( { "All Targets destroyed in Target, removing:", DefenderTask.Target.Index } ) self:ClearDefenderTaskTarget( AIGroup ) end end end end end end local Report = REPORT:New( "\nTactical Overview" ) -- Now that all obsolete tasks are removed, loop through the detected targets. for DetectedItemID, DetectedItem in pairs( Detection:GetDetectedItems() ) do local DetectedItem = DetectedItem -- Functional.Detection#DETECTION_BASE.DetectedItem local DetectedSet = DetectedItem.Set -- Core.Set#SET_UNIT local DetectedCount = DetectedSet:Count() local DetectedZone = DetectedItem.Zone self:F( { "Target ID", DetectedItem.ItemID } ) DetectedSet:Flush() local DetectedID = DetectedItem.ID local DetectionIndex = DetectedItem.Index local DetectedItemChanged = DetectedItem.Changed do local Friendlies = self:EvaluateENGAGE( DetectedItem ) -- Returns a SetUnit if there are targets to be GCIed... if Friendlies then self:F( { AIGroups = Friendlies } ) self:ENGAGE( DetectedItem, Friendlies ) end end do local DefendersMissing, Friendlies = self:EvaluateGCI( DetectedItem ) if DefendersMissing then self:F( { DefendersMissing = DefendersMissing } ) self:GCI( DetectedItem, DefendersMissing, Friendlies ) end end if self.TacticalDisplay then -- Show tactical situation Report:Add( string.format( "\n - Target %s ( %s ): ( #%d ) %s" , DetectedItem.ItemID, DetectedItem.Index, DetectedItem.Set:Count(), DetectedItem.Set:GetObjectNames() ) ) for Defender, DefenderTask in pairs( self:GetDefenderTasks() ) do local Defender = Defender -- Wrapper.Group#GROUP if DefenderTask.Target and DefenderTask.Target.Index == DetectedItem.Index then local Fuel = Defender:GetFuel() * 100 local Damage = Defender:GetLife() / Defender:GetLife0() * 100 Report:Add( string.format( " - %s ( %s - %s ): ( #%d ) F: %3d, D:%3d - %s", Defender:GetName(), DefenderTask.Type, DefenderTask.Fsm:GetState(), Defender:GetSize(), Fuel, Damage, Defender:HasTask() == true and "Executing" or "Idle" ) ) end end end end if self.TacticalDisplay then Report:Add( "\n - No Targets:") local TaskCount = 0 for Defender, DefenderTask in pairs( self:GetDefenderTasks() ) do TaskCount = TaskCount + 1 local Defender = Defender -- Wrapper.Group#GROUP if not DefenderTask.Target then local DefenderHasTask = Defender:HasTask() local Fuel = Defender:GetFuel() * 100 local Damage = Defender:GetLife() / Defender:GetLife0() * 100 Report:Add( string.format( " - %s ( %s - %s ): ( #%d ) F: %3d, D:%3d - %s", Defender:GetName(), DefenderTask.Type, DefenderTask.Fsm:GetState(), Defender:GetSize(), Fuel, Damage, Defender:HasTask() == true and "Executing" or "Idle" ) ) end end Report:Add( string.format( "\n - %d Tasks", TaskCount ) ) self:E( Report:Text( "\n" ) ) trigger.action.outText( Report:Text( "\n" ), 25 ) end return true end end do --- Calculates which HUMAN friendlies are nearby the area -- @param #AI_A2A_DISPATCHER self -- @param DetectedItem -- @return #number, Core.CommandCenter#REPORT function AI_A2A_DISPATCHER:GetPlayerFriendliesNearBy( DetectedItem ) local DetectedSet = DetectedItem.Set local PlayersNearBy = self.Detection:GetPlayersNearBy( DetectedItem ) local PlayerTypes = {} local PlayersCount = 0 if PlayersNearBy then local DetectedTreatLevel = DetectedSet:CalculateThreatLevelA2G() for PlayerUnitName, PlayerUnitData in pairs( PlayersNearBy ) do local PlayerUnit = PlayerUnitData -- Wrapper.Unit#UNIT local PlayerName = PlayerUnit:GetPlayerName() --self:E( { PlayerName = PlayerName, PlayerUnit = PlayerUnit } ) if PlayerUnit:IsAirPlane() and PlayerName ~= nil then local FriendlyUnitThreatLevel = PlayerUnit:GetThreatLevel() PlayersCount = PlayersCount + 1 local PlayerType = PlayerUnit:GetTypeName() PlayerTypes[PlayerName] = PlayerType if DetectedTreatLevel < FriendlyUnitThreatLevel + 2 then end end end end --self:E( { PlayersCount = PlayersCount } ) local PlayerTypesReport = REPORT:New() if PlayersCount > 0 then for PlayerName, PlayerType in pairs( PlayerTypes ) do PlayerTypesReport:Add( string.format('"%s" in %s', PlayerName, PlayerType ) ) end else PlayerTypesReport:Add( "-" ) end return PlayersCount, PlayerTypesReport end --- Calculates which friendlies are nearby the area -- @param #AI_A2A_DISPATCHER self -- @param DetectedItem -- @return #number, Core.CommandCenter#REPORT function AI_A2A_DISPATCHER:GetFriendliesNearBy( Target ) local DetectedSet = Target.Set local FriendlyUnitsNearBy = self.Detection:GetFriendliesNearBy( Target ) local FriendlyTypes = {} local FriendliesCount = 0 if FriendlyUnitsNearBy then local DetectedTreatLevel = DetectedSet:CalculateThreatLevelA2G() for FriendlyUnitName, FriendlyUnitData in pairs( FriendlyUnitsNearBy ) do local FriendlyUnit = FriendlyUnitData -- Wrapper.Unit#UNIT if FriendlyUnit:IsAirPlane() then local FriendlyUnitThreatLevel = FriendlyUnit:GetThreatLevel() FriendliesCount = FriendliesCount + 1 local FriendlyType = FriendlyUnit:GetTypeName() FriendlyTypes[FriendlyType] = FriendlyTypes[FriendlyType] and ( FriendlyTypes[FriendlyType] + 1 ) or 1 if DetectedTreatLevel < FriendlyUnitThreatLevel + 2 then end end end end --self:E( { FriendliesCount = FriendliesCount } ) local FriendlyTypesReport = REPORT:New() if FriendliesCount > 0 then for FriendlyType, FriendlyTypeCount in pairs( FriendlyTypes ) do FriendlyTypesReport:Add( string.format("%d of %s", FriendlyTypeCount, FriendlyType ) ) end else FriendlyTypesReport:Add( "-" ) end return FriendliesCount, FriendlyTypesReport end --- -- @param AI_A2A_DISPATCHER -- @param #string SquadronName The squadron name. function AI_A2A_DISPATCHER:SchedulerCAP( SquadronName ) self:CAP( SquadronName ) end end do --- @type AI_A2A_GCICAP -- @extends #AI_A2A_DISPATCHER --- # AI\_A2A\_GCICAP class, extends @{AI_A2A_Dispatcher#AI_A2A_DISPATCHER} -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia1.JPG) -- -- The AI_A2A_GCICAP class is designed to create an automatic air defence system for a coalition setting up GCI and CAP air defenses. -- The class derives from @{AI#AI_A2A_DISPATCHER} and thus, all the methods that are defined in the @{AI#AI_A2A_DISPATCHER} class, can be used also in AI\_A2A\_GCICAP. -- -- ==== -- -- # Demo Missions -- -- ### [AI\_A2A\_GCICAP for Caucasus](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/release-2-2-pre/AID%20-%20AI%20Dispatching/AID-200%20-%20AI_A2A%20-%20GCICAP%20Demonstration) -- ### [AI\_A2A\_GCICAP for NTTR](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/release-2-2-pre/AID%20-%20AI%20Dispatching/AID-210%20-%20NTTR%20AI_A2A_GCICAP%20Demonstration) -- ### [AI\_A2A\_GCICAP for Normandy](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/release-2-2-pre/AID%20-%20AI%20Dispatching/AID-220%20-%20NORMANDY%20AI_A2A_GCICAP%20Demonstration) -- -- ### [AI\_A2A\_GCICAP for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/AID%20-%20AI%20Dispatching) -- -- ==== -- -- # YouTube Channel -- -- ### [DCS WORLD - MOOSE - A2A GCICAP - Build an automatic A2A Defense System](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl0S4KMNUUJpaUs6zZHjLKNx) -- -- === -- -- ![Banner Image](..\Presentations\AI_A2A_DISPATCHER\Dia3.JPG) -- -- AI\_A2A\_GCICAP includes automatic spawning of Combat Air Patrol aircraft (CAP) and Ground Controlled Intercept aircraft (GCI) in response to enemy -- air movements that are detected by an airborne or ground based radar network. -- -- With a little time and with a little work it provides the mission designer with a convincing and completely automatic air defence system. -- -- The AI_A2A_GCICAP provides a lightweight configuration method using the mission editor. Within a very short time, and with very little coding, -- the mission designer is able to configure a complete A2A defense system for a coalition using the DCS Mission Editor available functions. -- Using the DCS Mission Editor, you define borders of the coalition which are guarded by GCICAP, -- configure airbases to belong to the coalition, define squadrons flying certain types of planes or payloads per airbase, and define CAP zones. -- **Very little lua needs to be applied, a one liner**, which is fully explained below, which can be embedded -- right in a DO SCRIPT trigger action or in a larger DO SCRIPT FILE trigger action. -- -- CAP flights will take off and proceed to designated CAP zones where they will remain on station until the ground radars direct them to intercept -- detected enemy aircraft or they run short of fuel and must return to base (RTB). -- -- When a CAP flight leaves their zone to perform a GCI or return to base a new CAP flight will spawn to take its place. -- If all CAP flights are engaged or RTB then additional GCI interceptors will scramble to intercept unengaged enemy aircraft under ground radar control. -- -- In short it is a plug in very flexible and configurable air defence module for DCS World. -- -- ==== -- -- # The following actions need to be followed when using AI\_A2A\_GCICAP in your mission: -- -- ## 1) Configure a working AI\_A2A\_GCICAP defense system for ONE coalition. -- -- ### 1.1) Define which airbases are for which coalition. -- -- ![Mission Editor Action](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_GCICAP-ME_1.JPG) -- -- Color the airbases red or blue. You can do this by selecting the airbase on the map, and select the coalition blue or red. -- -- ### 1.2) Place groups of units given a name starting with a **EWR prefix** of your choice to build your EWR network. -- -- ![Mission Editor Action](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_GCICAP-ME_2.JPG) -- -- **All EWR groups starting with the EWR prefix (text) will be included in the detection system.** -- -- An EWR network, or, Early Warning Radar network, is used to early detect potential airborne targets and to understand the position of patrolling targets of the enemy. -- Typically EWR networks are setup using 55G6 EWR, 1L13 EWR, Hawk sr and Patriot str ground based radar units. -- These radars have different ranges and 55G6 EWR and 1L13 EWR radars are Eastern Bloc units (eg Russia, Ukraine, Georgia) while the Hawk and Patriot radars are Western (eg US). -- Additionally, ANY other radar capable unit can be part of the EWR network! -- Also AWACS airborne units, planes, helicopters can help to detect targets, as long as they have radar. -- The position of these units is very important as they need to provide enough coverage -- to pick up enemy aircraft as they approach so that CAP and GCI flights can be tasked to intercept them. -- -- Additionally in a hot war situation where the border is no longer respected the placement of radars has a big effect on how fast the war escalates. -- For example if they are a long way forward and can detect enemy planes on the ground and taking off -- they will start to vector CAP and GCI flights to attack them straight away which will immediately draw a response from the other coalition. -- Having the radars further back will mean a slower escalation because fewer targets will be detected and -- therefore less CAP and GCI flights will spawn and this will tend to make just the border area active rather than a melee over the whole map. -- It all depends on what the desired effect is. -- -- EWR networks are **dynamically maintained**. By defining in a **smart way the names or name prefixes of the groups** with EWR capable units, these groups will be **automatically added or deleted** from the EWR network, -- increasing or decreasing the radar coverage of the Early Warning System. -- -- ### 1.3) Place Airplane or Helicopter Groups with late activation switched on above the airbases to define Squadrons. -- -- ![Mission Editor Action](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_GCICAP-ME_3.JPG) -- -- These are **templates**, with a given name starting with a **Template prefix** above each airbase that you wanna have a squadron. -- These **templates** need to be within 1.5km from the airbase center. They don't need to have a slot at the airplane, they can just be positioned above the airbase, -- without a route, and should only have ONE unit. -- -- ![Mission Editor Action](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_GCICAP-ME_4.JPG) -- -- **All airplane or helicopter groups that are starting with any of the choosen Template Prefixes will result in a squadron created at the airbase.** -- -- ### 1.4) Place floating helicopters to create the CAP zones defined by its route points. -- -- ![Mission Editor Action](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_GCICAP-ME_5.JPG) -- -- **All airplane or helicopter groups that are starting with any of the choosen Template Prefixes will result in a squadron created at the airbase.** -- -- The helicopter indicates the start of the CAP zone. -- The route points define the form of the CAP zone polygon. -- -- ![Mission Editor Action](..\Presentations\AI_A2A_DISPATCHER\AI_A2A_GCICAP-ME_6.JPG) -- -- **The place of the helicopter is important, as the airbase closest to the helicopter will be the airbase from where the CAP planes will take off for CAP.** -- -- ## 2) There are a lot of defaults set, which can be further modified using the methods in @{AI#AI_A2A_DISPATCHER}: -- -- ### 2.1) Planes are taking off in the air from the airbases. -- -- This prevents airbases to get cluttered with airplanes taking off, it also reduces the risk of human players colliding with taxiiing airplanes, -- resulting in the airbase to halt operations. -- -- You can change the way how planes take off by using the inherited methods from AI\_A2A\_DISPATCHER: -- -- * @{#AI_A2A_DISPATCHER.SetSquadronTakeoff}() is the generic configuration method to control takeoff from the air, hot, cold or from the runway. See the method for further details. -- * @{#AI_A2A_DISPATCHER.SetSquadronTakeoffInAir}() will spawn new aircraft from the squadron directly in the air. -- * @{#AI_A2A_DISPATCHER.SetSquadronTakeoffFromParkingCold}() will spawn new aircraft in without running engines at a parking spot at the airfield. -- * @{#AI_A2A_DISPATCHER.SetSquadronTakeoffFromParkingHot}() will spawn new aircraft in with running engines at a parking spot at the airfield. -- * @{#AI_A2A_DISPATCHER.SetSquadronTakeoffFromRunway}() will spawn new aircraft at the runway at the airfield. -- -- Use these methods to fine-tune for specific airfields that are known to create bottlenecks, or have reduced airbase efficiency. -- The more and the longer aircraft need to taxi at an airfield, the more risk there is that: -- -- * aircraft will stop waiting for each other or for a landing aircraft before takeoff. -- * aircraft may get into a "dead-lock" situation, where two aircraft are blocking each other. -- * aircraft may collide at the airbase. -- * aircraft may be awaiting the landing of a plane currently in the air, but never lands ... -- -- Currently within the DCS engine, the airfield traffic coordination is erroneous and contains a lot of bugs. -- If you experience while testing problems with aircraft take-off or landing, please use one of the above methods as a solution to workaround these issues! -- -- ### 2.2) Planes return near the airbase or will land if damaged. -- -- When damaged airplanes return to the airbase, they will be routed and will dissapear in the air when they are near the airbase. -- There are exceptions to this rule, airplanes that aren't "listening" anymore due to damage or out of fuel, will return to the airbase and land. -- -- You can change the way how planes land by using the inherited methods from AI\_A2A\_DISPATCHER: -- -- * @{#AI_A2A_DISPATCHER.SetSquadronLanding}() is the generic configuration method to control landing, namely despawn the aircraft near the airfield in the air, right after landing, or at engine shutdown. -- * @{#AI_A2A_DISPATCHER.SetSquadronLandingNearAirbase}() will despawn the returning aircraft in the air when near the airfield. -- * @{#AI_A2A_DISPATCHER.SetSquadronLandingAtRunway}() will despawn the returning aircraft directly after landing at the runway. -- * @{#AI_A2A_DISPATCHER.SetSquadronLandingAtEngineShutdown}() will despawn the returning aircraft when the aircraft has returned to its parking spot and has turned off its engines. -- -- You can use these methods to minimize the airbase coodination overhead and to increase the airbase efficiency. -- When there are lots of aircraft returning for landing, at the same airbase, the takeoff process will be halted, which can cause a complete failure of the -- A2A defense system, as no new CAP or GCI planes can takeoff. -- Note that the method @{#AI_A2A_DISPATCHER.SetSquadronLandingNearAirbase}() will only work for returning aircraft, not for damaged or out of fuel aircraft. -- Damaged or out-of-fuel aircraft are returning to the nearest friendly airbase and will land, and are out of control from ground control. -- -- ### 2.3) CAP operations setup for specific airbases, will be executed with the following parameters: -- -- * The altitude will range between 6000 and 10000 meters. -- * The CAP speed will vary between 500 and 800 km/h. -- * The engage speed between 800 and 1200 km/h. -- -- You can change or add a CAP zone by using the inherited methods from AI\_A2A\_DISPATCHER: -- -- The method @{#AI_A2A_DISPATCHER.SetSquadronCap}() defines a CAP execution for a squadron. -- -- Setting-up a CAP zone also requires specific parameters: -- -- * The minimum and maximum altitude -- * The minimum speed and maximum patrol speed -- * The minimum and maximum engage speed -- * The type of altitude measurement -- -- These define how the squadron will perform the CAP while partrolling. Different terrain types requires different types of CAP. -- -- The @{#AI_A2A_DISPATCHER.SetSquadronCapInterval}() method specifies **how much** and **when** CAP flights will takeoff. -- -- It is recommended not to overload the air defense with CAP flights, as these will decrease the performance of the overall system. -- -- For example, the following setup will create a CAP for squadron "Sochi": -- -- A2ADispatcher:SetSquadronCap( "Sochi", CAPZoneWest, 4000, 8000, 600, 800, 800, 1200, "BARO" ) -- A2ADispatcher:SetSquadronCapInterval( "Sochi", 2, 30, 120, 1 ) -- -- ### 2.4) Each airbase will perform GCI when required, with the following parameters: -- -- * The engage speed is between 800 and 1200 km/h. -- -- You can change or add a GCI parameters by using the inherited methods from AI\_A2A\_DISPATCHER: -- -- The method @{#AI_A2A_DISPATCHER.SetSquadronGci}() defines a GCI execution for a squadron. -- -- Setting-up a GCI readiness also requires specific parameters: -- -- * The minimum speed and maximum patrol speed -- -- Essentially this controls how many flights of GCI aircraft can be active at any time. -- Note allowing large numbers of active GCI flights can adversely impact mission performance on low or medium specification hosts/servers. -- GCI needs to be setup at strategic airbases. Too far will mean that the aircraft need to fly a long way to reach the intruders, -- too short will mean that the intruders may have alraedy passed the ideal interception point! -- -- For example, the following setup will create a GCI for squadron "Sochi": -- -- A2ADispatcher:SetSquadronGci( "Mozdok", 900, 1200 ) -- -- ### 2.5) Grouping or detected targets. -- -- Detected targets are constantly re-grouped, that is, when certain detected aircraft are moving further than the group radius, then these aircraft will become a separate -- group being detected. -- -- Targets will be grouped within a radius of 30km by default. -- -- The radius indicates that detected targets need to be grouped within a radius of 30km. -- The grouping radius should not be too small, but also depends on the types of planes and the era of the simulation. -- Fast planes like in the 80s, need a larger radius than WWII planes. -- Typically I suggest to use 30000 for new generation planes and 10000 for older era aircraft. -- -- ## 3) Additional notes: -- -- In order to create a two way A2A defense system, **two AI\_A2A\_GCICAP defense systems must need to be created**, for each coalition one. -- Each defense system needs its own EWR network setup, airplane templates and CAP configurations. -- -- This is a good implementation, because maybe in the future, more coalitions may become available in DCS world. -- -- ## 4) Coding examples how to use the AI\_A2A\_GCICAP class: -- -- ### 4.1) An easy setup: -- -- -- Setup the AI_A2A_GCICAP dispatcher for one coalition, and initialize it. -- GCI_Red = AI_A2A_GCICAP:New( "EWR CCCP", "SQUADRON CCCP", "CAP CCCP", 2 ) -- -- -- The following parameters were given to the :New method of AI_A2A_GCICAP, and mean the following: -- -- * `"EWR CCCP"`: Groups of the blue coalition are placed that define the EWR network. These groups start with the name `EWR CCCP`. -- * `"SQUADRON CCCP"`: Late activated Groups objects of the red coalition are placed above the relevant airbases that will contain these templates in the squadron. -- These late activated Groups start with the name `SQUADRON CCCP`. Each Group object contains only one Unit, and defines the weapon payload, skin and skill level. -- * `"CAP CCCP"`: CAP Zones are defined using floating, late activated Helicopter Group objects, where the route points define the route of the polygon of the CAP Zone. -- These Helicopter Group objects start with the name `CAP CCCP`, and will be the locations wherein CAP will be performed. -- * `2` Defines how many CAP airplanes are patrolling in each CAP zone defined simulateneously. -- -- -- ### 4.2) A more advanced setup: -- -- -- Setup the AI_A2A_GCICAP dispatcher for the blue coalition. -- -- A2A_GCICAP_Blue = AI_A2A_GCICAP:New( { "BLUE EWR" }, { "104th", "105th", "106th" }, { "104th CAP" }, 4 ) -- -- The following parameters for the :New method have the following meaning: -- -- * `{ "BLUE EWR" }`: An array of the group name prefixes of the groups of the blue coalition are placed that define the EWR network. These groups start with the name `BLUE EWR`. -- * `{ "104th", "105th", "106th" } `: An array of the group name prefixes of the Late activated Groups objects of the blue coalition are -- placed above the relevant airbases that will contain these templates in the squadron. -- These late activated Groups start with the name `104th` or `105th` or `106th`. -- * `{ "104th CAP" }`: An array of the names of the CAP zones are defined using floating, late activated helicopter group objects, -- where the route points define the route of the polygon of the CAP Zone. -- These Helicopter Group objects start with the name `104th CAP`, and will be the locations wherein CAP will be performed. -- * `4` Defines how many CAP airplanes are patrolling in each CAP zone defined simulateneously. -- -- @field #AI_A2A_GCICAP AI_A2A_GCICAP = { ClassName = "AI_A2A_GCICAP", Detection = nil, } --- AI_A2A_GCICAP constructor. -- @param #AI_A2A_GCICAP self -- @param #string EWRPrefixes A list of prefixes that of groups that setup the Early Warning Radar network. -- @param #string TemplatePrefixes A list of template prefixes. -- @param #string CapPrefixes A list of CAP zone prefixes (polygon zones). -- @param #number CapLimit A number of how many CAP maximum will be spawned. -- @param #number GroupingRadius The radius in meters wherein detected planes are being grouped as one target area. -- For airplanes, 6000 (6km) is recommended, and is also the default value of this parameter. -- @param #number EngageRadius The radius in meters wherein detected airplanes will be engaged by airborne defenders without a task. -- @param #number GciRadius The radius in meters wherein detected airplanes will GCI. -- @param #number Resources The amount of resources that will be allocated to each squadron. -- @return #AI_A2A_GCICAP -- @usage -- -- -- Setup a new GCICAP dispatcher object. Each squadron has unlimited resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The CAP Zone prefix is "CAP Zone". -- -- The CAP Limit is 2. -- A2ADispatcher = AI_A2A_GCICAP:New( { "DF CCCP" }, { "SQ CCCP" }, { "CAP Zone" }, 2 ) -- -- @usage -- -- -- Setup a new GCICAP dispatcher object. Each squadron has unlimited resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The CAP Zone prefix is "CAP Zone". -- -- The CAP Limit is 2. -- -- The Grouping Radius is set to 20000. Thus all planes within a 20km radius will be grouped as a group of targets. -- A2ADispatcher = AI_A2A_GCICAP:New( { "DF CCCP" }, { "SQ CCCP" }, { "CAP Zone" }, 2, 20000 ) -- -- @usage -- -- -- Setup a new GCICAP dispatcher object. Each squadron has unlimited resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The CAP Zone prefix is "CAP Zone". -- -- The CAP Limit is 2. -- -- The Grouping Radius is set to 20000. Thus all planes within a 20km radius will be grouped as a group of targets. -- -- The Engage Radius is set to 60000. Any defender without a task, and in healthy condition, -- -- will be considered a defense task if the target is within 60km from the defender. -- A2ADispatcher = AI_A2A_GCICAP:New( { "DF CCCP" }, { "SQ CCCP" }, { "CAP Zone" }, 2, 20000, 60000 ) -- -- @usage -- -- -- Setup a new GCICAP dispatcher object. Each squadron has unlimited resources. -- -- The EWR network group prefix is DF CCCP. All groups starting with DF CCCP will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The CAP Zone prefix is "CAP Zone". -- -- The CAP Limit is 2. -- -- The Grouping Radius is set to 20000. Thus all planes within a 20km radius will be grouped as a group of targets. -- -- The Engage Radius is set to 60000. Any defender without a task, and in healthy condition, -- -- will be considered a defense task if the target is within 60km from the defender. -- -- The GCI Radius is set to 150000. Any target detected within 150km will be considered for GCI engagement. -- A2ADispatcher = AI_A2A_GCICAP:New( { "DF CCCP" }, { "SQ CCCP" }, { "CAP Zone" }, 2, 20000, 60000, 150000 ) -- -- @usage -- -- -- Setup a new GCICAP dispatcher object. Each squadron has 30 resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The CAP Zone prefix is "CAP Zone". -- -- The CAP Limit is 2. -- -- The Grouping Radius is set to 20000. Thus all planes within a 20km radius will be grouped as a group of targets. -- -- The Engage Radius is set to 60000. Any defender without a task, and in healthy condition, -- -- will be considered a defense task if the target is within 60km from the defender. -- -- The GCI Radius is set to 150000. Any target detected within 150km will be considered for GCI engagement. -- -- The amount of resources for each squadron is set to 30. Thus about 30 resources are allocated to each squadron created. -- -- A2ADispatcher = AI_A2A_GCICAP:New( { "DF CCCP" }, { "SQ CCCP" }, { "CAP Zone" }, 2, 20000, 60000, 150000, 30 ) -- -- @usage -- -- -- Setup a new GCICAP dispatcher object. Each squadron has 30 resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The CAP Zone prefix is nil. No CAP is created. -- -- The CAP Limit is nil. -- -- The Grouping Radius is nil. The default range of 6km radius will be grouped as a group of targets. -- -- The Engage Radius is set nil. The default Engage Radius will be used to consider a defenser being assigned to a task. -- -- The GCI Radius is nil. Any target detected within the default GCI Radius will be considered for GCI engagement. -- -- The amount of resources for each squadron is set to 30. Thus about 30 resources are allocated to each squadron created. -- -- A2ADispatcher = AI_A2A_GCICAP:New( { "DF CCCP" }, { "SQ CCCP" }, nil, nil, nil, nil, nil, 30 ) -- function AI_A2A_GCICAP:New( EWRPrefixes, TemplatePrefixes, CapPrefixes, CapLimit, GroupingRadius, EngageRadius, GciRadius, Resources ) local EWRSetGroup = SET_GROUP:New() EWRSetGroup:FilterPrefixes( EWRPrefixes ) EWRSetGroup:FilterStart() local Detection = DETECTION_AREAS:New( EWRSetGroup, GroupingRadius or 30000 ) local self = BASE:Inherit( self, AI_A2A_DISPATCHER:New( Detection ) ) -- #AI_A2A_GCICAP self:SetEngageRadius( EngageRadius ) self:SetGciRadius( GciRadius ) -- Determine the coalition of the EWRNetwork, this will be the coalition of the GCICAP. local EWRFirst = EWRSetGroup:GetFirst() -- Wrapper.Group#GROUP local EWRCoalition = EWRFirst:GetCoalition() -- Determine the airbases belonging to the coalition. local AirbaseNames = {} -- #list<#string> for AirbaseID, AirbaseData in pairs( _DATABASE.AIRBASES ) do local Airbase = AirbaseData -- Wrapper.Airbase#AIRBASE local AirbaseName = Airbase:GetName() if Airbase:GetCoalition() == EWRCoalition then table.insert( AirbaseNames, AirbaseName ) end end self.Templates = SET_GROUP :New() :FilterPrefixes( TemplatePrefixes ) :FilterOnce() -- Setup squadrons self:F( { Airbases = AirbaseNames } ) self.Templates:Flush() for AirbaseID, AirbaseName in pairs( AirbaseNames ) do local Airbase = _DATABASE:FindAirbase( AirbaseName ) -- Wrapper.Airbase#AIRBASE local AirbaseName = Airbase:GetName() local AirbaseCoord = Airbase:GetCoordinate() local AirbaseZone = ZONE_RADIUS:New( "Airbase", AirbaseCoord:GetVec2(), 3000 ) local Templates = nil for TemplateID, Template in pairs( self.Templates:GetSet() ) do local Template = Template -- Wrapper.Group#GROUP self:F( { Template = Template:GetName() } ) local TemplateCoord = Template:GetCoordinate() if AirbaseZone:IsVec2InZone( TemplateCoord:GetVec2() ) then Templates = Templates or {} table.insert( Templates, Template:GetName() ) end end if Templates then self:SetSquadron( AirbaseName, AirbaseName, Templates, Resources ) end end -- Setup CAP. -- Find for each CAP the nearest airbase to the (start or center) of the zone. -- CAP will be launched from there. self.CAPTemplates = SET_GROUP:New() self.CAPTemplates:FilterPrefixes( CapPrefixes ) self.CAPTemplates:FilterOnce() for CAPID, CAPTemplate in pairs( self.CAPTemplates:GetSet() ) do local CAPZone = ZONE_POLYGON:New( CAPTemplate:GetName(), CAPTemplate ) -- Now find the closest airbase from the ZONE (start or center) local AirbaseDistance = 99999999 local AirbaseClosest = nil -- Wrapper.Airbase#AIRBASE for AirbaseID, AirbaseName in pairs( AirbaseNames ) do local Airbase = _DATABASE:FindAirbase( AirbaseName ) -- Wrapper.Airbase#AIRBASE local AirbaseName = Airbase:GetName() local AirbaseCoord = Airbase:GetCoordinate() local Squadron = self.DefenderSquadrons[AirbaseName] if Squadron then local Distance = AirbaseCoord:Get2DDistance( CAPZone:GetCoordinate() ) if Distance < AirbaseDistance then AirbaseDistance = Distance AirbaseClosest = Airbase end end end if AirbaseClosest then self:SetSquadronCap( AirbaseClosest:GetName(), CAPZone, 6000, 10000, 500, 800, 800, 1200, "RADIO" ) self:SetSquadronCapInterval( AirbaseClosest:GetName(), CapLimit, 300, 600, 1 ) end end -- Setup GCI. -- GCI is setup for all Squadrons. for AirbaseID, AirbaseName in pairs( AirbaseNames ) do local Airbase = _DATABASE:FindAirbase( AirbaseName ) -- Wrapper.Airbase#AIRBASE local AirbaseName = Airbase:GetName() local Squadron = self.DefenderSquadrons[AirbaseName] if Squadron then self:SetSquadronGci( AirbaseName, 800, 1200 ) end end self:__Start( 5 ) self:HandleEvent( EVENTS.Crash, self.OnEventCrashOrDead ) self:HandleEvent( EVENTS.Dead, self.OnEventCrashOrDead ) self:HandleEvent( EVENTS.Land ) self:HandleEvent( EVENTS.EngineShutdown ) return self end --- AI_A2A_GCICAP constructor with border. -- @param #AI_A2A_GCICAP self -- @param #string EWRPrefixes A list of prefixes that of groups that setup the Early Warning Radar network. -- @param #string TemplatePrefixes A list of template prefixes. -- @param #string BorderPrefix A Border Zone Prefix. -- @param #string CapPrefixes A list of CAP zone prefixes (polygon zones). -- @param #number CapLimit A number of how many CAP maximum will be spawned. -- @param #number GroupingRadius The radius in meters wherein detected planes are being grouped as one target area. -- For airplanes, 6000 (6km) is recommended, and is also the default value of this parameter. -- @param #number EngageRadius The radius in meters wherein detected airplanes will be engaged by airborne defenders without a task. -- @param #number GciRadius The radius in meters wherein detected airplanes will GCI. -- @param #number Resources The amount of resources that will be allocated to each squadron. -- @return #AI_A2A_GCICAP -- @usage -- -- -- Setup a new GCICAP dispatcher object with a border. Each squadron has unlimited resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The CAP Zone prefix is "CAP Zone". -- -- The CAP Limit is 2. -- -- A2ADispatcher = AI_A2A_GCICAP:NewWithBorder( { "DF CCCP" }, { "SQ CCCP" }, "Border", { "CAP Zone" }, 2 ) -- -- @usage -- -- -- Setup a new GCICAP dispatcher object with a border. Each squadron has unlimited resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The Border prefix is "Border". This will setup a border using the group defined within the mission editor with the name Border. -- -- The CAP Zone prefix is "CAP Zone". -- -- The CAP Limit is 2. -- -- The Grouping Radius is set to 20000. Thus all planes within a 20km radius will be grouped as a group of targets. -- -- A2ADispatcher = AI_A2A_GCICAP:NewWithBorder( { "DF CCCP" }, { "SQ CCCP" }, "Border", { "CAP Zone" }, 2, 20000 ) -- -- @usage -- -- -- Setup a new GCICAP dispatcher object with a border. Each squadron has unlimited resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The Border prefix is "Border". This will setup a border using the group defined within the mission editor with the name Border. -- -- The CAP Zone prefix is "CAP Zone". -- -- The CAP Limit is 2. -- -- The Grouping Radius is set to 20000. Thus all planes within a 20km radius will be grouped as a group of targets. -- -- The Engage Radius is set to 60000. Any defender without a task, and in healthy condition, -- -- will be considered a defense task if the target is within 60km from the defender. -- -- A2ADispatcher = AI_A2A_GCICAP:NewWithBorder( { "DF CCCP" }, { "SQ CCCP" }, "Border", { "CAP Zone" }, 2, 20000, 60000 ) -- -- @usage -- -- -- Setup a new GCICAP dispatcher object with a border. Each squadron has unlimited resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The Border prefix is "Border". This will setup a border using the group defined within the mission editor with the name Border. -- -- The CAP Zone prefix is "CAP Zone". -- -- The CAP Limit is 2. -- -- The Grouping Radius is set to 20000. Thus all planes within a 20km radius will be grouped as a group of targets. -- -- The Engage Radius is set to 60000. Any defender without a task, and in healthy condition, -- -- will be considered a defense task if the target is within 60km from the defender. -- -- The GCI Radius is set to 150000. Any target detected within 150km will be considered for GCI engagement. -- -- A2ADispatcher = AI_A2A_GCICAP:NewWithBorder( { "DF CCCP" }, { "SQ CCCP" }, "Border", { "CAP Zone" }, 2, 20000, 60000, 150000 ) -- -- @usage -- -- -- Setup a new GCICAP dispatcher object with a border. Each squadron has 30 resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The Border prefix is "Border". This will setup a border using the group defined within the mission editor with the name Border. -- -- The CAP Zone prefix is "CAP Zone". -- -- The CAP Limit is 2. -- -- The Grouping Radius is set to 20000. Thus all planes within a 20km radius will be grouped as a group of targets. -- -- The Engage Radius is set to 60000. Any defender without a task, and in healthy condition, -- -- will be considered a defense task if the target is within 60km from the defender. -- -- The GCI Radius is set to 150000. Any target detected within 150km will be considered for GCI engagement. -- -- The amount of resources for each squadron is set to 30. Thus about 30 resources are allocated to each squadron created. -- -- A2ADispatcher = AI_A2A_GCICAP:NewWithBorder( { "DF CCCP" }, { "SQ CCCP" }, "Border", { "CAP Zone" }, 2, 20000, 60000, 150000, 30 ) -- -- @usage -- -- -- Setup a new GCICAP dispatcher object with a border. Each squadron has 30 resources. -- -- The EWR network group prefix is "DF CCCP". All groups starting with "DF CCCP" will be part of the EWR network. -- -- The Squadron Templates prefix is "SQ CCCP". All groups starting with "SQ CCCP" will be considered as airplane templates. -- -- The Border prefix is "Border". This will setup a border using the group defined within the mission editor with the name Border. -- -- The CAP Zone prefix is nil. No CAP is created. -- -- The CAP Limit is nil. -- -- The Grouping Radius is nil. The default range of 6km radius will be grouped as a group of targets. -- -- The Engage Radius is set nil. The default Engage Radius will be used to consider a defenser being assigned to a task. -- -- The GCI Radius is nil. Any target detected within the default GCI Radius will be considered for GCI engagement. -- -- The amount of resources for each squadron is set to 30. Thus about 30 resources are allocated to each squadron created. -- -- A2ADispatcher = AI_A2A_GCICAP:NewWithBorder( { "DF CCCP" }, { "SQ CCCP" }, "Border", nil, nil, nil, nil, nil, 30 ) -- function AI_A2A_GCICAP:NewWithBorder( EWRPrefixes, TemplatePrefixes, BorderPrefix, CapPrefixes, CapLimit, GroupingRadius, EngageRadius, GciRadius, Resources ) local self = AI_A2A_GCICAP:New( EWRPrefixes, TemplatePrefixes, CapPrefixes, CapLimit, GroupingRadius, EngageRadius, GciRadius, Resources ) if BorderPrefix then self:SetBorderZone( ZONE_POLYGON:New( BorderPrefix, GROUP:FindByName( BorderPrefix ) ) ) end return self end end --- **AI** -- **Air Patrolling or Staging.** -- -- ![Banner Image](..\Presentations\AI_PATROL\Dia1.JPG) -- -- === -- -- AI PATROL classes makes AI Controllables execute an Patrol. -- -- There are the following types of PATROL classes defined: -- -- * @{#AI_PATROL_ZONE}: Perform a PATROL in a zone. -- -- ==== -- -- # Demo Missions -- -- ### [AI_PATROL Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/PAT%20-%20Patrolling) -- -- ### [AI_PATROL Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/PAT%20-%20Patrolling) -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [AI_PATROL YouTube Channel](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl35HvYZKA6G22WMt7iI3zky) -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- ### Contributions: -- -- * **[Dutch_Baron](https://forums.eagle.ru/member.php?u=112075)**: Working together with James has resulted in the creation of the AI_BALANCER class. James has shared his ideas on balancing AI with air units, and together we made a first design which you can use now :-) -- * **[Pikey](https://forums.eagle.ru/member.php?u=62835)**: Testing and API concept review. -- -- ==== -- -- @module AI_Patrol --- AI_PATROL_ZONE class -- @type AI_PATROL_ZONE -- @field Wrapper.Controllable#CONTROLLABLE AIControllable The @{Controllable} patrolling. -- @field Core.Zone#ZONE_BASE PatrolZone The @{Zone} where the patrol needs to be executed. -- @field Dcs.DCSTypes#Altitude PatrolFloorAltitude The lowest altitude in meters where to execute the patrol. -- @field Dcs.DCSTypes#Altitude PatrolCeilingAltitude The highest altitude in meters where to execute the patrol. -- @field Dcs.DCSTypes#Speed PatrolMinSpeed The minimum speed of the @{Controllable} in km/h. -- @field Dcs.DCSTypes#Speed PatrolMaxSpeed The maximum speed of the @{Controllable} in km/h. -- @field Functional.Spawn#SPAWN CoordTest -- @extends Core.Fsm#FSM_CONTROLLABLE --- # AI_PATROL_ZONE class, extends @{Fsm#FSM_CONTROLLABLE} -- -- The AI_PATROL_ZONE class implements the core functions to patrol a @{Zone} by an AI @{Controllable} or @{Group}. -- -- ![Process](..\Presentations\AI_PATROL\Dia3.JPG) -- -- The AI_PATROL_ZONE is assigned a @{Group} and this must be done before the AI_PATROL_ZONE process can be started using the **Start** event. -- -- ![Process](..\Presentations\AI_PATROL\Dia4.JPG) -- -- The AI will fly towards the random 3D point within the patrol zone, using a random speed within the given altitude and speed limits. -- Upon arrival at the 3D point, a new random 3D point will be selected within the patrol zone using the given limits. -- -- ![Process](..\Presentations\AI_PATROL\Dia5.JPG) -- -- This cycle will continue. -- -- ![Process](..\Presentations\AI_PATROL\Dia6.JPG) -- -- During the patrol, the AI will detect enemy targets, which are reported through the **Detected** event. -- -- ![Process](..\Presentations\AI_PATROL\Dia9.JPG) -- ---- Note that the enemy is not engaged! To model enemy engagement, either tailor the **Detected** event, or -- use derived AI_ classes to model AI offensive or defensive behaviour. -- -- ![Process](..\Presentations\AI_PATROL\Dia10.JPG) -- -- Until a fuel or damage treshold has been reached by the AI, or when the AI is commanded to RTB. -- When the fuel treshold has been reached, the airplane will fly towards the nearest friendly airbase and will land. -- -- ![Process](..\Presentations\AI_PATROL\Dia11.JPG) -- -- ## 1. AI_PATROL_ZONE constructor -- -- * @{#AI_PATROL_ZONE.New}(): Creates a new AI_PATROL_ZONE object. -- -- ## 2. AI_PATROL_ZONE is a FSM -- -- ![Process](..\Presentations\AI_PATROL\Dia2.JPG) -- -- ### 2.1. AI_PATROL_ZONE States -- -- * **None** ( Group ): The process is not started yet. -- * **Patrolling** ( Group ): The AI is patrolling the Patrol Zone. -- * **Returning** ( Group ): The AI is returning to Base. -- * **Stopped** ( Group ): The process is stopped. -- * **Crashed** ( Group ): The AI has crashed or is dead. -- -- ### 2.2. AI_PATROL_ZONE Events -- -- * **Start** ( Group ): Start the process. -- * **Stop** ( Group ): Stop the process. -- * **Route** ( Group ): Route the AI to a new random 3D point within the Patrol Zone. -- * **RTB** ( Group ): Route the AI to the home base. -- * **Detect** ( Group ): The AI is detecting targets. -- * **Detected** ( Group ): The AI has detected new targets. -- * **Status** ( Group ): The AI is checking status (fuel and damage). When the tresholds have been reached, the AI will RTB. -- -- ## 3. Set or Get the AI controllable -- -- * @{#AI_PATROL_ZONE.SetControllable}(): Set the AIControllable. -- * @{#AI_PATROL_ZONE.GetControllable}(): Get the AIControllable. -- -- ## 4. Set the Speed and Altitude boundaries of the AI controllable -- -- * @{#AI_PATROL_ZONE.SetSpeed}(): Set the patrol speed boundaries of the AI, for the next patrol. -- * @{#AI_PATROL_ZONE.SetAltitude}(): Set altitude boundaries of the AI, for the next patrol. -- -- ## 5. Manage the detection process of the AI controllable -- -- The detection process of the AI controllable can be manipulated. -- Detection requires an amount of CPU power, which has an impact on your mission performance. -- Only put detection on when absolutely necessary, and the frequency of the detection can also be set. -- -- * @{#AI_PATROL_ZONE.SetDetectionOn}(): Set the detection on. The AI will detect for targets. -- * @{#AI_PATROL_ZONE.SetDetectionOff}(): Set the detection off, the AI will not detect for targets. The existing target list will NOT be erased. -- -- The detection frequency can be set with @{#AI_PATROL_ZONE.SetRefreshTimeInterval}( seconds ), where the amount of seconds specify how much seconds will be waited before the next detection. -- Use the method @{#AI_PATROL_ZONE.GetDetectedUnits}() to obtain a list of the @{Unit}s detected by the AI. -- -- The detection can be filtered to potential targets in a specific zone. -- Use the method @{#AI_PATROL_ZONE.SetDetectionZone}() to set the zone where targets need to be detected. -- Note that when the zone is too far away, or the AI is not heading towards the zone, or the AI is too high, no targets may be detected -- according the weather conditions. -- -- ## 6. Manage the "out of fuel" in the AI_PATROL_ZONE -- -- When the AI is out of fuel, it is required that a new AI is started, before the old AI can return to the home base. -- Therefore, with a parameter and a calculation of the distance to the home base, the fuel treshold is calculated. -- When the fuel treshold is reached, the AI will continue for a given time its patrol task in orbit, -- while a new AI is targetted to the AI_PATROL_ZONE. -- Once the time is finished, the old AI will return to the base. -- Use the method @{#AI_PATROL_ZONE.ManageFuel}() to have this proces in place. -- -- ## 7. Manage "damage" behaviour of the AI in the AI_PATROL_ZONE -- -- When the AI is damaged, it is required that a new AIControllable is started. However, damage cannon be foreseen early on. -- Therefore, when the damage treshold is reached, the AI will return immediately to the home base (RTB). -- Use the method @{#AI_PATROL_ZONE.ManageDamage}() to have this proces in place. -- -- === -- -- @field #AI_PATROL_ZONE AI_PATROL_ZONE = { ClassName = "AI_PATROL_ZONE", } --- Creates a new AI_PATROL_ZONE object -- @param #AI_PATROL_ZONE self -- @param Core.Zone#ZONE_BASE PatrolZone The @{Zone} where the patrol needs to be executed. -- @param Dcs.DCSTypes#Altitude PatrolFloorAltitude The lowest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Altitude PatrolCeilingAltitude The highest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Speed PatrolMinSpeed The minimum speed of the @{Controllable} in km/h. -- @param Dcs.DCSTypes#Speed PatrolMaxSpeed The maximum speed of the @{Controllable} in km/h. -- @param Dcs.DCSTypes#AltitudeType PatrolAltType The altitude type ("RADIO"=="AGL", "BARO"=="ASL"). Defaults to RADIO -- @return #AI_PATROL_ZONE self -- @usage -- -- Define a new AI_PATROL_ZONE Object. This PatrolArea will patrol an AIControllable within PatrolZone between 3000 and 6000 meters, with a variying speed between 600 and 900 km/h. -- PatrolZone = ZONE:New( 'PatrolZone' ) -- PatrolSpawn = SPAWN:New( 'Patrol Group' ) -- PatrolArea = AI_PATROL_ZONE:New( PatrolZone, 3000, 6000, 600, 900 ) function AI_PATROL_ZONE:New( PatrolZone, PatrolFloorAltitude, PatrolCeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, PatrolAltType ) -- Inherits from BASE local self = BASE:Inherit( self, FSM_CONTROLLABLE:New() ) -- #AI_PATROL_ZONE self.PatrolZone = PatrolZone self.PatrolFloorAltitude = PatrolFloorAltitude self.PatrolCeilingAltitude = PatrolCeilingAltitude self.PatrolMinSpeed = PatrolMinSpeed self.PatrolMaxSpeed = PatrolMaxSpeed -- defafult PatrolAltType to "RADIO" if not specified self.PatrolAltType = PatrolAltType or "RADIO" self:SetRefreshTimeInterval( 30 ) self.CheckStatus = true self:ManageFuel( .2, 60 ) self:ManageDamage( 1 ) self.DetectedUnits = {} -- This table contains the targets detected during patrol. self:SetStartState( "None" ) self:AddTransition( "*", "Stop", "Stopped" ) --- OnLeave Transition Handler for State Stopped. -- @function [parent=#AI_PATROL_ZONE] OnLeaveStopped -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Stopped. -- @function [parent=#AI_PATROL_ZONE] OnEnterStopped -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- OnBefore Transition Handler for Event Stop. -- @function [parent=#AI_PATROL_ZONE] OnBeforeStop -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Stop. -- @function [parent=#AI_PATROL_ZONE] OnAfterStop -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Stop. -- @function [parent=#AI_PATROL_ZONE] Stop -- @param #AI_PATROL_ZONE self --- Asynchronous Event Trigger for Event Stop. -- @function [parent=#AI_PATROL_ZONE] __Stop -- @param #AI_PATROL_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "None", "Start", "Patrolling" ) --- OnBefore Transition Handler for Event Start. -- @function [parent=#AI_PATROL_ZONE] OnBeforeStart -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Start. -- @function [parent=#AI_PATROL_ZONE] OnAfterStart -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Start. -- @function [parent=#AI_PATROL_ZONE] Start -- @param #AI_PATROL_ZONE self --- Asynchronous Event Trigger for Event Start. -- @function [parent=#AI_PATROL_ZONE] __Start -- @param #AI_PATROL_ZONE self -- @param #number Delay The delay in seconds. --- OnLeave Transition Handler for State Patrolling. -- @function [parent=#AI_PATROL_ZONE] OnLeavePatrolling -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Patrolling. -- @function [parent=#AI_PATROL_ZONE] OnEnterPatrolling -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. self:AddTransition( "Patrolling", "Route", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_PATROL_ZONE. --- OnBefore Transition Handler for Event Route. -- @function [parent=#AI_PATROL_ZONE] OnBeforeRoute -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Route. -- @function [parent=#AI_PATROL_ZONE] OnAfterRoute -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Route. -- @function [parent=#AI_PATROL_ZONE] Route -- @param #AI_PATROL_ZONE self --- Asynchronous Event Trigger for Event Route. -- @function [parent=#AI_PATROL_ZONE] __Route -- @param #AI_PATROL_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Status", "*" ) -- FSM_CONTROLLABLE Transition for type #AI_PATROL_ZONE. --- OnBefore Transition Handler for Event Status. -- @function [parent=#AI_PATROL_ZONE] OnBeforeStatus -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Status. -- @function [parent=#AI_PATROL_ZONE] OnAfterStatus -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Status. -- @function [parent=#AI_PATROL_ZONE] Status -- @param #AI_PATROL_ZONE self --- Asynchronous Event Trigger for Event Status. -- @function [parent=#AI_PATROL_ZONE] __Status -- @param #AI_PATROL_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Detect", "*" ) -- FSM_CONTROLLABLE Transition for type #AI_PATROL_ZONE. --- OnBefore Transition Handler for Event Detect. -- @function [parent=#AI_PATROL_ZONE] OnBeforeDetect -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Detect. -- @function [parent=#AI_PATROL_ZONE] OnAfterDetect -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Detect. -- @function [parent=#AI_PATROL_ZONE] Detect -- @param #AI_PATROL_ZONE self --- Asynchronous Event Trigger for Event Detect. -- @function [parent=#AI_PATROL_ZONE] __Detect -- @param #AI_PATROL_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Detected", "*" ) -- FSM_CONTROLLABLE Transition for type #AI_PATROL_ZONE. --- OnBefore Transition Handler for Event Detected. -- @function [parent=#AI_PATROL_ZONE] OnBeforeDetected -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Detected. -- @function [parent=#AI_PATROL_ZONE] OnAfterDetected -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Detected. -- @function [parent=#AI_PATROL_ZONE] Detected -- @param #AI_PATROL_ZONE self --- Asynchronous Event Trigger for Event Detected. -- @function [parent=#AI_PATROL_ZONE] __Detected -- @param #AI_PATROL_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "RTB", "Returning" ) -- FSM_CONTROLLABLE Transition for type #AI_PATROL_ZONE. --- OnBefore Transition Handler for Event RTB. -- @function [parent=#AI_PATROL_ZONE] OnBeforeRTB -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event RTB. -- @function [parent=#AI_PATROL_ZONE] OnAfterRTB -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event RTB. -- @function [parent=#AI_PATROL_ZONE] RTB -- @param #AI_PATROL_ZONE self --- Asynchronous Event Trigger for Event RTB. -- @function [parent=#AI_PATROL_ZONE] __RTB -- @param #AI_PATROL_ZONE self -- @param #number Delay The delay in seconds. --- OnLeave Transition Handler for State Returning. -- @function [parent=#AI_PATROL_ZONE] OnLeaveReturning -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Returning. -- @function [parent=#AI_PATROL_ZONE] OnEnterReturning -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. self:AddTransition( "*", "Reset", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_PATROL_ZONE. self:AddTransition( "*", "Eject", "*" ) self:AddTransition( "*", "Crash", "Crashed" ) self:AddTransition( "*", "PilotDead", "*" ) return self end --- Sets (modifies) the minimum and maximum speed of the patrol. -- @param #AI_PATROL_ZONE self -- @param Dcs.DCSTypes#Speed PatrolMinSpeed The minimum speed of the @{Controllable} in km/h. -- @param Dcs.DCSTypes#Speed PatrolMaxSpeed The maximum speed of the @{Controllable} in km/h. -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:SetSpeed( PatrolMinSpeed, PatrolMaxSpeed ) self:F2( { PatrolMinSpeed, PatrolMaxSpeed } ) self.PatrolMinSpeed = PatrolMinSpeed self.PatrolMaxSpeed = PatrolMaxSpeed end --- Sets the floor and ceiling altitude of the patrol. -- @param #AI_PATROL_ZONE self -- @param Dcs.DCSTypes#Altitude PatrolFloorAltitude The lowest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Altitude PatrolCeilingAltitude The highest altitude in meters where to execute the patrol. -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:SetAltitude( PatrolFloorAltitude, PatrolCeilingAltitude ) self:F2( { PatrolFloorAltitude, PatrolCeilingAltitude } ) self.PatrolFloorAltitude = PatrolFloorAltitude self.PatrolCeilingAltitude = PatrolCeilingAltitude end -- * @{#AI_PATROL_ZONE.SetDetectionOn}(): Set the detection on. The AI will detect for targets. -- * @{#AI_PATROL_ZONE.SetDetectionOff}(): Set the detection off, the AI will not detect for targets. The existing target list will NOT be erased. --- Set the detection on. The AI will detect for targets. -- @param #AI_PATROL_ZONE self -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:SetDetectionOn() self:F2() self.DetectOn = true end --- Set the detection off. The AI will NOT detect for targets. -- However, the list of already detected targets will be kept and can be enquired! -- @param #AI_PATROL_ZONE self -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:SetDetectionOff() self:F2() self.DetectOn = false end --- Set the status checking off. -- @param #AI_PATROL_ZONE self -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:SetStatusOff() self:F2() self.CheckStatus = false end --- Activate the detection. The AI will detect for targets if the Detection is switched On. -- @param #AI_PATROL_ZONE self -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:SetDetectionActivated() self:F2() self:ClearDetectedUnits() self.DetectActivated = true self:__Detect( -self.DetectInterval ) end --- Deactivate the detection. The AI will NOT detect for targets. -- @param #AI_PATROL_ZONE self -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:SetDetectionDeactivated() self:F2() self:ClearDetectedUnits() self.DetectActivated = false end --- Set the interval in seconds between each detection executed by the AI. -- The list of already detected targets will be kept and updated. -- Newly detected targets will be added, but already detected targets that were -- not detected in this cycle, will NOT be removed! -- The default interval is 30 seconds. -- @param #AI_PATROL_ZONE self -- @param #number Seconds The interval in seconds. -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:SetRefreshTimeInterval( Seconds ) self:F2() if Seconds then self.DetectInterval = Seconds else self.DetectInterval = 30 end end --- Set the detection zone where the AI is detecting targets. -- @param #AI_PATROL_ZONE self -- @param Core.Zone#ZONE DetectionZone The zone where to detect targets. -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:SetDetectionZone( DetectionZone ) self:F2() if DetectionZone then self.DetectZone = DetectionZone else self.DetectZone = nil end end --- Gets a list of @{Unit#UNIT}s that were detected by the AI. -- No filtering is applied, so, ANY detected UNIT can be in this list. -- It is up to the mission designer to use the @{Unit} class and methods to filter the targets. -- @param #AI_PATROL_ZONE self -- @return #table The list of @{Unit#UNIT}s function AI_PATROL_ZONE:GetDetectedUnits() self:F2() return self.DetectedUnits end --- Clears the list of @{Unit#UNIT}s that were detected by the AI. -- @param #AI_PATROL_ZONE self function AI_PATROL_ZONE:ClearDetectedUnits() self:F2() self.DetectedUnits = {} end --- When the AI is out of fuel, it is required that a new AI is started, before the old AI can return to the home base. -- Therefore, with a parameter and a calculation of the distance to the home base, the fuel treshold is calculated. -- When the fuel treshold is reached, the AI will continue for a given time its patrol task in orbit, while a new AIControllable is targetted to the AI_PATROL_ZONE. -- Once the time is finished, the old AI will return to the base. -- @param #AI_PATROL_ZONE self -- @param #number PatrolFuelThresholdPercentage The treshold in percentage (between 0 and 1) when the AIControllable is considered to get out of fuel. -- @param #number PatrolOutOfFuelOrbitTime The amount of seconds the out of fuel AIControllable will orbit before returning to the base. -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:ManageFuel( PatrolFuelThresholdPercentage, PatrolOutOfFuelOrbitTime ) self.PatrolManageFuel = true self.PatrolFuelThresholdPercentage = PatrolFuelThresholdPercentage self.PatrolOutOfFuelOrbitTime = PatrolOutOfFuelOrbitTime return self end --- When the AI is damaged beyond a certain treshold, it is required that the AI returns to the home base. -- However, damage cannot be foreseen early on. -- Therefore, when the damage treshold is reached, -- the AI will return immediately to the home base (RTB). -- Note that for groups, the average damage of the complete group will be calculated. -- So, in a group of 4 airplanes, 2 lost and 2 with damage 0.2, the damage treshold will be 0.25. -- @param #AI_PATROL_ZONE self -- @param #number PatrolDamageThreshold The treshold in percentage (between 0 and 1) when the AI is considered to be damaged. -- @return #AI_PATROL_ZONE self function AI_PATROL_ZONE:ManageDamage( PatrolDamageThreshold ) self.PatrolManageDamage = true self.PatrolDamageThreshold = PatrolDamageThreshold return self end --- Defines a new patrol route using the @{Process_PatrolZone} parameters and settings. -- @param #AI_PATROL_ZONE self -- @return #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_PATROL_ZONE:onafterStart( Controllable, From, Event, To ) self:F2() self:__Route( 1 ) -- Route to the patrol point. The asynchronous trigger is important, because a spawned group and units takes at least one second to come live. self:__Status( 60 ) -- Check status status every 30 seconds. self:SetDetectionActivated() self:HandleEvent( EVENTS.PilotDead, self.OnPilotDead ) self:HandleEvent( EVENTS.Crash, self.OnCrash ) self:HandleEvent( EVENTS.Ejection, self.OnEjection ) Controllable:OptionROEHoldFire() Controllable:OptionROTVertical() self.Controllable:OnReSpawn( function( PatrolGroup ) self:E( "ReSpawn" ) self:__Reset( 1 ) self:__Route( 5 ) end ) self:SetDetectionOn() end --- @param #AI_PATROL_ZONE self --- @param Wrapper.Controllable#CONTROLLABLE Controllable function AI_PATROL_ZONE:onbeforeDetect( Controllable, From, Event, To ) return self.DetectOn and self.DetectActivated end --- @param #AI_PATROL_ZONE self --- @param Wrapper.Controllable#CONTROLLABLE Controllable function AI_PATROL_ZONE:onafterDetect( Controllable, From, Event, To ) local Detected = false local DetectedTargets = Controllable:GetDetectedTargets() for TargetID, Target in pairs( DetectedTargets or {} ) do local TargetObject = Target.object if TargetObject and TargetObject:isExist() and TargetObject.id_ < 50000000 then local TargetUnit = UNIT:Find( TargetObject ) local TargetUnitName = TargetUnit:GetName() if self.DetectionZone then if TargetUnit:IsInZone( self.DetectionZone ) then self:T( {"Detected ", TargetUnit } ) if self.DetectedUnits[TargetUnit] == nil then self.DetectedUnits[TargetUnit] = true end Detected = true end else if self.DetectedUnits[TargetUnit] == nil then self.DetectedUnits[TargetUnit] = true end Detected = true end end end self:__Detect( -self.DetectInterval ) if Detected == true then self:__Detected( 1.5 ) end end --- @param Wrapper.Controllable#CONTROLLABLE AIControllable -- This statis method is called from the route path within the last task at the last waaypoint of the Controllable. -- Note that this method is required, as triggers the next route when patrolling for the Controllable. function AI_PATROL_ZONE:_NewPatrolRoute( AIControllable ) local PatrolZone = AIControllable:GetState( AIControllable, "PatrolZone" ) -- PatrolCore.Zone#AI_PATROL_ZONE PatrolZone:__Route( 1 ) end --- Defines a new patrol route using the @{Process_PatrolZone} parameters and settings. -- @param #AI_PATROL_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_PATROL_ZONE:onafterRoute( Controllable, From, Event, To ) self:F2() -- When RTB, don't allow anymore the routing. if From == "RTB" then return end if self.Controllable:IsAlive() then -- Determine if the AIControllable is within the PatrolZone. -- If not, make a waypoint within the to that the AIControllable will fly at maximum speed to that point. local PatrolRoute = {} -- Calculate the current route point of the controllable as the start point of the route. -- However, when the controllable is not in the air, -- the controllable current waypoint is probably the airbase... -- Thus, if we would take the current waypoint as the startpoint, upon take-off, the controllable flies -- immediately back to the airbase, and this is not correct. -- Therefore, when on a runway, get as the current route point a random point within the PatrolZone. -- This will make the plane fly immediately to the patrol zone. if self.Controllable:InAir() == false then self:E( "Not in the air, finding route path within PatrolZone" ) local CurrentVec2 = self.Controllable:GetVec2() --TODO: Create GetAltitude function for GROUP, and delete GetUnit(1). local CurrentAltitude = self.Controllable:GetUnit(1):GetAltitude() local CurrentPointVec3 = POINT_VEC3:New( CurrentVec2.x, CurrentAltitude, CurrentVec2.y ) local ToPatrolZoneSpeed = self.PatrolMaxSpeed local CurrentRoutePoint = CurrentPointVec3:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TakeOffParking, POINT_VEC3.RoutePointAction.FromParkingArea, ToPatrolZoneSpeed, true ) PatrolRoute[#PatrolRoute+1] = CurrentRoutePoint else self:E( "In the air, finding route path within PatrolZone" ) local CurrentVec2 = self.Controllable:GetVec2() --TODO: Create GetAltitude function for GROUP, and delete GetUnit(1). local CurrentAltitude = self.Controllable:GetUnit(1):GetAltitude() local CurrentPointVec3 = POINT_VEC3:New( CurrentVec2.x, CurrentAltitude, CurrentVec2.y ) local ToPatrolZoneSpeed = self.PatrolMaxSpeed local CurrentRoutePoint = CurrentPointVec3:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, ToPatrolZoneSpeed, true ) PatrolRoute[#PatrolRoute+1] = CurrentRoutePoint end --- Define a random point in the @{Zone}. The AI will fly to that point within the zone. --- Find a random 2D point in PatrolZone. local ToTargetVec2 = self.PatrolZone:GetRandomVec2() self:T2( ToTargetVec2 ) --- Define Speed and Altitude. local ToTargetAltitude = math.random( self.PatrolFloorAltitude, self.PatrolCeilingAltitude ) local ToTargetSpeed = math.random( self.PatrolMinSpeed, self.PatrolMaxSpeed ) self:T2( { self.PatrolMinSpeed, self.PatrolMaxSpeed, ToTargetSpeed } ) --- Obtain a 3D @{Point} from the 2D point + altitude. local ToTargetPointVec3 = POINT_VEC3:New( ToTargetVec2.x, ToTargetAltitude, ToTargetVec2.y ) --- Create a route point of type air. local ToTargetRoutePoint = ToTargetPointVec3:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, ToTargetSpeed, true ) --self.CoordTest:SpawnFromVec3( ToTargetPointVec3:GetVec3() ) --ToTargetPointVec3:SmokeRed() PatrolRoute[#PatrolRoute+1] = ToTargetRoutePoint --- Now we're going to do something special, we're going to call a function from a waypoint action at the AIControllable... self.Controllable:WayPointInitialize( PatrolRoute ) --- Do a trick, link the NewPatrolRoute function of the PATROLGROUP object to the AIControllable in a temporary variable ... self.Controllable:SetState( self.Controllable, "PatrolZone", self ) self.Controllable:WayPointFunction( #PatrolRoute, 1, "AI_PATROL_ZONE:_NewPatrolRoute" ) --- NOW ROUTE THE GROUP! self.Controllable:WayPointExecute( 1, 2 ) end end --- @param #AI_PATROL_ZONE self function AI_PATROL_ZONE:onbeforeStatus() return self.CheckStatus end --- @param #AI_PATROL_ZONE self function AI_PATROL_ZONE:onafterStatus() self:F2() if self.Controllable and self.Controllable:IsAlive() then local RTB = false local Fuel = self.Controllable:GetUnit(1):GetFuel() if Fuel < self.PatrolFuelThresholdPercentage then self:E( self.Controllable:GetName() .. " is out of fuel:" .. Fuel .. ", RTB!" ) local OldAIControllable = self.Controllable local OrbitTask = OldAIControllable:TaskOrbitCircle( math.random( self.PatrolFloorAltitude, self.PatrolCeilingAltitude ), self.PatrolMinSpeed ) local TimedOrbitTask = OldAIControllable:TaskControlled( OrbitTask, OldAIControllable:TaskCondition(nil,nil,nil,nil,self.PatrolOutOfFuelOrbitTime,nil ) ) OldAIControllable:SetTask( TimedOrbitTask, 10 ) RTB = true else end -- TODO: Check GROUP damage function. local Damage = self.Controllable:GetLife() if Damage <= self.PatrolDamageThreshold then self:E( self.Controllable:GetName() .. " is damaged:" .. Damage .. ", RTB!" ) RTB = true end if RTB == true then self:RTB() else self:__Status( 60 ) -- Execute the Patrol event after 30 seconds. end end end --- @param #AI_PATROL_ZONE self function AI_PATROL_ZONE:onafterRTB() self:F2() if self.Controllable and self.Controllable:IsAlive() then self:SetDetectionOff() self.CheckStatus = false local PatrolRoute = {} --- Calculate the current route point. local CurrentVec2 = self.Controllable:GetVec2() --TODO: Create GetAltitude function for GROUP, and delete GetUnit(1). local CurrentAltitude = self.Controllable:GetUnit(1):GetAltitude() local CurrentPointVec3 = POINT_VEC3:New( CurrentVec2.x, CurrentAltitude, CurrentVec2.y ) local ToPatrolZoneSpeed = self.PatrolMaxSpeed local CurrentRoutePoint = CurrentPointVec3:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, ToPatrolZoneSpeed, true ) PatrolRoute[#PatrolRoute+1] = CurrentRoutePoint --- Now we're going to do something special, we're going to call a function from a waypoint action at the AIControllable... self.Controllable:WayPointInitialize( PatrolRoute ) --- NOW ROUTE THE GROUP! self.Controllable:WayPointExecute( 1, 1 ) end end --- @param #AI_PATROL_ZONE self function AI_PATROL_ZONE:onafterDead() self:SetDetectionOff() self:SetStatusOff() end --- @param #AI_PATROL_ZONE self -- @param Core.Event#EVENTDATA EventData function AI_PATROL_ZONE:OnCrash( EventData ) if self.Controllable:IsAlive() and EventData.IniDCSGroupName == self.Controllable:GetName() then self:E( self.Controllable:GetUnits() ) if #self.Controllable:GetUnits() == 1 then self:__Crash( 1, EventData ) end end end --- @param #AI_PATROL_ZONE self -- @param Core.Event#EVENTDATA EventData function AI_PATROL_ZONE:OnEjection( EventData ) if self.Controllable:IsAlive() and EventData.IniDCSGroupName == self.Controllable:GetName() then self:__Eject( 1, EventData ) end end --- @param #AI_PATROL_ZONE self -- @param Core.Event#EVENTDATA EventData function AI_PATROL_ZONE:OnPilotDead( EventData ) if self.Controllable:IsAlive() and EventData.IniDCSGroupName == self.Controllable:GetName() then self:__PilotDead( 1, EventData ) end end --- **AI** -- **Execute Combat Air Patrol (CAP).** -- -- ![Banner Image](..\Presentations\AI_CAP\Dia1.JPG) -- -- === -- -- AI CAP classes makes AI Controllables execute a Combat Air Patrol. -- -- There are the following types of CAP classes defined: -- -- * @{#AI_CAP_ZONE}: Perform a CAP in a zone. -- -- ==== -- -- # Demo Missions -- -- ### [AI_CAP Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/CAP%20-%20Combat%20Air%20Patrol) -- -- ### [AI_CAP Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/CAP%20-%20Combat%20Air%20Patrol) -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [AI_CAP YouTube Channel](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl1YCyPxJgoZn-CfhwyeW65L) -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- * **[Quax](https://forums.eagle.ru/member.php?u=90530)**: Concept, Advice & Testing. -- * **[Pikey](https://forums.eagle.ru/member.php?u=62835)**: Concept, Advice & Testing. -- * **[Gunterlund](http://forums.eagle.ru:8080/member.php?u=75036)**: Test case revision. -- * **[Whisper](http://forums.eagle.ru/member.php?u=3829): Testing. -- * **[Delta99](https://forums.eagle.ru/member.php?u=125166): Testing. -- -- ==== -- -- @module AI_Cap --- @type AI_CAP_ZONE -- @field Wrapper.Controllable#CONTROLLABLE AIControllable The @{Controllable} patrolling. -- @field Core.Zone#ZONE_BASE TargetZone The @{Zone} where the patrol needs to be executed. -- @extends AI.AI_Patrol#AI_PATROL_ZONE --- # AI_CAP_ZONE class, extends @{AI_CAP#AI_PATROL_ZONE} -- -- The AI_CAP_ZONE class implements the core functions to patrol a @{Zone} by an AI @{Controllable} or @{Group} -- and automatically engage any airborne enemies that are within a certain range or within a certain zone. -- -- ![Process](..\Presentations\AI_CAP\Dia3.JPG) -- -- The AI_CAP_ZONE is assigned a @{Group} and this must be done before the AI_CAP_ZONE process can be started using the **Start** event. -- -- ![Process](..\Presentations\AI_CAP\Dia4.JPG) -- -- The AI will fly towards the random 3D point within the patrol zone, using a random speed within the given altitude and speed limits. -- Upon arrival at the 3D point, a new random 3D point will be selected within the patrol zone using the given limits. -- -- ![Process](..\Presentations\AI_CAP\Dia5.JPG) -- -- This cycle will continue. -- -- ![Process](..\Presentations\AI_CAP\Dia6.JPG) -- -- During the patrol, the AI will detect enemy targets, which are reported through the **Detected** event. -- -- ![Process](..\Presentations\AI_CAP\Dia9.JPG) -- -- When enemies are detected, the AI will automatically engage the enemy. -- -- ![Process](..\Presentations\AI_CAP\Dia10.JPG) -- -- Until a fuel or damage treshold has been reached by the AI, or when the AI is commanded to RTB. -- When the fuel treshold has been reached, the airplane will fly towards the nearest friendly airbase and will land. -- -- ![Process](..\Presentations\AI_CAP\Dia13.JPG) -- -- ## 1. AI_CAP_ZONE constructor -- -- * @{#AI_CAP_ZONE.New}(): Creates a new AI_CAP_ZONE object. -- -- ## 2. AI_CAP_ZONE is a FSM -- -- ![Process](..\Presentations\AI_CAP\Dia2.JPG) -- -- ### 2.1 AI_CAP_ZONE States -- -- * **None** ( Group ): The process is not started yet. -- * **Patrolling** ( Group ): The AI is patrolling the Patrol Zone. -- * **Engaging** ( Group ): The AI is engaging the bogeys. -- * **Returning** ( Group ): The AI is returning to Base.. -- -- ### 2.2 AI_CAP_ZONE Events -- -- * **@{AI_Patrol#AI_PATROL_ZONE.Start}**: Start the process. -- * **@{AI_Patrol#AI_PATROL_ZONE.Route}**: Route the AI to a new random 3D point within the Patrol Zone. -- * **@{#AI_CAP_ZONE.Engage}**: Let the AI engage the bogeys. -- * **@{#AI_CAP_ZONE.Abort}**: Aborts the engagement and return patrolling in the patrol zone. -- * **@{AI_Patrol#AI_PATROL_ZONE.RTB}**: Route the AI to the home base. -- * **@{AI_Patrol#AI_PATROL_ZONE.Detect}**: The AI is detecting targets. -- * **@{AI_Patrol#AI_PATROL_ZONE.Detected}**: The AI has detected new targets. -- * **@{#AI_CAP_ZONE.Destroy}**: The AI has destroyed a bogey @{Unit}. -- * **@{#AI_CAP_ZONE.Destroyed}**: The AI has destroyed all bogeys @{Unit}s assigned in the CAS task. -- * **Status** ( Group ): The AI is checking status (fuel and damage). When the tresholds have been reached, the AI will RTB. -- -- ## 3. Set the Range of Engagement -- -- ![Range](..\Presentations\AI_CAP\Dia11.JPG) -- -- An optional range can be set in meters, -- that will define when the AI will engage with the detected airborne enemy targets. -- The range can be beyond or smaller than the range of the Patrol Zone. -- The range is applied at the position of the AI. -- Use the method @{AI_CAP#AI_CAP_ZONE.SetEngageRange}() to define that range. -- -- ## 4. Set the Zone of Engagement -- -- ![Zone](..\Presentations\AI_CAP\Dia12.JPG) -- -- An optional @{Zone} can be set, -- that will define when the AI will engage with the detected airborne enemy targets. -- Use the method @{AI_Cap#AI_CAP_ZONE.SetEngageZone}() to define that Zone. -- -- === -- -- @field #AI_CAP_ZONE AI_CAP_ZONE = { ClassName = "AI_CAP_ZONE", } --- Creates a new AI_CAP_ZONE object -- @param #AI_CAP_ZONE self -- @param Core.Zone#ZONE_BASE PatrolZone The @{Zone} where the patrol needs to be executed. -- @param Dcs.DCSTypes#Altitude PatrolFloorAltitude The lowest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Altitude PatrolCeilingAltitude The highest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Speed PatrolMinSpeed The minimum speed of the @{Controllable} in km/h. -- @param Dcs.DCSTypes#Speed PatrolMaxSpeed The maximum speed of the @{Controllable} in km/h. -- @param Dcs.DCSTypes#AltitudeType PatrolAltType The altitude type ("RADIO"=="AGL", "BARO"=="ASL"). Defaults to RADIO -- @return #AI_CAP_ZONE self function AI_CAP_ZONE:New( PatrolZone, PatrolFloorAltitude, PatrolCeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, PatrolAltType ) -- Inherits from BASE local self = BASE:Inherit( self, AI_PATROL_ZONE:New( PatrolZone, PatrolFloorAltitude, PatrolCeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, PatrolAltType ) ) -- #AI_CAP_ZONE self.Accomplished = false self.Engaging = false self:AddTransition( { "Patrolling", "Engaging" }, "Engage", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_CAP_ZONE. --- OnBefore Transition Handler for Event Engage. -- @function [parent=#AI_CAP_ZONE] OnBeforeEngage -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Engage. -- @function [parent=#AI_CAP_ZONE] OnAfterEngage -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Engage. -- @function [parent=#AI_CAP_ZONE] Engage -- @param #AI_CAP_ZONE self --- Asynchronous Event Trigger for Event Engage. -- @function [parent=#AI_CAP_ZONE] __Engage -- @param #AI_CAP_ZONE self -- @param #number Delay The delay in seconds. --- OnLeave Transition Handler for State Engaging. -- @function [parent=#AI_CAP_ZONE] OnLeaveEngaging -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Engaging. -- @function [parent=#AI_CAP_ZONE] OnEnterEngaging -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. self:AddTransition( "Engaging", "Fired", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_CAP_ZONE. --- OnBefore Transition Handler for Event Fired. -- @function [parent=#AI_CAP_ZONE] OnBeforeFired -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Fired. -- @function [parent=#AI_CAP_ZONE] OnAfterFired -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Fired. -- @function [parent=#AI_CAP_ZONE] Fired -- @param #AI_CAP_ZONE self --- Asynchronous Event Trigger for Event Fired. -- @function [parent=#AI_CAP_ZONE] __Fired -- @param #AI_CAP_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Destroy", "*" ) -- FSM_CONTROLLABLE Transition for type #AI_CAP_ZONE. --- OnBefore Transition Handler for Event Destroy. -- @function [parent=#AI_CAP_ZONE] OnBeforeDestroy -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Destroy. -- @function [parent=#AI_CAP_ZONE] OnAfterDestroy -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Destroy. -- @function [parent=#AI_CAP_ZONE] Destroy -- @param #AI_CAP_ZONE self --- Asynchronous Event Trigger for Event Destroy. -- @function [parent=#AI_CAP_ZONE] __Destroy -- @param #AI_CAP_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "Engaging", "Abort", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_CAP_ZONE. --- OnBefore Transition Handler for Event Abort. -- @function [parent=#AI_CAP_ZONE] OnBeforeAbort -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Abort. -- @function [parent=#AI_CAP_ZONE] OnAfterAbort -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Abort. -- @function [parent=#AI_CAP_ZONE] Abort -- @param #AI_CAP_ZONE self --- Asynchronous Event Trigger for Event Abort. -- @function [parent=#AI_CAP_ZONE] __Abort -- @param #AI_CAP_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "Engaging", "Accomplish", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_CAP_ZONE. --- OnBefore Transition Handler for Event Accomplish. -- @function [parent=#AI_CAP_ZONE] OnBeforeAccomplish -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Accomplish. -- @function [parent=#AI_CAP_ZONE] OnAfterAccomplish -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Accomplish. -- @function [parent=#AI_CAP_ZONE] Accomplish -- @param #AI_CAP_ZONE self --- Asynchronous Event Trigger for Event Accomplish. -- @function [parent=#AI_CAP_ZONE] __Accomplish -- @param #AI_CAP_ZONE self -- @param #number Delay The delay in seconds. return self end --- Set the Engage Zone which defines where the AI will engage bogies. -- @param #AI_CAP_ZONE self -- @param Core.Zone#ZONE EngageZone The zone where the AI is performing CAP. -- @return #AI_CAP_ZONE self function AI_CAP_ZONE:SetEngageZone( EngageZone ) self:F2() if EngageZone then self.EngageZone = EngageZone else self.EngageZone = nil end end --- Set the Engage Range when the AI will engage with airborne enemies. -- @param #AI_CAP_ZONE self -- @param #number EngageRange The Engage Range. -- @return #AI_CAP_ZONE self function AI_CAP_ZONE:SetEngageRange( EngageRange ) self:F2() if EngageRange then self.EngageRange = EngageRange else self.EngageRange = nil end end --- onafter State Transition for Event Start. -- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAP_ZONE:onafterStart( Controllable, From, Event, To ) -- Call the parent Start event handler self:GetParent(self).onafterStart( self, Controllable, From, Event, To ) self:HandleEvent( EVENTS.Dead ) end --- @param AI.AI_CAP#AI_CAP_ZONE -- @param Wrapper.Group#GROUP EngageGroup function AI_CAP_ZONE.EngageRoute( EngageGroup, Fsm ) EngageGroup:F( { "AI_CAP_ZONE.EngageRoute:", EngageGroup:GetName() } ) if EngageGroup:IsAlive() then Fsm:__Engage( 1 ) end end --- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAP_ZONE:onbeforeEngage( Controllable, From, Event, To ) if self.Accomplished == true then return false end end --- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAP_ZONE:onafterDetected( Controllable, From, Event, To ) if From ~= "Engaging" then local Engage = false for DetectedUnit, Detected in pairs( self.DetectedUnits ) do local DetectedUnit = DetectedUnit -- Wrapper.Unit#UNIT self:T( DetectedUnit ) if DetectedUnit:IsAlive() and DetectedUnit:IsAir() then Engage = true break end end if Engage == true then self:F( 'Detected -> Engaging' ) self:__Engage( 1 ) end end end --- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAP_ZONE:onafterAbort( Controllable, From, Event, To ) Controllable:ClearTasks() self:__Route( 1 ) end --- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAP_ZONE:onafterEngage( Controllable, From, Event, To ) if Controllable:IsAlive() then local EngageRoute = {} --- Calculate the current route point. local CurrentVec2 = self.Controllable:GetVec2() --TODO: Create GetAltitude function for GROUP, and delete GetUnit(1). local CurrentAltitude = self.Controllable:GetUnit(1):GetAltitude() local CurrentPointVec3 = POINT_VEC3:New( CurrentVec2.x, CurrentAltitude, CurrentVec2.y ) local ToEngageZoneSpeed = self.PatrolMaxSpeed local CurrentRoutePoint = CurrentPointVec3:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, ToEngageZoneSpeed, true ) EngageRoute[#EngageRoute+1] = CurrentRoutePoint --- Find a random 2D point in PatrolZone. local ToTargetVec2 = self.PatrolZone:GetRandomVec2() self:T2( ToTargetVec2 ) --- Define Speed and Altitude. local ToTargetAltitude = math.random( self.EngageFloorAltitude, self.EngageCeilingAltitude ) local ToTargetSpeed = math.random( self.PatrolMinSpeed, self.PatrolMaxSpeed ) self:T2( { self.PatrolMinSpeed, self.PatrolMaxSpeed, ToTargetSpeed } ) --- Obtain a 3D @{Point} from the 2D point + altitude. local ToTargetPointVec3 = POINT_VEC3:New( ToTargetVec2.x, ToTargetAltitude, ToTargetVec2.y ) --- Create a route point of type air. local ToPatrolRoutePoint = ToTargetPointVec3:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, ToTargetSpeed, true ) EngageRoute[#EngageRoute+1] = ToPatrolRoutePoint Controllable:OptionROEOpenFire() Controllable:OptionROTEvadeFire() local AttackTasks = {} for DetectedUnit, Detected in pairs( self.DetectedUnits ) do local DetectedUnit = DetectedUnit -- Wrapper.Unit#UNIT self:T( { DetectedUnit, DetectedUnit:IsAlive(), DetectedUnit:IsAir() } ) if DetectedUnit:IsAlive() and DetectedUnit:IsAir() then if self.EngageZone then if DetectedUnit:IsInZone( self.EngageZone ) then self:F( {"Within Zone and Engaging ", DetectedUnit } ) AttackTasks[#AttackTasks+1] = Controllable:TaskAttackUnit( DetectedUnit ) end else if self.EngageRange then if DetectedUnit:GetPointVec3():Get2DDistance(Controllable:GetPointVec3() ) <= self.EngageRange then self:F( {"Within Range and Engaging", DetectedUnit } ) AttackTasks[#AttackTasks+1] = Controllable:TaskAttackUnit( DetectedUnit ) end else AttackTasks[#AttackTasks+1] = Controllable:TaskAttackUnit( DetectedUnit ) end end else self.DetectedUnits[DetectedUnit] = nil end end if #AttackTasks == 0 then self:F("No targets found -> Going back to Patrolling") self:__Abort( 1 ) self:__Route( 1 ) self:SetDetectionActivated() else AttackTasks[#AttackTasks+1] = Controllable:TaskFunction( "AI_CAP_ZONE.EngageRoute", self ) EngageRoute[1].task = Controllable:TaskCombo( AttackTasks ) self:SetDetectionDeactivated() end Controllable:Route( EngageRoute, 0.5 ) end end --- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAP_ZONE:onafterAccomplish( Controllable, From, Event, To ) self.Accomplished = true self:SetDetectionOff() end --- @param #AI_CAP_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Core.Event#EVENTDATA EventData function AI_CAP_ZONE:onafterDestroy( Controllable, From, Event, To, EventData ) if EventData.IniUnit then self.DetectedUnits[EventData.IniUnit] = nil end end --- @param #AI_CAP_ZONE self -- @param Core.Event#EVENTDATA EventData function AI_CAP_ZONE:OnEventDead( EventData ) self:F( { "EventDead", EventData } ) if EventData.IniDCSUnit then if self.DetectedUnits and self.DetectedUnits[EventData.IniUnit] then self:__Destroy( 1, EventData ) end end end --- **AI** -- **Provide Close Air Support to friendly ground troops.** -- -- ![Banner Image](..\Presentations\AI_CAS\Dia1.JPG) -- -- === -- -- AI CAS classes makes AI Controllables execute a Close Air Support. -- -- There are the following types of CAS classes defined: -- -- * @{#AI_CAS_ZONE}: Perform a CAS in a zone. -- -- ==== -- -- # Demo Missions -- -- ### [AI_CAS Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/CAS%20-%20Close%20Air%20Support) -- -- ### [AI_CAS Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/CAS%20-%20Close%20Air%20Support) -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [AI_CAS YouTube Channel](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl3JBO1WDqqpyYRRmIkR2ir2) -- -- ==== -- -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- * **[Quax](https://forums.eagle.ru/member.php?u=90530)**: Concept, Advice & Testing. -- * **[Pikey](https://forums.eagle.ru/member.php?u=62835)**: Concept, Advice & Testing. -- * **[Gunterlund](http://forums.eagle.ru:8080/member.php?u=75036)**: Test case revision. -- -- ==== -- -- @module AI_Cas --- AI_CAS_ZONE class -- @type AI_CAS_ZONE -- @field Wrapper.Controllable#CONTROLLABLE AIControllable The @{Controllable} patrolling. -- @field Core.Zone#ZONE_BASE TargetZone The @{Zone} where the patrol needs to be executed. -- @extends AI.AI_Patrol#AI_PATROL_ZONE --- # AI_CAS_ZONE class, extends @{AI_Patrol#AI_PATROL_ZONE} -- -- AI_CAS_ZONE derives from the @{AI_Patrol#AI_PATROL_ZONE}, inheriting its methods and behaviour. -- -- The AI_CAS_ZONE class implements the core functions to provide Close Air Support in an Engage @{Zone} by an AIR @{Controllable} or @{Group}. -- The AI_CAS_ZONE runs a process. It holds an AI in a Patrol Zone and when the AI is commanded to engage, it will fly to an Engage Zone. -- -- ![HoldAndEngage](..\Presentations\AI_CAS\Dia3.JPG) -- -- The AI_CAS_ZONE is assigned a @{Group} and this must be done before the AI_CAS_ZONE process can be started through the **Start** event. -- -- ![Start Event](..\Presentations\AI_CAS\Dia4.JPG) -- -- Upon started, The AI will **Route** itself towards the random 3D point within a patrol zone, -- using a random speed within the given altitude and speed limits. -- Upon arrival at the 3D point, a new random 3D point will be selected within the patrol zone using the given limits. -- This cycle will continue until a fuel or damage treshold has been reached by the AI, or when the AI is commanded to RTB. -- -- ![Route Event](..\Presentations\AI_CAS\Dia5.JPG) -- -- When the AI is commanded to provide Close Air Support (through the event **Engage**), the AI will fly towards the Engage Zone. -- Any target that is detected in the Engage Zone will be reported and will be destroyed by the AI. -- -- ![Engage Event](..\Presentations\AI_CAS\Dia6.JPG) -- -- The AI will detect the targets and will only destroy the targets within the Engage Zone. -- -- ![Engage Event](..\Presentations\AI_CAS\Dia7.JPG) -- -- Every target that is destroyed, is reported< by the AI. -- -- ![Engage Event](..\Presentations\AI_CAS\Dia8.JPG) -- -- Note that the AI does not know when the Engage Zone is cleared, and therefore will keep circling in the zone. -- -- ![Engage Event](..\Presentations\AI_CAS\Dia9.JPG) -- -- Until it is notified through the event **Accomplish**, which is to be triggered by an observing party: -- -- * a FAC -- * a timed event -- * a menu option selected by a human -- * a condition -- * others ... -- -- ![Engage Event](..\Presentations\AI_CAS\Dia10.JPG) -- -- When the AI has accomplished the CAS, it will fly back to the Patrol Zone. -- -- ![Engage Event](..\Presentations\AI_CAS\Dia11.JPG) -- -- It will keep patrolling there, until it is notified to RTB or move to another CAS Zone. -- It can be notified to go RTB through the **RTB** event. -- -- When the fuel treshold has been reached, the airplane will fly towards the nearest friendly airbase and will land. -- -- ![Engage Event](..\Presentations\AI_CAS\Dia12.JPG) -- -- ## AI_CAS_ZONE constructor -- -- * @{#AI_CAS_ZONE.New}(): Creates a new AI_CAS_ZONE object. -- -- ## AI_CAS_ZONE is a FSM -- -- ![Process](..\Presentations\AI_CAS\Dia2.JPG) -- -- ### 2.1. AI_CAS_ZONE States -- -- * **None** ( Group ): The process is not started yet. -- * **Patrolling** ( Group ): The AI is patrolling the Patrol Zone. -- * **Engaging** ( Group ): The AI is engaging the targets in the Engage Zone, executing CAS. -- * **Returning** ( Group ): The AI is returning to Base.. -- -- ### 2.2. AI_CAS_ZONE Events -- -- * **@{AI_Patrol#AI_PATROL_ZONE.Start}**: Start the process. -- * **@{AI_Patrol#AI_PATROL_ZONE.Route}**: Route the AI to a new random 3D point within the Patrol Zone. -- * **@{#AI_CAS_ZONE.Engage}**: Engage the AI to provide CAS in the Engage Zone, destroying any target it finds. -- * **@{#AI_CAS_ZONE.Abort}**: Aborts the engagement and return patrolling in the patrol zone. -- * **@{AI_Patrol#AI_PATROL_ZONE.RTB}**: Route the AI to the home base. -- * **@{AI_Patrol#AI_PATROL_ZONE.Detect}**: The AI is detecting targets. -- * **@{AI_Patrol#AI_PATROL_ZONE.Detected}**: The AI has detected new targets. -- * **@{#AI_CAS_ZONE.Destroy}**: The AI has destroyed a target @{Unit}. -- * **@{#AI_CAS_ZONE.Destroyed}**: The AI has destroyed all target @{Unit}s assigned in the CAS task. -- * **Status**: The AI is checking status (fuel and damage). When the tresholds have been reached, the AI will RTB. -- -- === -- -- @field #AI_CAS_ZONE AI_CAS_ZONE = { ClassName = "AI_CAS_ZONE", } --- Creates a new AI_CAS_ZONE object -- @param #AI_CAS_ZONE self -- @param Core.Zone#ZONE_BASE PatrolZone The @{Zone} where the patrol needs to be executed. -- @param Dcs.DCSTypes#Altitude PatrolFloorAltitude The lowest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Altitude PatrolCeilingAltitude The highest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Speed PatrolMinSpeed The minimum speed of the @{Controllable} in km/h. -- @param Dcs.DCSTypes#Speed PatrolMaxSpeed The maximum speed of the @{Controllable} in km/h. -- @param Core.Zone#ZONE_BASE EngageZone The zone where the engage will happen. -- @param Dcs.DCSTypes#AltitudeType PatrolAltType The altitude type ("RADIO"=="AGL", "BARO"=="ASL"). Defaults to RADIO -- @return #AI_CAS_ZONE self function AI_CAS_ZONE:New( PatrolZone, PatrolFloorAltitude, PatrolCeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, EngageZone, PatrolAltType ) -- Inherits from BASE local self = BASE:Inherit( self, AI_PATROL_ZONE:New( PatrolZone, PatrolFloorAltitude, PatrolCeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, PatrolAltType ) ) -- #AI_CAS_ZONE self.EngageZone = EngageZone self.Accomplished = false self:SetDetectionZone( self.EngageZone ) self:AddTransition( { "Patrolling", "Engaging" }, "Engage", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_CAS_ZONE. --- OnBefore Transition Handler for Event Engage. -- @function [parent=#AI_CAS_ZONE] OnBeforeEngage -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Engage. -- @function [parent=#AI_CAS_ZONE] OnAfterEngage -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Engage. -- @function [parent=#AI_CAS_ZONE] Engage -- @param #AI_CAS_ZONE self -- @param #number EngageSpeed (optional) The speed the Group will hold when engaging to the target zone. -- @param Dcs.DCSTypes#Distance EngageAltitude (optional) Desired altitude to perform the unit engagement. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend EngageWeaponExpend (optional) Determines how much weapon will be released at each attack. -- If parameter is not defined the unit / controllable will choose expend on its own discretion. -- Use the structure @{DCSTypes#AI.Task.WeaponExpend} to define the amount of weapons to be release at each attack. -- @param #number EngageAttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth EngageDirection (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. --- Asynchronous Event Trigger for Event Engage. -- @function [parent=#AI_CAS_ZONE] __Engage -- @param #AI_CAS_ZONE self -- @param #number Delay The delay in seconds. -- @param #number EngageSpeed (optional) The speed the Group will hold when engaging to the target zone. -- @param Dcs.DCSTypes#Distance EngageAltitude (optional) Desired altitude to perform the unit engagement. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend EngageWeaponExpend (optional) Determines how much weapon will be released at each attack. -- If parameter is not defined the unit / controllable will choose expend on its own discretion. -- Use the structure @{DCSTypes#AI.Task.WeaponExpend} to define the amount of weapons to be release at each attack. -- @param #number EngageAttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth EngageDirection (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. --- OnLeave Transition Handler for State Engaging. -- @function [parent=#AI_CAS_ZONE] OnLeaveEngaging -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Engaging. -- @function [parent=#AI_CAS_ZONE] OnEnterEngaging -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. self:AddTransition( "Engaging", "Target", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_CAS_ZONE. self:AddTransition( "Engaging", "Fired", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_CAS_ZONE. --- OnBefore Transition Handler for Event Fired. -- @function [parent=#AI_CAS_ZONE] OnBeforeFired -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Fired. -- @function [parent=#AI_CAS_ZONE] OnAfterFired -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Fired. -- @function [parent=#AI_CAS_ZONE] Fired -- @param #AI_CAS_ZONE self --- Asynchronous Event Trigger for Event Fired. -- @function [parent=#AI_CAS_ZONE] __Fired -- @param #AI_CAS_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Destroy", "*" ) -- FSM_CONTROLLABLE Transition for type #AI_CAS_ZONE. --- OnBefore Transition Handler for Event Destroy. -- @function [parent=#AI_CAS_ZONE] OnBeforeDestroy -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Destroy. -- @function [parent=#AI_CAS_ZONE] OnAfterDestroy -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Destroy. -- @function [parent=#AI_CAS_ZONE] Destroy -- @param #AI_CAS_ZONE self --- Asynchronous Event Trigger for Event Destroy. -- @function [parent=#AI_CAS_ZONE] __Destroy -- @param #AI_CAS_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "Engaging", "Abort", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_CAS_ZONE. --- OnBefore Transition Handler for Event Abort. -- @function [parent=#AI_CAS_ZONE] OnBeforeAbort -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Abort. -- @function [parent=#AI_CAS_ZONE] OnAfterAbort -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Abort. -- @function [parent=#AI_CAS_ZONE] Abort -- @param #AI_CAS_ZONE self --- Asynchronous Event Trigger for Event Abort. -- @function [parent=#AI_CAS_ZONE] __Abort -- @param #AI_CAS_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "Engaging", "Accomplish", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_CAS_ZONE. --- OnBefore Transition Handler for Event Accomplish. -- @function [parent=#AI_CAS_ZONE] OnBeforeAccomplish -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Accomplish. -- @function [parent=#AI_CAS_ZONE] OnAfterAccomplish -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Accomplish. -- @function [parent=#AI_CAS_ZONE] Accomplish -- @param #AI_CAS_ZONE self --- Asynchronous Event Trigger for Event Accomplish. -- @function [parent=#AI_CAS_ZONE] __Accomplish -- @param #AI_CAS_ZONE self -- @param #number Delay The delay in seconds. return self end --- Set the Engage Zone where the AI is performing CAS. Note that if the EngageZone is changed, the AI needs to re-detect targets. -- @param #AI_CAS_ZONE self -- @param Core.Zone#ZONE EngageZone The zone where the AI is performing CAS. -- @return #AI_CAS_ZONE self function AI_CAS_ZONE:SetEngageZone( EngageZone ) self:F2() if EngageZone then self.EngageZone = EngageZone else self.EngageZone = nil end end --- onafter State Transition for Event Start. -- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAS_ZONE:onafterStart( Controllable, From, Event, To ) -- Call the parent Start event handler self:GetParent(self).onafterStart( self, Controllable, From, Event, To ) self:HandleEvent( EVENTS.Dead ) self:SetDetectionDeactivated() -- When not engaging, set the detection off. end --- @param AI.AI_CAS#AI_CAS_ZONE -- @param Wrapper.Group#GROUP EngageGroup function AI_CAS_ZONE.EngageRoute( EngageGroup, Fsm ) EngageGroup:F( { "AI_CAS_ZONE.EngageRoute:", EngageGroup:GetName() } ) if EngageGroup:IsAlive() then Fsm:__Engage( 1, Fsm.EngageSpeed, Fsm.EngageAltitude, Fsm.EngageWeaponExpend, Fsm.EngageAttackQty, Fsm.EngageDirection ) end end --- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAS_ZONE:onbeforeEngage( Controllable, From, Event, To ) if self.Accomplished == true then return false end end --- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAS_ZONE:onafterTarget( Controllable, From, Event, To ) self:E("onafterTarget") if Controllable:IsAlive() then local AttackTasks = {} for DetectedUnit, Detected in pairs( self.DetectedUnits ) do local DetectedUnit = DetectedUnit -- Wrapper.Unit#UNIT if DetectedUnit:IsAlive() then if DetectedUnit:IsInZone( self.EngageZone ) then if Detected == true then self:E( {"Target: ", DetectedUnit } ) self.DetectedUnits[DetectedUnit] = false local AttackTask = Controllable:TaskAttackUnit( DetectedUnit, false, self.EngageWeaponExpend, self.EngageAttackQty, self.EngageDirection, self.EngageAltitude, nil ) self.Controllable:PushTask( AttackTask, 1 ) end end else self.DetectedUnits[DetectedUnit] = nil end end self:__Target( -10 ) end end --- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAS_ZONE:onafterAbort( Controllable, From, Event, To ) Controllable:ClearTasks() self:__Route( 1 ) end --- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param #number EngageSpeed (optional) The speed the Group will hold when engaging to the target zone. -- @param Dcs.DCSTypes#Distance EngageAltitude (optional) Desired altitude to perform the unit engagement. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend EngageWeaponExpend (optional) Determines how much weapon will be released at each attack. If parameter is not defined the unit / controllable will choose expend on its own discretion. -- @param #number EngageAttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth EngageDirection (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. function AI_CAS_ZONE:onafterEngage( Controllable, From, Event, To, EngageSpeed, EngageAltitude, EngageWeaponExpend, EngageAttackQty, EngageDirection ) self:F("onafterEngage") self.EngageSpeed = EngageSpeed or 400 self.EngageAltitude = EngageAltitude or 2000 self.EngageWeaponExpend = EngageWeaponExpend self.EngageAttackQty = EngageAttackQty self.EngageDirection = EngageDirection if Controllable:IsAlive() then Controllable:OptionROEOpenFire() Controllable:OptionROTVertical() local EngageRoute = {} --- Calculate the current route point. local CurrentVec2 = self.Controllable:GetVec2() --TODO: Create GetAltitude function for GROUP, and delete GetUnit(1). local CurrentAltitude = self.Controllable:GetUnit(1):GetAltitude() local CurrentPointVec3 = POINT_VEC3:New( CurrentVec2.x, CurrentAltitude, CurrentVec2.y ) local ToEngageZoneSpeed = self.PatrolMaxSpeed local CurrentRoutePoint = CurrentPointVec3:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, self.EngageSpeed, true ) EngageRoute[#EngageRoute+1] = CurrentRoutePoint local AttackTasks = {} for DetectedUnit, Detected in pairs( self.DetectedUnits ) do local DetectedUnit = DetectedUnit -- Wrapper.Unit#UNIT self:T( DetectedUnit ) if DetectedUnit:IsAlive() then if DetectedUnit:IsInZone( self.EngageZone ) then self:E( {"Engaging ", DetectedUnit } ) AttackTasks[#AttackTasks+1] = Controllable:TaskAttackUnit( DetectedUnit, true, EngageWeaponExpend, EngageAttackQty, EngageDirection ) end else self.DetectedUnits[DetectedUnit] = nil end end AttackTasks[#AttackTasks+1] = Controllable:TaskFunction( "AI_CAS_ZONE.EngageRoute", self ) EngageRoute[#EngageRoute].task = Controllable:TaskCombo( AttackTasks ) --- Define a random point in the @{Zone}. The AI will fly to that point within the zone. --- Find a random 2D point in EngageZone. local ToTargetVec2 = self.EngageZone:GetRandomVec2() self:T2( ToTargetVec2 ) --- Obtain a 3D @{Point} from the 2D point + altitude. local ToTargetPointVec3 = POINT_VEC3:New( ToTargetVec2.x, self.EngageAltitude, ToTargetVec2.y ) --- Create a route point of type air. local ToTargetRoutePoint = ToTargetPointVec3:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, self.EngageSpeed, true ) EngageRoute[#EngageRoute+1] = ToTargetRoutePoint Controllable:Route( EngageRoute, 0.5 ) self:SetRefreshTimeInterval( 2 ) self:SetDetectionActivated() self:__Target( -2 ) -- Start Targetting end end --- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_CAS_ZONE:onafterAccomplish( Controllable, From, Event, To ) self.Accomplished = true self:SetDetectionDeactivated() end --- @param #AI_CAS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Core.Event#EVENTDATA EventData function AI_CAS_ZONE:onafterDestroy( Controllable, From, Event, To, EventData ) if EventData.IniUnit then self.DetectedUnits[EventData.IniUnit] = nil end end --- @param #AI_CAS_ZONE self -- @param Core.Event#EVENTDATA EventData function AI_CAS_ZONE:OnEventDead( EventData ) self:F( { "EventDead", EventData } ) if EventData.IniDCSUnit then if self.DetectedUnits and self.DetectedUnits[EventData.IniUnit] then self:__Destroy( 1, EventData ) end end end --- **AI** -- **Provide Battlefield Air Interdiction (bombing).** -- -- ![Banner Image](..\Presentations\AI_BAI\Dia1.JPG) -- -- === -- -- AI_BAI classes makes AI Controllables execute bombing tasks. -- -- There are the following types of BAI classes defined: -- -- * @{#AI_BAI_ZONE}: Perform a BAI in a zone. -- -- ==== -- -- # Demo Missions -- -- ### [AI_BAI Demo Missions source code](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master-release/BOMB%20-%20Close%20Air%20Support) -- -- ### [AI_BAI Demo Missions, only for beta testers](https://github.com/FlightControl-Master/MOOSE_MISSIONS/tree/master/BOMB%20-%20Close%20Air%20Support) -- -- ### [ALL Demo Missions pack of the last release](https://github.com/FlightControl-Master/MOOSE_MISSIONS/releases) -- -- ==== -- -- # YouTube Channel -- -- ### [AI_BAI YouTube Channel](https://www.youtube.com/playlist?list=PL7ZUrU4zZUl3JBO1WDqqpyYRRmIkR2ir2) -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- * **[Gunterlund](http://forums.eagle.ru:8080/member.php?u=75036)**: Test case revision. -- -- ==== -- -- @module AI_Bai --- AI_BAI_ZONE class -- @type AI_BAI_ZONE -- @field Wrapper.Controllable#CONTROLLABLE AIControllable The @{Controllable} patrolling. -- @field Core.Zone#ZONE_BASE TargetZone The @{Zone} where the patrol needs to be executed. -- @extends AI.AI_Patrol#AI_PATROL_ZONE --- # AI_BAI_ZONE class, extends @{AI_Patrol#AI_PATROL_ZONE} -- -- AI_BAI_ZONE derives from the @{AI_Patrol#AI_PATROL_ZONE}, inheriting its methods and behaviour. -- -- The AI_BAI_ZONE class implements the core functions to provide BattleGround Air Interdiction in an Engage @{Zone} by an AIR @{Controllable} or @{Group}. -- The AI_BAI_ZONE runs a process. It holds an AI in a Patrol Zone and when the AI is commanded to engage, it will fly to an Engage Zone. -- -- ![HoldAndEngage](..\Presentations\AI_BAI\Dia3.JPG) -- -- The AI_BAI_ZONE is assigned a @{Group} and this must be done before the AI_BAI_ZONE process can be started through the **Start** event. -- -- ![Start Event](..\Presentations\AI_BAI\Dia4.JPG) -- -- Upon started, The AI will **Route** itself towards the random 3D point within a patrol zone, -- using a random speed within the given altitude and speed limits. -- Upon arrival at the 3D point, a new random 3D point will be selected within the patrol zone using the given limits. -- This cycle will continue until a fuel or damage treshold has been reached by the AI, or when the AI is commanded to RTB. -- -- ![Route Event](..\Presentations\AI_BAI\Dia5.JPG) -- -- When the AI is commanded to provide BattleGround Air Interdiction (through the event **Engage**), the AI will fly towards the Engage Zone. -- Any target that is detected in the Engage Zone will be reported and will be destroyed by the AI. -- -- ![Engage Event](..\Presentations\AI_BAI\Dia6.JPG) -- -- The AI will detect the targets and will only destroy the targets within the Engage Zone. -- -- ![Engage Event](..\Presentations\AI_BAI\Dia7.JPG) -- -- Every target that is destroyed, is reported< by the AI. -- -- ![Engage Event](..\Presentations\AI_BAI\Dia8.JPG) -- -- Note that the AI does not know when the Engage Zone is cleared, and therefore will keep circling in the zone. -- -- ![Engage Event](..\Presentations\AI_BAI\Dia9.JPG) -- -- Until it is notified through the event **Accomplish**, which is to be triggered by an observing party: -- -- * a FAC -- * a timed event -- * a menu option selected by a human -- * a condition -- * others ... -- -- ![Engage Event](..\Presentations\AI_BAI\Dia10.JPG) -- -- When the AI has accomplished the Bombing, it will fly back to the Patrol Zone. -- -- ![Engage Event](..\Presentations\AI_BAI\Dia11.JPG) -- -- It will keep patrolling there, until it is notified to RTB or move to another BOMB Zone. -- It can be notified to go RTB through the **RTB** event. -- -- When the fuel treshold has been reached, the airplane will fly towards the nearest friendly airbase and will land. -- -- ![Engage Event](..\Presentations\AI_BAI\Dia12.JPG) -- -- # 1. AI_BAI_ZONE constructor -- -- * @{#AI_BAI_ZONE.New}(): Creates a new AI_BAI_ZONE object. -- -- ## 2. AI_BAI_ZONE is a FSM -- -- ![Process](..\Presentations\AI_BAI\Dia2.JPG) -- -- ### 2.1. AI_BAI_ZONE States -- -- * **None** ( Group ): The process is not started yet. -- * **Patrolling** ( Group ): The AI is patrolling the Patrol Zone. -- * **Engaging** ( Group ): The AI is engaging the targets in the Engage Zone, executing BOMB. -- * **Returning** ( Group ): The AI is returning to Base.. -- -- ### 2.2. AI_BAI_ZONE Events -- -- * **@{AI_Patrol#AI_PATROL_ZONE.Start}**: Start the process. -- * **@{AI_Patrol#AI_PATROL_ZONE.Route}**: Route the AI to a new random 3D point within the Patrol Zone. -- * **@{#AI_BAI_ZONE.Engage}**: Engage the AI to provide BOMB in the Engage Zone, destroying any target it finds. -- * **@{#AI_BAI_ZONE.Abort}**: Aborts the engagement and return patrolling in the patrol zone. -- * **@{AI_Patrol#AI_PATROL_ZONE.RTB}**: Route the AI to the home base. -- * **@{AI_Patrol#AI_PATROL_ZONE.Detect}**: The AI is detecting targets. -- * **@{AI_Patrol#AI_PATROL_ZONE.Detected}**: The AI has detected new targets. -- * **@{#AI_BAI_ZONE.Destroy}**: The AI has destroyed a target @{Unit}. -- * **@{#AI_BAI_ZONE.Destroyed}**: The AI has destroyed all target @{Unit}s assigned in the BOMB task. -- * **Status**: The AI is checking status (fuel and damage). When the tresholds have been reached, the AI will RTB. -- -- ## 3. Modify the Engage Zone behaviour to pinpoint a **map object** or **scenery object** -- -- Use the method @{#AI_BAI_ZONE.SearchOff}() to specify that the EngageZone is not to be searched for potential targets (UNITs), but that the center of the zone -- is the point where a map object is to be destroyed (like a bridge). -- -- Example: -- -- -- Tell the BAI not to search for potential targets in the BAIEngagementZone, but rather use the center of the BAIEngagementZone as the bombing location. -- AIBAIZone:SearchOff() -- -- Searching can be switched back on with the method @{#AI_BAI_ZONE.SearchOn}(). Use the method @{#AI_BAI_ZONE.SearchOnOff}() to flexibily switch searching on or off. -- -- === -- -- @field #AI_BAI_ZONE AI_BAI_ZONE = { ClassName = "AI_BAI_ZONE", } --- Creates a new AI_BAI_ZONE object -- @param #AI_BAI_ZONE self -- @param Core.Zone#ZONE_BASE PatrolZone The @{Zone} where the patrol needs to be executed. -- @param Dcs.DCSTypes#Altitude PatrolFloorAltitude The lowest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Altitude PatrolCeilingAltitude The highest altitude in meters where to execute the patrol. -- @param Dcs.DCSTypes#Speed PatrolMinSpeed The minimum speed of the @{Controllable} in km/h. -- @param Dcs.DCSTypes#Speed PatrolMaxSpeed The maximum speed of the @{Controllable} in km/h. -- @param Core.Zone#ZONE_BASE EngageZone The zone where the engage will happen. -- @param Dcs.DCSTypes#AltitudeType PatrolAltType The altitude type ("RADIO"=="AGL", "BARO"=="ASL"). Defaults to RADIO -- @return #AI_BAI_ZONE self function AI_BAI_ZONE:New( PatrolZone, PatrolFloorAltitude, PatrolCeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, EngageZone, PatrolAltType ) -- Inherits from BASE local self = BASE:Inherit( self, AI_PATROL_ZONE:New( PatrolZone, PatrolFloorAltitude, PatrolCeilingAltitude, PatrolMinSpeed, PatrolMaxSpeed, PatrolAltType ) ) -- #AI_BAI_ZONE self.EngageZone = EngageZone self.Accomplished = false self:SetDetectionZone( self.EngageZone ) self:SearchOn() self:AddTransition( { "Patrolling", "Engaging" }, "Engage", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_BAI_ZONE. --- OnBefore Transition Handler for Event Engage. -- @function [parent=#AI_BAI_ZONE] OnBeforeEngage -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Engage. -- @function [parent=#AI_BAI_ZONE] OnAfterEngage -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Engage. -- @function [parent=#AI_BAI_ZONE] Engage -- @param #AI_BAI_ZONE self -- @param #number EngageSpeed (optional) The speed the Group will hold when engaging to the target zone. -- @param Dcs.DCSTypes#Distance EngageAltitude (optional) Desired altitude to perform the unit engagement. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend EngageWeaponExpend (optional) Determines how much weapon will be released at each attack. -- If parameter is not defined the unit / controllable will choose expend on its own discretion. -- Use the structure @{DCSTypes#AI.Task.WeaponExpend} to define the amount of weapons to be release at each attack. -- @param #number EngageAttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth EngageDirection (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. --- Asynchronous Event Trigger for Event Engage. -- @function [parent=#AI_BAI_ZONE] __Engage -- @param #AI_BAI_ZONE self -- @param #number Delay The delay in seconds. -- @param #number EngageSpeed (optional) The speed the Group will hold when engaging to the target zone. -- @param Dcs.DCSTypes#Distance EngageAltitude (optional) Desired altitude to perform the unit engagement. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend EngageWeaponExpend (optional) Determines how much weapon will be released at each attack. -- If parameter is not defined the unit / controllable will choose expend on its own discretion. -- Use the structure @{DCSTypes#AI.Task.WeaponExpend} to define the amount of weapons to be release at each attack. -- @param #number EngageAttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth EngageDirection (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. --- OnLeave Transition Handler for State Engaging. -- @function [parent=#AI_BAI_ZONE] OnLeaveEngaging -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State Engaging. -- @function [parent=#AI_BAI_ZONE] OnEnterEngaging -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. self:AddTransition( "Engaging", "Target", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_BAI_ZONE. self:AddTransition( "Engaging", "Fired", "Engaging" ) -- FSM_CONTROLLABLE Transition for type #AI_BAI_ZONE. --- OnBefore Transition Handler for Event Fired. -- @function [parent=#AI_BAI_ZONE] OnBeforeFired -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Fired. -- @function [parent=#AI_BAI_ZONE] OnAfterFired -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Fired. -- @function [parent=#AI_BAI_ZONE] Fired -- @param #AI_BAI_ZONE self --- Asynchronous Event Trigger for Event Fired. -- @function [parent=#AI_BAI_ZONE] __Fired -- @param #AI_BAI_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Destroy", "*" ) -- FSM_CONTROLLABLE Transition for type #AI_BAI_ZONE. --- OnBefore Transition Handler for Event Destroy. -- @function [parent=#AI_BAI_ZONE] OnBeforeDestroy -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Destroy. -- @function [parent=#AI_BAI_ZONE] OnAfterDestroy -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Destroy. -- @function [parent=#AI_BAI_ZONE] Destroy -- @param #AI_BAI_ZONE self --- Asynchronous Event Trigger for Event Destroy. -- @function [parent=#AI_BAI_ZONE] __Destroy -- @param #AI_BAI_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "Engaging", "Abort", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_BAI_ZONE. --- OnBefore Transition Handler for Event Abort. -- @function [parent=#AI_BAI_ZONE] OnBeforeAbort -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Abort. -- @function [parent=#AI_BAI_ZONE] OnAfterAbort -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Abort. -- @function [parent=#AI_BAI_ZONE] Abort -- @param #AI_BAI_ZONE self --- Asynchronous Event Trigger for Event Abort. -- @function [parent=#AI_BAI_ZONE] __Abort -- @param #AI_BAI_ZONE self -- @param #number Delay The delay in seconds. self:AddTransition( "Engaging", "Accomplish", "Patrolling" ) -- FSM_CONTROLLABLE Transition for type #AI_BAI_ZONE. --- OnBefore Transition Handler for Event Accomplish. -- @function [parent=#AI_BAI_ZONE] OnBeforeAccomplish -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Accomplish. -- @function [parent=#AI_BAI_ZONE] OnAfterAccomplish -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Accomplish. -- @function [parent=#AI_BAI_ZONE] Accomplish -- @param #AI_BAI_ZONE self --- Asynchronous Event Trigger for Event Accomplish. -- @function [parent=#AI_BAI_ZONE] __Accomplish -- @param #AI_BAI_ZONE self -- @param #number Delay The delay in seconds. return self end --- Set the Engage Zone where the AI is performing BOMB. Note that if the EngageZone is changed, the AI needs to re-detect targets. -- @param #AI_BAI_ZONE self -- @param Core.Zone#ZONE EngageZone The zone where the AI is performing BOMB. -- @return #AI_BAI_ZONE self function AI_BAI_ZONE:SetEngageZone( EngageZone ) self:F2() if EngageZone then self.EngageZone = EngageZone else self.EngageZone = nil end end --- Specifies whether to search for potential targets in the zone, or let the center of the zone be the bombing coordinate. -- AI_BAI_ZONE will search for potential targets by default. -- @param #AI_BAI_ZONE self -- @return #AI_BAI_ZONE function AI_BAI_ZONE:SearchOnOff( Search ) self.Search = Search return self end --- If Search is Off, the current zone coordinate will be the center of the bombing. -- @param #AI_BAI_ZONE self -- @return #AI_BAI_ZONE function AI_BAI_ZONE:SearchOff() self:SearchOnOff( false ) return self end --- If Search is On, BAI will search for potential targets in the zone. -- @param #AI_BAI_ZONE self -- @return #AI_BAI_ZONE function AI_BAI_ZONE:SearchOn() self:SearchOnOff( true ) return self end --- onafter State Transition for Event Start. -- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_BAI_ZONE:onafterStart( Controllable, From, Event, To ) -- Call the parent Start event handler self:GetParent(self).onafterStart( self, Controllable, From, Event, To ) self:HandleEvent( EVENTS.Dead ) self:SetDetectionDeactivated() -- When not engaging, set the detection off. end --- @param Wrapper.Controllable#CONTROLLABLE AIControllable function _NewEngageRoute( AIControllable ) AIControllable:T( "NewEngageRoute" ) local EngageZone = AIControllable:GetState( AIControllable, "EngageZone" ) -- AI.AI_BAI#AI_BAI_ZONE EngageZone:__Engage( 1, EngageZone.EngageSpeed, EngageZone.EngageAltitude, EngageZone.EngageWeaponExpend, EngageZone.EngageAttackQty, EngageZone.EngageDirection ) end --- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_BAI_ZONE:onbeforeEngage( Controllable, From, Event, To ) if self.Accomplished == true then return false end end --- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_BAI_ZONE:onafterTarget( Controllable, From, Event, To ) self:F({"onafterTarget",self.Search,Controllable:IsAlive()}) if Controllable:IsAlive() then local AttackTasks = {} if self.Search == true then for DetectedUnit, Detected in pairs( self.DetectedUnits ) do local DetectedUnit = DetectedUnit -- Wrapper.Unit#UNIT if DetectedUnit:IsAlive() then if DetectedUnit:IsInZone( self.EngageZone ) then if Detected == true then self:F( {"Target: ", DetectedUnit } ) self.DetectedUnits[DetectedUnit] = false local AttackTask = Controllable:TaskAttackUnit( DetectedUnit, false, self.EngageWeaponExpend, self.EngageAttackQty, self.EngageDirection, self.EngageAltitude, nil ) self.Controllable:PushTask( AttackTask, 1 ) end end else self.DetectedUnits[DetectedUnit] = nil end end else self:F("Attack zone") local AttackTask = Controllable:TaskAttackMapObject( self.EngageZone:GetPointVec2():GetVec2(), true, self.EngageWeaponExpend, self.EngageAttackQty, self.EngageDirection, self.EngageAltitude ) self.Controllable:PushTask( AttackTask, 1 ) end self:__Target( -10 ) end end --- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_BAI_ZONE:onafterAbort( Controllable, From, Event, To ) Controllable:ClearTasks() self:__Route( 1 ) end --- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param #number EngageSpeed (optional) The speed the Group will hold when engaging to the target zone. -- @param Dcs.DCSTypes#Distance EngageAltitude (optional) Desired altitude to perform the unit engagement. -- @param Dcs.DCSTypes#AI.Task.WeaponExpend EngageWeaponExpend (optional) Determines how much weapon will be released at each attack. If parameter is not defined the unit / controllable will choose expend on its own discretion. -- @param #number EngageAttackQty (optional) This parameter limits maximal quantity of attack. The aicraft/controllable will not make more attack than allowed even if the target controllable not destroyed and the aicraft/controllable still have ammo. If not defined the aircraft/controllable will attack target until it will be destroyed or until the aircraft/controllable will run out of ammo. -- @param Dcs.DCSTypes#Azimuth EngageDirection (optional) Desired ingress direction from the target to the attacking aircraft. Controllable/aircraft will make its attacks from the direction. Of course if there is no way to attack from the direction due the terrain controllable/aircraft will choose another direction. function AI_BAI_ZONE:onafterEngage( Controllable, From, Event, To, EngageSpeed, EngageAltitude, EngageWeaponExpend, EngageAttackQty, EngageDirection ) self:F("onafterEngage") self.EngageSpeed = EngageSpeed or 400 self.EngageAltitude = EngageAltitude or 2000 self.EngageWeaponExpend = EngageWeaponExpend self.EngageAttackQty = EngageAttackQty self.EngageDirection = EngageDirection if Controllable:IsAlive() then local EngageRoute = {} --- Calculate the current route point. local CurrentVec2 = self.Controllable:GetVec2() --TODO: Create GetAltitude function for GROUP, and delete GetUnit(1). local CurrentAltitude = self.Controllable:GetUnit(1):GetAltitude() local CurrentPointVec3 = POINT_VEC3:New( CurrentVec2.x, CurrentAltitude, CurrentVec2.y ) local ToEngageZoneSpeed = self.PatrolMaxSpeed local CurrentRoutePoint = CurrentPointVec3:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, self.EngageSpeed, true ) EngageRoute[#EngageRoute+1] = CurrentRoutePoint local AttackTasks = {} if self.Search == true then for DetectedUnitID, DetectedUnitData in pairs( self.DetectedUnits ) do local DetectedUnit = DetectedUnitData -- Wrapper.Unit#UNIT self:T( DetectedUnit ) if DetectedUnit:IsAlive() then if DetectedUnit:IsInZone( self.EngageZone ) then self:F( {"Engaging ", DetectedUnit } ) AttackTasks[#AttackTasks+1] = Controllable:TaskBombing( DetectedUnit:GetPointVec2():GetVec2(), true, EngageWeaponExpend, EngageAttackQty, EngageDirection, EngageAltitude ) end else self.DetectedUnits[DetectedUnit] = nil end end else self:F("Attack zone") AttackTasks[#AttackTasks+1] = Controllable:TaskAttackMapObject( self.EngageZone:GetPointVec2():GetVec2(), true, EngageWeaponExpend, EngageAttackQty, EngageDirection, EngageAltitude ) end EngageRoute[#EngageRoute].task = Controllable:TaskCombo( AttackTasks ) --- Define a random point in the @{Zone}. The AI will fly to that point within the zone. --- Find a random 2D point in EngageZone. local ToTargetVec2 = self.EngageZone:GetRandomVec2() self:T2( ToTargetVec2 ) --- Obtain a 3D @{Point} from the 2D point + altitude. local ToTargetPointVec3 = POINT_VEC3:New( ToTargetVec2.x, self.EngageAltitude, ToTargetVec2.y ) --- Create a route point of type air. local ToTargetRoutePoint = ToTargetPointVec3:WaypointAir( self.PatrolAltType, POINT_VEC3.RoutePointType.TurningPoint, POINT_VEC3.RoutePointAction.TurningPoint, self.EngageSpeed, true ) EngageRoute[#EngageRoute+1] = ToTargetRoutePoint Controllable:OptionROEOpenFire() Controllable:OptionROTVertical() --- Now we're going to do something special, we're going to call a function from a waypoint action at the AIControllable... Controllable:WayPointInitialize( EngageRoute ) --- Do a trick, link the NewEngageRoute function of the object to the AIControllable in a temporary variable ... Controllable:SetState( Controllable, "EngageZone", self ) Controllable:WayPointFunction( #EngageRoute, 1, "_NewEngageRoute" ) --- NOW ROUTE THE GROUP! Controllable:WayPointExecute( 1 ) self:SetRefreshTimeInterval( 2 ) self:SetDetectionActivated() self:__Target( -2 ) -- Start Targetting end end --- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. function AI_BAI_ZONE:onafterAccomplish( Controllable, From, Event, To ) self.Accomplished = true self:SetDetectionDeactivated() end --- @param #AI_BAI_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM. -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Core.Event#EVENTDATA EventData function AI_BAI_ZONE:onafterDestroy( Controllable, From, Event, To, EventData ) if EventData.IniUnit then self.DetectedUnits[EventData.IniUnit] = nil end end --- @param #AI_BAI_ZONE self -- @param Core.Event#EVENTDATA EventData function AI_BAI_ZONE:OnEventDead( EventData ) self:F( { "EventDead", EventData } ) if EventData.IniDCSUnit then if self.DetectedUnits and self.DetectedUnits[EventData.IniUnit] then self:__Destroy( 1, EventData ) end end end --- **AI** -- Build large **formations** of AI @{Group}s flying together. -- -- ![Banner Image](..\Presentations\AI_FORMATION\Dia1.JPG) -- -- === -- -- AI_FORMATION makes AI @{GROUP}s fly in formation of various compositions. -- The AI_FORMATION class models formations in a different manner than the internal DCS formation logic!!! -- The purpose of the class is to: -- -- * Make formation building a process that can be managed while in flight, rather than a task. -- * Human players can guide formations, consisting of larget planes. -- * Build large formations (like a large bomber field). -- * Form formations that DCS does not support off the shelve. -- -- A few remarks: -- -- * Depending on the type of plane, the change in direction by the leader may result in the formation getting disentangled while in flight and needs to be rebuild. -- * Formations are vulnerable to collissions, but is depending on the type of plane, the distance between the planes and the speed and angle executed by the leader. -- * Formations may take a while to build up. -- -- As a result, the AI_FORMATION is not perfect, but is very useful to: -- -- * Model large formations when flying straight line. -- * Make humans guide a large formation, when the planes are wide from each other. -- -- There are the following types of classes defined: -- -- * @{#AI_FORMATION}: Create a formation from several @{GROUP}s. -- -- ==== -- -- # Demo Missions -- -- ### [AI_FORMATION Demo Missions source code]() -- -- ### [AI_FORMATION Demo Missions, only for beta testers]() -- -- ### [ALL Demo Missions pack of the last release]() -- -- ==== -- -- # YouTube Channel -- --- ### [AI_FORMATION YouTube Channel]() -- -- === -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module AI_Formation --- AI_FORMATION class -- @type AI_FORMATION -- @extends Fsm#FSM_SET -- @field Unit#UNIT FollowUnit -- @field Set#SET_GROUP FollowGroupSet -- @field #string FollowName -- @field #AI_FORMATION.MODE FollowMode The mode the escort is in. -- @field Scheduler#SCHEDULER FollowScheduler The instance of the SCHEDULER class. -- @field #number FollowDistance The current follow distance. -- @field #boolean ReportTargets If true, nearby targets are reported. -- @Field DCSTypes#AI.Option.Air.val.ROE OptionROE Which ROE is set to the FollowGroup. -- @field DCSTypes#AI.Option.Air.val.REACTION_ON_THREAT OptionReactionOnThreat Which REACTION_ON_THREAT is set to the FollowGroup. -- @field Menu#MENU_CLIENT FollowMenuResumeMission --- # AI_FORMATION class, extends @{Fsm#FSM_SET} -- -- The #AI_FORMATION class allows you to build large formations, make AI follow a @{Client#CLIENT} (player) leader or a @{Unit#UNIT} (AI) leader. -- -- AI_FORMATION makes AI @{GROUP}s fly in formation of various compositions. -- The AI_FORMATION class models formations in a different manner than the internal DCS formation logic!!! -- The purpose of the class is to: -- -- * Make formation building a process that can be managed while in flight, rather than a task. -- * Human players can guide formations, consisting of larget planes. -- * Build large formations (like a large bomber field). -- * Form formations that DCS does not support off the shelve. -- -- A few remarks: -- -- * Depending on the type of plane, the change in direction by the leader may result in the formation getting disentangled while in flight and needs to be rebuild. -- * Formations are vulnerable to collissions, but is depending on the type of plane, the distance between the planes and the speed and angle executed by the leader. -- * Formations may take a while to build up. -- -- As a result, the AI_FORMATION is not perfect, but is very useful to: -- -- * Model large formations when flying straight line. You can build close formations when doing this. -- * Make humans guide a large formation, when the planes are wide from each other. -- -- ## AI_FORMATION construction -- -- Create a new SPAWN object with the @{#AI_FORMATION.New} method: -- -- * @{Follow#AI_FORMATION.New}(): Creates a new AI_FORMATION object from a @{Group#GROUP} for a @{Client#CLIENT} or a @{Unit#UNIT}, with an optional briefing text. -- -- ## Formation methods -- -- The following methods can be used to set or change the formation: -- -- * @{AI_Formation#AI_FORMATION.FormationLine}(): Form a line formation (core formation function). -- * @{AI_Formation#AI_FORMATION.FormationTrail}(): Form a trail formation. -- * @{AI_Formation#AI_FORMATION.FormationLeftLine}(): Form a left line formation. -- * @{AI_Formation#AI_FORMATION.FormationRightLine}(): Form a right line formation. -- * @{AI_Formation#AI_FORMATION.FormationRightWing}(): Form a right wing formation. -- * @{AI_Formation#AI_FORMATION.FormationLeftWing}(): Form a left wing formation. -- * @{AI_Formation#AI_FORMATION.FormationCenterWing}(): Form a center wing formation. -- * @{AI_Formation#AI_FORMATION.FormationCenterVic}(): Form a Vic formation (same as CenterWing. -- * @{AI_Formation#AI_FORMATION.FormationCenterBoxed}(): Form a center boxed formation. -- -- ## Randomization -- -- Use the method @{AI_Formation#AI_FORMATION.SetFlightRandomization}() to simulate the formation flying errors that pilots make while in formation. Is a range set in meters. -- -- @usage -- local FollowGroupSet = SET_GROUP:New():FilterCategories("plane"):FilterCoalitions("blue"):FilterPrefixes("Follow"):FilterStart() -- FollowGroupSet:Flush() -- local LeaderUnit = UNIT:FindByName( "Leader" ) -- local LargeFormation = AI_FORMATION:New( LeaderUnit, FollowGroupSet, "Center Wing Formation", "Briefing" ) -- LargeFormation:FormationCenterWing( 500, 50, 0, 250, 250 ) -- LargeFormation:__Start( 1 ) -- -- @field #AI_FORMATION AI_FORMATION = { ClassName = "AI_FORMATION", FollowName = nil, -- The Follow Name FollowUnit = nil, FollowGroupSet = nil, FollowMode = 1, MODE = { FOLLOW = 1, MISSION = 2, }, FollowScheduler = nil, OptionROE = AI.Option.Air.val.ROE.OPEN_FIRE, OptionReactionOnThreat = AI.Option.Air.val.REACTION_ON_THREAT.ALLOW_ABORT_MISSION, } --- AI_FORMATION.Mode class -- @type AI_FORMATION.MODE -- @field #number FOLLOW -- @field #number MISSION --- MENUPARAM type -- @type MENUPARAM -- @field #AI_FORMATION ParamSelf -- @field #Distance ParamDistance -- @field #function ParamFunction -- @field #string ParamMessage --- AI_FORMATION class constructor for an AI group -- @param #AI_FORMATION self -- @param Unit#UNIT FollowUnit The UNIT leading the FolllowGroupSet. -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string FollowName Name of the escort. -- @return #AI_FORMATION self function AI_FORMATION:New( FollowUnit, FollowGroupSet, FollowName, FollowBriefing ) --R2.1 local self = BASE:Inherit( self, FSM_SET:New( FollowGroupSet ) ) self:F( { FollowUnit, FollowGroupSet, FollowName } ) self.FollowUnit = FollowUnit -- Unit#UNIT self.FollowGroupSet = FollowGroupSet -- Set#SET_GROUP self:SetFlightRandomization( 2 ) self:SetStartState( "None" ) self:AddTransition( "*", "Stop", "Stopped" ) self:AddTransition( "None", "Start", "Following" ) self:AddTransition( "*", "FormationLine", "*" ) --- FormationLine Handler OnBefore for AI_FORMATION -- @function [parent=#AI_FORMATION] OnBeforeFormationLine -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #boolean --- FormationLine Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationLine -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationLine Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] FormationLine -- @param #AI_FORMATION self -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationLine Asynchronous Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] __FormationLine -- @param #AI_FORMATION self -- @param #number Delay -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. self:AddTransition( "*", "FormationTrail", "*" ) --- FormationTrail Handler OnBefore for AI_FORMATION -- @function [parent=#AI_FORMATION] OnBeforeFormationTrail -- @param #AI_FORMATION self -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @return #boolean --- FormationTrail Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationTrail -- @param #AI_FORMATION self -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. --- FormationTrail Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] FormationTrail -- @param #AI_FORMATION self -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. --- FormationTrail Asynchronous Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] __FormationTrail -- @param #AI_FORMATION self -- @param #number Delay -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. self:AddTransition( "*", "FormationStack", "*" ) --- FormationStack Handler OnBefore for AI_FORMATION -- @function [parent=#AI_FORMATION] OnBeforeFormationStack -- @param #AI_FORMATION self -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @return #boolean --- FormationStack Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationStack -- @param #AI_FORMATION self -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. --- FormationStack Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] FormationStack -- @param #AI_FORMATION self -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. --- FormationStack Asynchronous Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] __FormationStack -- @param #AI_FORMATION self -- @param #number Delay -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. self:AddTransition( "*", "FormationLeftLine", "*" ) --- FormationLeftLine Handler OnBefore for AI_FORMATION -- @function [parent=#AI_FORMATION] OnBeforeFormationLeftLine -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #boolean --- FormationLeftLine Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationLeftLine -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationLeftLine Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] FormationLeftLine -- @param #AI_FORMATION self -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationLeftLine Asynchronous Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] __FormationLeftLine -- @param #AI_FORMATION self -- @param #number Delay -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. self:AddTransition( "*", "FormationRightLine", "*" ) --- FormationRightLine Handler OnBefore for AI_FORMATION -- @function [parent=#AI_FORMATION] OnBeforeFormationRightLine -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #boolean --- FormationRightLine Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationRightLine -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationRightLine Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] FormationRightLine -- @param #AI_FORMATION self -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationRightLine Asynchronous Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] __FormationRightLine -- @param #AI_FORMATION self -- @param #number Delay -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. self:AddTransition( "*", "FormationLeftWing", "*" ) --- FormationLeftWing Handler OnBefore for AI_FORMATION -- @function [parent=#AI_FORMATION] OnBeforeFormationLeftWing -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #boolean --- FormationLeftWing Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationLeftWing -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationLeftWing Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] FormationLeftWing -- @param #AI_FORMATION self -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationLeftWing Asynchronous Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] __FormationLeftWing -- @param #AI_FORMATION self -- @param #number Delay -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. self:AddTransition( "*", "FormationRightWing", "*" ) --- FormationRightWing Handler OnBefore for AI_FORMATION -- @function [parent=#AI_FORMATION] OnBeforeFormationRightWing -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #boolean --- FormationRightWing Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationRightWing -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationRightWing Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] FormationRightWing -- @param #AI_FORMATION self -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationRightWing Asynchronous Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] __FormationRightWing -- @param #AI_FORMATION self -- @param #number Delay -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. self:AddTransition( "*", "FormationCenterWing", "*" ) --- FormationCenterWing Handler OnBefore for AI_FORMATION -- @function [parent=#AI_FORMATION] OnBeforeFormationCenterWing -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #boolean --- FormationCenterWing Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationCenterWing -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationCenterWing Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] FormationCenterWing -- @param #AI_FORMATION self -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationCenterWing Asynchronous Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] __FormationCenterWing -- @param #AI_FORMATION self -- @param #number Delay -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. self:AddTransition( "*", "FormationVic", "*" ) --- FormationVic Handler OnBefore for AI_FORMATION -- @function [parent=#AI_FORMATION] OnBeforeFormationVic -- @param #AI_FORMATION self -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #boolean --- FormationVic Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationVic -- @param #AI_FORMATION self -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationVic Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] FormationVic -- @param #AI_FORMATION self -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. --- FormationVic Asynchronous Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] __FormationVic -- @param #AI_FORMATION self -- @param #number Delay -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. self:AddTransition( "*", "FormationBox", "*" ) --- FormationBox Handler OnBefore for AI_FORMATION -- @function [parent=#AI_FORMATION] OnBeforeFormationBox -- @param #AI_FORMATION self -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @param #number ZLevels The amount of levels on the Z-axis. -- @return #boolean --- FormationBox Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationBox -- @param #AI_FORMATION self -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @param #number ZLevels The amount of levels on the Z-axis. --- FormationBox Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] FormationBox -- @param #AI_FORMATION self -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @param #number ZLevels The amount of levels on the Z-axis. --- FormationBox Asynchronous Trigger for AI_FORMATION -- @function [parent=#AI_FORMATION] __FormationBox -- @param #AI_FORMATION self -- @param #number Delay -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @param #number ZLevels The amount of levels on the Z-axis. self:AddTransition( "*", "Follow", "Following" ) self:FormationLeftLine( 500, 0, 250, 250 ) self.FollowName = FollowName self.FollowBriefing = FollowBriefing self.CT1 = 0 self.GT1 = 0 self.FollowMode = AI_FORMATION.MODE.MISSION return self end --- This function is for test, it will put on the frequency of the FollowScheduler a red smoke at the direction vector calculated for the escort to fly to. -- This allows to visualize where the escort is flying to. -- @param #AI_FORMATION self -- @param #boolean SmokeDirection If true, then the direction vector will be smoked. -- @return #AI_FORMATION function AI_FORMATION:TestSmokeDirectionVector( SmokeDirection ) --R2.1 self.SmokeDirectionVector = ( SmokeDirection == true ) and true or false return self end --- FormationLine Handler OnAfter for AI_FORMATION -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #AI_FORMATION function AI_FORMATION:onafterFormationLine( FollowGroupSet, From , Event , To, XStart, XSpace, YStart, YSpace, ZStart, ZSpace ) --R2.1 self:F( { FollowGroupSet, From , Event ,To, XStart, XSpace, YStart, YSpace, ZStart, ZSpace } ) FollowGroupSet:Flush() local FollowSet = FollowGroupSet:GetSet() local i = 0 for FollowID, FollowGroup in pairs( FollowSet ) do local PointVec3 = POINT_VEC3:New() PointVec3:SetX( XStart + i * XSpace ) PointVec3:SetY( YStart + i * YSpace ) PointVec3:SetZ( ZStart + i * ZSpace ) local Vec3 = PointVec3:GetVec3() FollowGroup:SetState( self, "FormationVec3", Vec3 ) i = i + 1 end return self end --- FormationTrail Handler OnAfter for AI_FORMATION -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @return #AI_FORMATION function AI_FORMATION:onafterFormationTrail( FollowGroupSet, From , Event , To, XStart, XSpace, YStart ) --R2.1 self:onafterFormationLine(FollowGroupSet,From,Event,To,XStart,XSpace,YStart,0,0,0) return self end --- FormationStack Handler OnAfter for AI_FORMATION -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @return #AI_FORMATION function AI_FORMATION:onafterFormationStack( FollowGroupSet, From , Event , To, XStart, XSpace, YStart, YSpace ) --R2.1 self:onafterFormationLine(FollowGroupSet,From,Event,To,XStart,XSpace,YStart,YSpace,0,0) return self end --- FormationLeftLine Handler OnAfter for AI_FORMATION -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #AI_FORMATION function AI_FORMATION:onafterFormationLeftLine( FollowGroupSet, From , Event , To, XStart, YStart, ZStart, ZSpace ) --R2.1 self:onafterFormationLine(FollowGroupSet,From,Event,To,XStart,0,YStart,0,ZStart,ZSpace) return self end --- FormationRightLine Handler OnAfter for AI_FORMATION -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #AI_FORMATION function AI_FORMATION:onafterFormationRightLine( FollowGroupSet, From , Event , To, XStart, YStart, ZStart, ZSpace ) --R2.1 self:onafterFormationLine(FollowGroupSet,From,Event,To,XStart,0,YStart,0,-ZStart,-ZSpace) return self end --- FormationLeftWing Handler OnAfter for AI_FORMATION -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. function AI_FORMATION:onafterFormationLeftWing( FollowGroupSet, From , Event , To, XStart, XSpace, YStart, ZStart, ZSpace ) --R2.1 self:onafterFormationLine(FollowGroupSet,From,Event,To,XStart,XSpace,YStart,0,ZStart,ZSpace) return self end --- FormationRightWing Handler OnAfter for AI_FORMATION -- @function [parent=#AI_FORMATION] OnAfterFormationRightWing -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. function AI_FORMATION:onafterFormationRightWing( FollowGroupSet, From , Event , To, XStart, XSpace, YStart, ZStart, ZSpace ) --R2.1 self:onafterFormationLine(FollowGroupSet,From,Event,To,XStart,XSpace,YStart,0,-ZStart,-ZSpace) return self end --- FormationCenterWing Handler OnAfter for AI_FORMATION -- @param #AI_FORMATION self -- @param Core.Set#SET_GROUP FollowGroupSet The group AI escorting the FollowUnit. -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. function AI_FORMATION:onafterFormationCenterWing( FollowGroupSet, From , Event , To, XStart, XSpace, YStart, YSpace, ZStart, ZSpace ) --R2.1 local FollowSet = FollowGroupSet:GetSet() local i = 0 for FollowID, FollowGroup in pairs( FollowSet ) do local PointVec3 = POINT_VEC3:New() local Side = ( i % 2 == 0 ) and 1 or -1 local Row = i / 2 + 1 PointVec3:SetX( XStart + Row * XSpace ) PointVec3:SetY( YStart ) PointVec3:SetZ( Side * ( ZStart + i * ZSpace ) ) local Vec3 = PointVec3:GetVec3() FollowGroup:SetState( self, "FormationVec3", Vec3 ) i = i + 1 end return self end --- FormationVic Handle for AI_FORMATION -- @param #AI_FORMATION self -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @return #AI_FORMATION function AI_FORMATION:onafterFormationVic( FollowGroupSet, From , Event , To, XStart, XSpace, YStart, YSpace, ZStart, ZSpace ) --R2.1 self:onafterFormationCenterWing(FollowGroupSet,From,Event,To,XStart,XSpace,YStart,YSpace,ZStart,ZSpace) return self end --- FormationBox Handler OnAfter for AI_FORMATION -- @param #AI_FORMATION self -- @param #string From -- @param #string Event -- @param #string To -- @param #number XStart The start position on the X-axis in meters for the first group. -- @param #number XSpace The space between groups on the X-axis in meters for each sequent group. -- @param #nubmer YStart The start position on the Y-axis in meters for the first group. -- @param #number YSpace The space between groups on the Y-axis in meters for each sequent group. -- @param #nubmer ZStart The start position on the Z-axis in meters for the first group. -- @param #number ZSpace The space between groups on the Z-axis in meters for each sequent group. -- @param #number ZLevels The amount of levels on the Z-axis. -- @return #AI_FORMATION function AI_FORMATION:onafterFormationBox( FollowGroupSet, From , Event , To, XStart, XSpace, YStart, YSpace, ZStart, ZSpace, ZLevels ) --R2.1 local FollowSet = FollowGroupSet:GetSet() local i = 0 for FollowID, FollowGroup in pairs( FollowSet ) do local PointVec3 = POINT_VEC3:New() local ZIndex = i % ZLevels local XIndex = math.floor( i / ZLevels ) local YIndex = math.floor( i / ZLevels ) PointVec3:SetX( XStart + XIndex * XSpace ) PointVec3:SetY( YStart + YIndex * YSpace ) PointVec3:SetZ( -ZStart - (ZSpace * ZLevels / 2 ) + ZSpace * ZIndex ) local Vec3 = PointVec3:GetVec3() FollowGroup:SetState( self, "FormationVec3", Vec3 ) i = i + 1 end return self end --- Use the method @{AI_Formation#AI_FORMATION.SetFlightRandomization}() to make the air units in your formation randomize their flight a bit while in formation. -- @param #AI_FORMATION self -- @param #number FlightRandomization The formation flying errors that pilots can make while in formation. Is a range set in meters. -- @return #AI_FORMATION function AI_FORMATION:SetFlightRandomization( FlightRandomization ) --R2.1 self.FlightRandomization = FlightRandomization return self end --- @param Follow#AI_FORMATION self function AI_FORMATION:onenterFollowing( FollowGroupSet ) --R2.1 self:F( ) self:T( { self.FollowUnit.UnitName, self.FollowUnit:IsAlive() } ) if self.FollowUnit:IsAlive() then local ClientUnit = self.FollowUnit self:T( {ClientUnit.UnitName } ) local CT1, CT2, CV1, CV2 CT1 = ClientUnit:GetState( self, "CT1" ) if CT1 == nil or CT1 == 0 then ClientUnit:SetState( self, "CV1", ClientUnit:GetPointVec3() ) ClientUnit:SetState( self, "CT1", timer.getTime() ) else CT1 = ClientUnit:GetState( self, "CT1" ) CT2 = timer.getTime() CV1 = ClientUnit:GetState( self, "CV1" ) CV2 = ClientUnit:GetPointVec3() ClientUnit:SetState( self, "CT1", CT2 ) ClientUnit:SetState( self, "CV1", CV2 ) end FollowGroupSet:ForEachGroup( --- @param Wrapper.Group#GROUP FollowGroup -- @param Wrapper.Unit#UNIT ClientUnit function( FollowGroup, Formation, ClientUnit, CT1, CV1, CT2, CV2 ) FollowGroup:OptionROTEvadeFire() FollowGroup:OptionROEReturnFire() local GroupUnit = FollowGroup:GetUnit( 1 ) local FollowFormation = FollowGroup:GetState( self, "FormationVec3" ) if FollowFormation then local FollowDistance = FollowFormation.x local GT1 = GroupUnit:GetState( self, "GT1" ) if CT1 == nil or CT1 == 0 or GT1 == nil or GT1 == 0 then GroupUnit:SetState( self, "GV1", GroupUnit:GetPointVec3() ) GroupUnit:SetState( self, "GT1", timer.getTime() ) else local CD = ( ( CV2.x - CV1.x )^2 + ( CV2.y - CV1.y )^2 + ( CV2.z - CV1.z )^2 ) ^ 0.5 local CT = CT2 - CT1 local CS = ( 3600 / CT ) * ( CD / 1000 ) / 3.6 local CDv = { x = CV2.x - CV1.x, y = CV2.y - CV1.y, z = CV2.z - CV1.z } local Ca = math.atan2( CDv.x, CDv.z ) local GT1 = GroupUnit:GetState( self, "GT1" ) local GT2 = timer.getTime() local GV1 = GroupUnit:GetState( self, "GV1" ) local GV2 = GroupUnit:GetPointVec3() GV2:AddX( math.random( -Formation.FlightRandomization / 2, Formation.FlightRandomization / 2 ) ) GV2:AddY( math.random( -Formation.FlightRandomization / 2, Formation.FlightRandomization / 2 ) ) GV2:AddZ( math.random( -Formation.FlightRandomization / 2, Formation.FlightRandomization / 2 ) ) GroupUnit:SetState( self, "GT1", GT2 ) GroupUnit:SetState( self, "GV1", GV2 ) local GD = ( ( GV2.x - GV1.x )^2 + ( GV2.y - GV1.y )^2 + ( GV2.z - GV1.z )^2 ) ^ 0.5 local GT = GT2 - GT1 -- Calculate the distance local GDv = { x = GV2.x - CV1.x, y = GV2.y - CV1.y, z = GV2.z - CV1.z } local Alpha_T = math.atan2( GDv.x, GDv.z ) - math.atan2( CDv.x, CDv.z ) local Alpha_R = ( Alpha_T < 0 ) and Alpha_T + 2 * math.pi or Alpha_T local Position = math.cos( Alpha_R ) local GD = ( ( GDv.x )^2 + ( GDv.z )^2 ) ^ 0.5 local Distance = GD * Position + - CS * 0,5 -- Calculate the group direction vector local GV = { x = GV2.x - CV2.x, y = GV2.y - CV2.y, z = GV2.z - CV2.z } -- Calculate GH2, GH2 with the same height as CV2. local GH2 = { x = GV2.x, y = CV2.y + FollowFormation.y, z = GV2.z } -- Calculate the angle of GV to the orthonormal plane local alpha = math.atan2( GV.x, GV.z ) local GVx = FollowFormation.z * math.cos( Ca ) + FollowFormation.x * math.sin( Ca ) local GVz = FollowFormation.x * math.cos( Ca ) - FollowFormation.z * math.sin( Ca ) -- Now we calculate the intersecting vector between the circle around CV2 with radius FollowDistance and GH2. -- From the GeoGebra model: CVI = (x(CV2) + FollowDistance cos(alpha), y(GH2) + FollowDistance sin(alpha), z(CV2)) local CVI = { x = CV2.x + CS * 10 * math.sin(Ca), y = GH2.y - ( Distance + FollowFormation.x ) / 5, -- + FollowFormation.y, z = CV2.z + CS * 10 * math.cos(Ca), } -- Calculate the direction vector DV of the escort group. We use CVI as the base and CV2 as the direction. local DV = { x = CV2.x - CVI.x, y = CV2.y - CVI.y, z = CV2.z - CVI.z } -- We now calculate the unary direction vector DVu, so that we can multiply DVu with the speed, which is expressed in meters / s. -- We need to calculate this vector to predict the point the escort group needs to fly to according its speed. -- The distance of the destination point should be far enough not to have the aircraft starting to swipe left to right... local DVu = { x = DV.x / FollowDistance, y = DV.y, z = DV.z / FollowDistance } -- Now we can calculate the group destination vector GDV. local GDV = { x = CVI.x, y = CVI.y, z = CVI.z } local ADDx = FollowFormation.x * math.cos(alpha) - FollowFormation.z * math.sin(alpha) local ADDz = FollowFormation.z * math.cos(alpha) + FollowFormation.x * math.sin(alpha) local GDV_Formation = { x = GDV.x - GVx, y = GDV.y, z = GDV.z - GVz } if self.SmokeDirectionVector == true then trigger.action.smoke( GDV, trigger.smokeColor.Green ) trigger.action.smoke( GDV_Formation, trigger.smokeColor.White ) end local Time = 60 local Speed = - ( Distance + FollowFormation.x ) / Time local GS = Speed + CS if Speed < 0 then Speed = 0 end -- Now route the escort to the desired point with the desired speed. FollowGroup:RouteToVec3( GDV_Formation, GS ) -- DCS models speed in Mps (Miles per second) end end end, self, ClientUnit, CT1, CV1, CT2, CV2 ) self:__Follow( -0.5 ) end end --- (SP) (MP) (FSM) Accept or reject process for player (task) assignments. -- -- === -- -- # @{#ACT_ASSIGN} FSM template class, extends @{Fsm#FSM_PROCESS} -- -- ## ACT_ASSIGN state machine: -- -- This class is a state machine: it manages a process that is triggered by events causing state transitions to occur. -- All derived classes from this class will start with the class name, followed by a \_. See the relevant derived class descriptions below. -- Each derived class follows exactly the same process, using the same events and following the same state transitions, -- but will have **different implementation behaviour** upon each event or state transition. -- -- ### ACT_ASSIGN **Events**: -- -- These are the events defined in this class: -- -- * **Start**: Start the tasking acceptance process. -- * **Assign**: Assign the task. -- * **Reject**: Reject the task.. -- -- ### ACT_ASSIGN **Event methods**: -- -- Event methods are available (dynamically allocated by the state machine), that accomodate for state transitions occurring in the process. -- There are two types of event methods, which you can use to influence the normal mechanisms in the state machine: -- -- * **Immediate**: The event method has exactly the name of the event. -- * **Delayed**: The event method starts with a __ + the name of the event. The first parameter of the event method is a number value, expressing the delay in seconds when the event will be executed. -- -- ### ACT_ASSIGN **States**: -- -- * **UnAssigned**: The player has not accepted the task. -- * **Assigned (*)**: The player has accepted the task. -- * **Rejected (*)**: The player has not accepted the task. -- * **Waiting**: The process is awaiting player feedback. -- * **Failed (*)**: The process has failed. -- -- (*) End states of the process. -- -- ### ACT_ASSIGN state transition methods: -- -- State transition functions can be set **by the mission designer** customizing or improving the behaviour of the state. -- There are 2 moments when state transition methods will be called by the state machine: -- -- * **Before** the state transition. -- The state transition method needs to start with the name **OnBefore + the name of the state**. -- If the state transition method returns false, then the processing of the state transition will not be done! -- If you want to change the behaviour of the AIControllable at this event, return false, -- but then you'll need to specify your own logic using the AIControllable! -- -- * **After** the state transition. -- The state transition method needs to start with the name **OnAfter + the name of the state**. -- These state transition methods need to provide a return value, which is specified at the function description. -- -- === -- -- # 1) @{#ACT_ASSIGN_ACCEPT} class, extends @{Fsm.Assign#ACT_ASSIGN} -- -- The ACT_ASSIGN_ACCEPT class accepts by default a task for a player. No player intervention is allowed to reject the task. -- -- ## 1.1) ACT_ASSIGN_ACCEPT constructor: -- -- * @{#ACT_ASSIGN_ACCEPT.New}(): Creates a new ACT_ASSIGN_ACCEPT object. -- -- === -- -- # 2) @{#ACT_ASSIGN_MENU_ACCEPT} class, extends @{Fsm.Assign#ACT_ASSIGN} -- -- The ACT_ASSIGN_MENU_ACCEPT class accepts a task when the player accepts the task through an added menu option. -- This assignment type is useful to conditionally allow the player to choose whether or not he would accept the task. -- The assignment type also allows to reject the task. -- -- ## 2.1) ACT_ASSIGN_MENU_ACCEPT constructor: -- ----------------------------------------- -- -- * @{#ACT_ASSIGN_MENU_ACCEPT.New}(): Creates a new ACT_ASSIGN_MENU_ACCEPT object. -- -- === -- -- @module Assign do -- ACT_ASSIGN --- ACT_ASSIGN class -- @type ACT_ASSIGN -- @field Tasking.Task#TASK Task -- @field Wrapper.Unit#UNIT ProcessUnit -- @field Core.Zone#ZONE_BASE TargetZone -- @extends Core.Fsm#FSM_PROCESS ACT_ASSIGN = { ClassName = "ACT_ASSIGN", } --- Creates a new task assignment state machine. The process will accept the task by default, no player intervention accepted. -- @param #ACT_ASSIGN self -- @return #ACT_ASSIGN The task acceptance process. function ACT_ASSIGN:New() -- Inherits from BASE local self = BASE:Inherit( self, FSM_PROCESS:New( "ACT_ASSIGN" ) ) -- Core.Fsm#FSM_PROCESS self:AddTransition( "UnAssigned", "Start", "Waiting" ) self:AddTransition( "Waiting", "Assign", "Assigned" ) self:AddTransition( "Waiting", "Reject", "Rejected" ) self:AddTransition( "*", "Fail", "Failed" ) self:AddEndState( "Assigned" ) self:AddEndState( "Rejected" ) self:AddEndState( "Failed" ) self:SetStartState( "UnAssigned" ) return self end end -- ACT_ASSIGN do -- ACT_ASSIGN_ACCEPT --- ACT_ASSIGN_ACCEPT class -- @type ACT_ASSIGN_ACCEPT -- @field Tasking.Task#TASK Task -- @field Wrapper.Unit#UNIT ProcessUnit -- @field Core.Zone#ZONE_BASE TargetZone -- @extends #ACT_ASSIGN ACT_ASSIGN_ACCEPT = { ClassName = "ACT_ASSIGN_ACCEPT", } --- Creates a new task assignment state machine. The process will accept the task by default, no player intervention accepted. -- @param #ACT_ASSIGN_ACCEPT self -- @param #string TaskBriefing function ACT_ASSIGN_ACCEPT:New( TaskBriefing ) local self = BASE:Inherit( self, ACT_ASSIGN:New() ) -- #ACT_ASSIGN_ACCEPT self.TaskBriefing = TaskBriefing return self end function ACT_ASSIGN_ACCEPT:Init( FsmAssign ) self.TaskBriefing = FsmAssign.TaskBriefing end --- StateMachine callback function -- @param #ACT_ASSIGN_ACCEPT self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ASSIGN_ACCEPT:onafterStart( ProcessUnit, From, Event, To ) self:E( { ProcessUnit, From, Event, To } ) self:__Assign( 1 ) end --- StateMachine callback function -- @param #ACT_ASSIGN_ACCEPT self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ASSIGN_ACCEPT:onenterAssigned( ProcessUnit, From, Event, To ) env.info( "in here" ) self:E( { ProcessUnit, From, Event, To } ) local ProcessGroup = ProcessUnit:GetGroup() self.Task:Assign( ProcessUnit, ProcessUnit:GetPlayerName() ) end end -- ACT_ASSIGN_ACCEPT do -- ACT_ASSIGN_MENU_ACCEPT --- ACT_ASSIGN_MENU_ACCEPT class -- @type ACT_ASSIGN_MENU_ACCEPT -- @field Tasking.Task#TASK Task -- @field Wrapper.Unit#UNIT ProcessUnit -- @field Core.Zone#ZONE_BASE TargetZone -- @extends #ACT_ASSIGN ACT_ASSIGN_MENU_ACCEPT = { ClassName = "ACT_ASSIGN_MENU_ACCEPT", } --- Init. -- @param #ACT_ASSIGN_MENU_ACCEPT self -- @param #string TaskName -- @param #string TaskBriefing -- @return #ACT_ASSIGN_MENU_ACCEPT self function ACT_ASSIGN_MENU_ACCEPT:New( TaskName, TaskBriefing ) -- Inherits from BASE local self = BASE:Inherit( self, ACT_ASSIGN:New() ) -- #ACT_ASSIGN_MENU_ACCEPT self.TaskName = TaskName self.TaskBriefing = TaskBriefing return self end function ACT_ASSIGN_MENU_ACCEPT:Init( FsmAssign ) self.TaskName = FsmAssign.TaskName self.TaskBriefing = FsmAssign.TaskBriefing end --- Creates a new task assignment state machine. The process will request from the menu if it accepts the task, if not, the unit is removed from the simulator. -- @param #ACT_ASSIGN_MENU_ACCEPT self -- @param #string TaskName -- @param #string TaskBriefing -- @return #ACT_ASSIGN_MENU_ACCEPT self function ACT_ASSIGN_MENU_ACCEPT:Init( TaskName, TaskBriefing ) self.TaskBriefing = TaskBriefing self.TaskName = TaskName return self end --- StateMachine callback function -- @param #ACT_ASSIGN_MENU_ACCEPT self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ASSIGN_MENU_ACCEPT:onafterStart( ProcessUnit, From, Event, To ) self:E( { ProcessUnit, From, Event, To } ) self:GetCommandCenter():MessageTypeToGroup( "Access the radio menu to accept the task. You have 30 seconds or the assignment will be cancelled.", ProcessUnit:GetGroup(), MESSAGE.Type.Information ) local ProcessGroup = ProcessUnit:GetGroup() self.Menu = MENU_GROUP:New( ProcessGroup, "Task " .. self.TaskName .. " acceptance" ) self.MenuAcceptTask = MENU_GROUP_COMMAND:New( ProcessGroup, "Accept task " .. self.TaskName, self.Menu, self.MenuAssign, self ) self.MenuRejectTask = MENU_GROUP_COMMAND:New( ProcessGroup, "Reject task " .. self.TaskName, self.Menu, self.MenuReject, self ) end --- Menu function. -- @param #ACT_ASSIGN_MENU_ACCEPT self function ACT_ASSIGN_MENU_ACCEPT:MenuAssign() self:E( ) self:__Assign( 1 ) end --- Menu function. -- @param #ACT_ASSIGN_MENU_ACCEPT self function ACT_ASSIGN_MENU_ACCEPT:MenuReject() self:E( ) self:__Reject( 1 ) end --- StateMachine callback function -- @param #ACT_ASSIGN_MENU_ACCEPT self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ASSIGN_MENU_ACCEPT:onafterAssign( ProcessUnit, From, Event, To ) self:E( { ProcessUnit.UnitNameFrom, Event, To } ) self.Menu:Remove() end --- StateMachine callback function -- @param #ACT_ASSIGN_MENU_ACCEPT self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ASSIGN_MENU_ACCEPT:onafterReject( ProcessUnit, From, Event, To ) self:E( { ProcessUnit.UnitName, From, Event, To } ) self.Menu:Remove() --TODO: need to resolve this problem ... it has to do with the events ... --self.Task:UnAssignFromUnit( ProcessUnit )needs to become a callback funtion call upon the event ProcessUnit:Destroy() end end -- ACT_ASSIGN_MENU_ACCEPT --- (SP) (MP) (FSM) Route AI or players through waypoints or to zones. -- -- === -- -- # @{#ACT_ROUTE} FSM class, extends @{Fsm#FSM_PROCESS} -- -- ## ACT_ROUTE state machine: -- -- This class is a state machine: it manages a process that is triggered by events causing state transitions to occur. -- All derived classes from this class will start with the class name, followed by a \_. See the relevant derived class descriptions below. -- Each derived class follows exactly the same process, using the same events and following the same state transitions, -- but will have **different implementation behaviour** upon each event or state transition. -- -- ### ACT_ROUTE **Events**: -- -- These are the events defined in this class: -- -- * **Start**: The process is started. The process will go into the Report state. -- * **Report**: The process is reporting to the player the route to be followed. -- * **Route**: The process is routing the controllable. -- * **Pause**: The process is pausing the route of the controllable. -- * **Arrive**: The controllable has arrived at a route point. -- * **More**: There are more route points that need to be followed. The process will go back into the Report state. -- * **NoMore**: There are no more route points that need to be followed. The process will go into the Success state. -- -- ### ACT_ROUTE **Event methods**: -- -- Event methods are available (dynamically allocated by the state machine), that accomodate for state transitions occurring in the process. -- There are two types of event methods, which you can use to influence the normal mechanisms in the state machine: -- -- * **Immediate**: The event method has exactly the name of the event. -- * **Delayed**: The event method starts with a __ + the name of the event. The first parameter of the event method is a number value, expressing the delay in seconds when the event will be executed. -- -- ### ACT_ROUTE **States**: -- -- * **None**: The controllable did not receive route commands. -- * **Arrived (*)**: The controllable has arrived at a route point. -- * **Aborted (*)**: The controllable has aborted the route path. -- * **Routing**: The controllable is understay to the route point. -- * **Pausing**: The process is pausing the routing. AI air will go into hover, AI ground will stop moving. Players can fly around. -- * **Success (*)**: All route points were reached. -- * **Failed (*)**: The process has failed. -- -- (*) End states of the process. -- -- ### ACT_ROUTE state transition methods: -- -- State transition functions can be set **by the mission designer** customizing or improving the behaviour of the state. -- There are 2 moments when state transition methods will be called by the state machine: -- -- * **Before** the state transition. -- The state transition method needs to start with the name **OnBefore + the name of the state**. -- If the state transition method returns false, then the processing of the state transition will not be done! -- If you want to change the behaviour of the AIControllable at this event, return false, -- but then you'll need to specify your own logic using the AIControllable! -- -- * **After** the state transition. -- The state transition method needs to start with the name **OnAfter + the name of the state**. -- These state transition methods need to provide a return value, which is specified at the function description. -- -- === -- -- # 1) @{#ACT_ROUTE_ZONE} class, extends @{Fsm.Route#ACT_ROUTE} -- -- The ACT_ROUTE_ZONE class implements the core functions to route an AIR @{Controllable} player @{Unit} to a @{Zone}. -- The player receives on perioding times messages with the coordinates of the route to follow. -- Upon arrival at the zone, a confirmation of arrival is sent, and the process will be ended. -- -- # 1.1) ACT_ROUTE_ZONE constructor: -- -- * @{#ACT_ROUTE_ZONE.New}(): Creates a new ACT_ROUTE_ZONE object. -- -- === -- -- @module Route do -- ACT_ROUTE --- ACT_ROUTE class -- @type ACT_ROUTE -- @field Tasking.Task#TASK TASK -- @field Wrapper.Unit#UNIT ProcessUnit -- @field Core.Zone#ZONE_BASE Zone -- @field Core.Point#COORDINATE Coordinate -- @extends Core.Fsm#FSM_PROCESS ACT_ROUTE = { ClassName = "ACT_ROUTE", } --- Creates a new routing state machine. The process will route a CLIENT to a ZONE until the CLIENT is within that ZONE. -- @param #ACT_ROUTE self -- @return #ACT_ROUTE self function ACT_ROUTE:New() -- Inherits from BASE local self = BASE:Inherit( self, FSM_PROCESS:New( "ACT_ROUTE" ) ) -- Core.Fsm#FSM_PROCESS self:AddTransition( "*", "Reset", "None" ) self:AddTransition( "None", "Start", "Routing" ) self:AddTransition( "*", "Report", "*" ) self:AddTransition( "Routing", "Route", "Routing" ) self:AddTransition( "Routing", "Pause", "Pausing" ) self:AddTransition( "Routing", "Arrive", "Arrived" ) self:AddTransition( "*", "Cancel", "Cancelled" ) self:AddTransition( "Arrived", "Success", "Success" ) self:AddTransition( "*", "Fail", "Failed" ) self:AddTransition( "", "", "" ) self:AddTransition( "", "", "" ) self:AddEndState( "Arrived" ) self:AddEndState( "Failed" ) self:AddEndState( "Cancelled" ) self:SetStartState( "None" ) self:SetRouteMode( "C" ) return self end --- Set a Cancel Menu item. -- @param #ACT_ROUTE self -- @return #ACT_ROUTE function ACT_ROUTE:SetMenuCancel( MenuGroup, MenuText, ParentMenu, MenuTime ) MENU_GROUP_COMMAND:New( MenuGroup, MenuText, ParentMenu, self.MenuCancel, self ):SetTime(MenuTime) return self end --- Set the route mode. -- There are 2 route modes supported: -- -- * SetRouteMode( "B" ): Route mode is Bearing and Range. -- * SetRouteMode( "C" ): Route mode is LL or MGRS according coordinate system setup. -- -- @param #ACT_ROUTE self -- @return #ACT_ROUTE function ACT_ROUTE:SetRouteMode( RouteMode ) self.RouteMode = RouteMode return self end --- Get the routing text to be displayed. -- The route mode determines the text displayed. -- @param #ACT_ROUTE self -- @param Wrapper.Unit#UNIT Controllable -- @return #string function ACT_ROUTE:GetRouteText( Controllable ) self:E() local RouteText = "" local Coordinate = nil -- Core.Point#COORDINATE if self.Coordinate then Coordinate = self.Coordinate end if self.Zone then Coordinate = self.Zone:GetPointVec3( self.Altitude ) Coordinate:SetHeading( self.Heading ) end local Task = self:GetTask() -- This is to dermine that the coordinates are for a specific task mode (A2A or A2G). local CC = self:GetTask():GetMission():GetCommandCenter() if CC then if CC:IsModeWWII() then -- Find closest reference point to the target. local ShortestDistance = 0 local ShortestReferencePoint = nil local ShortestReferenceName = "" self:E( { CC.ReferencePoints } ) for ZoneName, Zone in pairs( CC.ReferencePoints ) do self:E( { ZoneName = ZoneName } ) local Zone = Zone -- Core.Zone#ZONE local ZoneCoord = Zone:GetCoordinate() local ZoneDistance = ZoneCoord:Get2DDistance( self.Coordinate ) self:E( { ShortestDistance, ShortestReferenceName } ) if ShortestDistance == 0 or ZoneDistance < ShortestDistance then ShortestDistance = ZoneDistance ShortestReferencePoint = ZoneCoord ShortestReferenceName = CC.ReferenceNames[ZoneName] end end if ShortestReferencePoint then RouteText = Coordinate:ToStringFromRP( ShortestReferencePoint, ShortestReferenceName, Controllable ) end else RouteText = Coordinate:ToString( Controllable, nil, Task ) end end return RouteText end function ACT_ROUTE:MenuCancel() self:Cancel() end --- Task Events --- StateMachine callback function -- @param #ACT_ROUTE self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ROUTE:onafterStart( ProcessUnit, From, Event, To ) self:__Route( 1 ) end --- Check if the controllable has arrived. -- @param #ACT_ROUTE self -- @param Wrapper.Unit#UNIT ProcessUnit -- @return #boolean function ACT_ROUTE:onfuncHasArrived( ProcessUnit ) return false end --- StateMachine callback function -- @param #ACT_ROUTE self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ROUTE:onbeforeRoute( ProcessUnit, From, Event, To ) self:F( { "BeforeRoute 1", self.DisplayCount, self.DisplayInterval } ) if ProcessUnit:IsAlive() then self:F( "BeforeRoute 2" ) local HasArrived = self:onfuncHasArrived( ProcessUnit ) -- Polymorphic if self.DisplayCount >= self.DisplayInterval then self:T( { HasArrived = HasArrived } ) if not HasArrived then self:Report() end self.DisplayCount = 1 else self.DisplayCount = self.DisplayCount + 1 end self:T( { DisplayCount = self.DisplayCount } ) if HasArrived then self:__Arrive( 1 ) else self:__Route( 1 ) end return HasArrived -- if false, then the event will not be executed... end return false end end -- ACT_ROUTE do -- ACT_ROUTE_POINT --- ACT_ROUTE_POINT class -- @type ACT_ROUTE_POINT -- @field Tasking.Task#TASK TASK -- @extends #ACT_ROUTE ACT_ROUTE_POINT = { ClassName = "ACT_ROUTE_POINT", } --- Creates a new routing state machine. -- The task will route a controllable to a Coordinate until the controllable is within the Range. -- @param #ACT_ROUTE_POINT self -- @param Core.Point#COORDINATE The Coordinate to Target. -- @param #number Range The Distance to Target. -- @param Core.Zone#ZONE_BASE Zone function ACT_ROUTE_POINT:New( Coordinate, Range ) local self = BASE:Inherit( self, ACT_ROUTE:New() ) -- #ACT_ROUTE_POINT self.Coordinate = Coordinate self.Range = Range or 0 self.DisplayInterval = 30 self.DisplayCount = 30 self.DisplayMessage = true self.DisplayTime = 10 -- 10 seconds is the default return self end --- Creates a new routing state machine. -- The task will route a controllable to a Coordinate until the controllable is within the Range. -- @param #ACT_ROUTE_POINT self function ACT_ROUTE_POINT:Init( FsmRoute ) self.Coordinate = FsmRoute.Coordinate self.Range = FsmRoute.Range or 0 self.DisplayInterval = 30 self.DisplayCount = 30 self.DisplayMessage = true self.DisplayTime = 10 -- 10 seconds is the default self:SetStartState("None") end --- Set Coordinate -- @param #ACT_ROUTE_POINT self -- @param Core.Point#COORDINATE Coordinate The Coordinate to route to. function ACT_ROUTE_POINT:SetCoordinate( Coordinate ) self:F2( { Coordinate } ) self.Coordinate = Coordinate end --- Get Coordinate -- @param #ACT_ROUTE_POINT self -- @return Core.Point#COORDINATE Coordinate The Coordinate to route to. function ACT_ROUTE_POINT:GetCoordinate() self:F2( { self.Coordinate } ) return self.Coordinate end --- Set Range around Coordinate -- @param #ACT_ROUTE_POINT self -- @param #number Range The Range to consider the arrival. Default is 10000 meters. function ACT_ROUTE_POINT:SetRange( Range ) self:F2( { self.Range } ) self.Range = Range or 10000 end --- Get Range around Coordinate -- @param #ACT_ROUTE_POINT self -- @return #number The Range to consider the arrival. Default is 10000 meters. function ACT_ROUTE_POINT:GetRange() return self.Range end --- Method override to check if the controllable has arrived. -- @param #ACT_ROUTE_POINT self -- @param Wrapper.Unit#UNIT ProcessUnit -- @return #boolean function ACT_ROUTE_POINT:onfuncHasArrived( ProcessUnit ) if ProcessUnit:IsAlive() then local Distance = self.Coordinate:Get2DDistance( ProcessUnit:GetCoordinate() ) if Distance <= self.Range then local RouteText = "You have arrived." self:GetCommandCenter():MessageTypeToGroup( RouteText, ProcessUnit:GetGroup(), MESSAGE.Type.Information ) return true end end return false end --- Task Events --- StateMachine callback function -- @param #ACT_ROUTE_POINT self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ROUTE_POINT:onafterReport( ProcessUnit, From, Event, To ) local RouteText = self:GetRouteText( ProcessUnit ) self:GetCommandCenter():MessageTypeToGroup( RouteText, ProcessUnit:GetGroup(), MESSAGE.Type.Update ) end end -- ACT_ROUTE_POINT do -- ACT_ROUTE_ZONE --- ACT_ROUTE_ZONE class -- @type ACT_ROUTE_ZONE -- @field Tasking.Task#TASK TASK -- @field Wrapper.Unit#UNIT ProcessUnit -- @field Core.Zone#ZONE_BASE Zone -- @extends #ACT_ROUTE ACT_ROUTE_ZONE = { ClassName = "ACT_ROUTE_ZONE", } --- Creates a new routing state machine. The task will route a controllable to a ZONE until the controllable is within that ZONE. -- @param #ACT_ROUTE_ZONE self -- @param Core.Zone#ZONE_BASE Zone function ACT_ROUTE_ZONE:New( Zone ) local self = BASE:Inherit( self, ACT_ROUTE:New() ) -- #ACT_ROUTE_ZONE self.Zone = Zone self.DisplayInterval = 30 self.DisplayCount = 30 self.DisplayMessage = true self.DisplayTime = 10 -- 10 seconds is the default return self end function ACT_ROUTE_ZONE:Init( FsmRoute ) self.Zone = FsmRoute.Zone self.DisplayInterval = 30 self.DisplayCount = 30 self.DisplayMessage = true self.DisplayTime = 10 -- 10 seconds is the default end --- Set Zone -- @param #ACT_ROUTE_ZONE self -- @param Core.Zone#ZONE_BASE Zone The Zone object where to route to. -- @param #number Altitude -- @param #number Heading function ACT_ROUTE_ZONE:SetZone( Zone, Altitude, Heading ) -- R2.2 Added altitude and heading self.Zone = Zone self.Altitude = Altitude self.Heading = Heading end --- Get Zone -- @param #ACT_ROUTE_ZONE self -- @return Core.Zone#ZONE_BASE Zone The Zone object where to route to. function ACT_ROUTE_ZONE:GetZone() return self.Zone end --- Method override to check if the controllable has arrived. -- @param #ACT_ROUTE self -- @param Wrapper.Unit#UNIT ProcessUnit -- @return #boolean function ACT_ROUTE_ZONE:onfuncHasArrived( ProcessUnit ) if ProcessUnit:IsInZone( self.Zone ) then local RouteText = "You have arrived within the zone." self:GetCommandCenter():MessageTypeToGroup( RouteText, ProcessUnit:GetGroup(), MESSAGE.Type.Information ) end return ProcessUnit:IsInZone( self.Zone ) end --- Task Events --- StateMachine callback function -- @param #ACT_ROUTE_ZONE self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ROUTE_ZONE:onafterReport( ProcessUnit, From, Event, To ) self:E( { ProcessUnit = ProcessUnit } ) local RouteText = self:GetRouteText( ProcessUnit ) self:GetCommandCenter():MessageTypeToGroup( RouteText, ProcessUnit:GetGroup(), MESSAGE.Type.Update ) end end -- ACT_ROUTE_ZONE --- **Actions** - ACT_ACCOUNT_ classes **account for** (detect, count & report) various DCS events occuring on @{Unit}s. -- -- ![Banner Image](..\Presentations\ACT_ACCOUNT\Dia1.JPG) -- -- === -- -- @module Account do -- ACT_ACCOUNT --- # @{#ACT_ACCOUNT} FSM class, extends @{Fsm#FSM_PROCESS} -- -- ## ACT_ACCOUNT state machine: -- -- This class is a state machine: it manages a process that is triggered by events causing state transitions to occur. -- All derived classes from this class will start with the class name, followed by a \_. See the relevant derived class descriptions below. -- Each derived class follows exactly the same process, using the same events and following the same state transitions, -- but will have **different implementation behaviour** upon each event or state transition. -- -- ### ACT_ACCOUNT States -- -- * **Asigned**: The player is assigned. -- * **Waiting**: Waiting for an event. -- * **Report**: Reporting. -- * **Account**: Account for an event. -- * **Accounted**: All events have been accounted for, end of the process. -- * **Failed**: Failed the process. -- -- ### ACT_ACCOUNT Events -- -- * **Start**: Start the process. -- * **Wait**: Wait for an event. -- * **Report**: Report the status of the accounting. -- * **Event**: An event happened, process the event. -- * **More**: More targets. -- * **NoMore (*)**: No more targets. -- * **Fail (*)**: The action process has failed. -- -- (*) End states of the process. -- -- ### ACT_ACCOUNT state transition methods: -- -- State transition functions can be set **by the mission designer** customizing or improving the behaviour of the state. -- There are 2 moments when state transition methods will be called by the state machine: -- -- * **Before** the state transition. -- The state transition method needs to start with the name **OnBefore + the name of the state**. -- If the state transition method returns false, then the processing of the state transition will not be done! -- If you want to change the behaviour of the AIControllable at this event, return false, -- but then you'll need to specify your own logic using the AIControllable! -- -- * **After** the state transition. -- The state transition method needs to start with the name **OnAfter + the name of the state**. -- These state transition methods need to provide a return value, which is specified at the function description. -- -- @type ACT_ACCOUNT -- @field Set#SET_UNIT TargetSetUnit -- @extends Core.Fsm#FSM_PROCESS ACT_ACCOUNT = { ClassName = "ACT_ACCOUNT", TargetSetUnit = nil, } --- Creates a new DESTROY process. -- @param #ACT_ACCOUNT self -- @return #ACT_ACCOUNT function ACT_ACCOUNT:New() -- Inherits from BASE local self = BASE:Inherit( self, FSM_PROCESS:New() ) -- Core.Fsm#FSM_PROCESS self:AddTransition( "Assigned", "Start", "Waiting" ) self:AddTransition( "*", "Wait", "Waiting" ) self:AddTransition( "*", "Report", "Report" ) self:AddTransition( "*", "Event", "Account" ) self:AddTransition( "Account", "Player", "AccountForPlayer" ) self:AddTransition( "Account", "Other", "AccountForOther" ) self:AddTransition( { "Account", "AccountForPlayer", "AccountForOther" }, "More", "Wait" ) self:AddTransition( { "Account", "AccountForPlayer", "AccountForOther" }, "NoMore", "Accounted" ) self:AddTransition( "*", "Fail", "Failed" ) self:AddEndState( "Failed" ) self:SetStartState( "Assigned" ) return self end --- Process Events --- StateMachine callback function -- @param #ACT_ACCOUNT self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ACCOUNT:onafterStart( ProcessUnit, From, Event, To ) self:HandleEvent( EVENTS.Dead, self.onfuncEventDead ) self:HandleEvent( EVENTS.Crash, self.onfuncEventCrash ) self:HandleEvent( EVENTS.Hit ) self:__Wait( 1 ) end --- StateMachine callback function -- @param #ACT_ACCOUNT self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ACCOUNT:onenterWaiting( ProcessUnit, From, Event, To ) if self.DisplayCount >= self.DisplayInterval then self:Report() self.DisplayCount = 1 else self.DisplayCount = self.DisplayCount + 1 end return true -- Process always the event. end --- StateMachine callback function -- @param #ACT_ACCOUNT self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ACCOUNT:onafterEvent( ProcessUnit, From, Event, To, Event ) self:__NoMore( 1 ) end end -- ACT_ACCOUNT do -- ACT_ACCOUNT_DEADS --- # @{#ACT_ACCOUNT_DEADS} FSM class, extends @{Fsm.Account#ACT_ACCOUNT} -- -- The ACT_ACCOUNT_DEADS class accounts (detects, counts and reports) successful kills of DCS units. -- The process is given a @{Set} of units that will be tracked upon successful destruction. -- The process will end after each target has been successfully destroyed. -- Each successful dead will trigger an Account state transition that can be scored, modified or administered. -- -- -- ## ACT_ACCOUNT_DEADS constructor: -- -- * @{#ACT_ACCOUNT_DEADS.New}(): Creates a new ACT_ACCOUNT_DEADS object. -- -- @type ACT_ACCOUNT_DEADS -- @field Set#SET_UNIT TargetSetUnit -- @extends #ACT_ACCOUNT ACT_ACCOUNT_DEADS = { ClassName = "ACT_ACCOUNT_DEADS", } --- Creates a new DESTROY process. -- @param #ACT_ACCOUNT_DEADS self -- @param Set#SET_UNIT TargetSetUnit -- @param #string TaskName function ACT_ACCOUNT_DEADS:New() -- Inherits from BASE local self = BASE:Inherit( self, ACT_ACCOUNT:New() ) -- #ACT_ACCOUNT_DEADS self.DisplayInterval = 30 self.DisplayCount = 30 self.DisplayMessage = true self.DisplayTime = 10 -- 10 seconds is the default self.DisplayCategory = "HQ" -- Targets is the default display category return self end function ACT_ACCOUNT_DEADS:Init( FsmAccount ) self.Task = self:GetTask() self.TaskName = self.Task:GetName() end --- Process Events --- StateMachine callback function -- @param #ACT_ACCOUNT_DEADS self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ACCOUNT_DEADS:onenterReport( ProcessUnit, Task, From, Event, To ) self:E( { ProcessUnit, From, Event, To } ) local MessageText = "Your group with assigned " .. self.TaskName .. " task has " .. Task.TargetSetUnit:GetUnitTypesText() .. " targets left to be destroyed." self:GetCommandCenter():MessageTypeToGroup( MessageText, ProcessUnit:GetGroup(), MESSAGE.Type.Information ) end --- StateMachine callback function -- @param #ACT_ACCOUNT_DEADS self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param Tasking.Task#TASK Task -- @param #string From -- @param #string Event -- @param #string To -- @param Core.Event#EVENTDATA EventData function ACT_ACCOUNT_DEADS:onafterEvent( ProcessUnit, Task, From, Event, To, EventData ) self:T( { ProcessUnit:GetName(), Task:GetName(), From, Event, To, EventData } ) if Task.TargetSetUnit:FindUnit( EventData.IniUnitName ) then local PlayerName = ProcessUnit:GetPlayerName() local PlayerHit = self.PlayerHits and self.PlayerHits[EventData.IniUnitName] if PlayerHit == PlayerName then self:Player( EventData ) else self:Other( EventData ) end end end --- StateMachine callback function -- @param #ACT_ACCOUNT_DEADS self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param Tasking.Task#TASK Task -- @param #string From -- @param #string Event -- @param #string To -- @param Core.Event#EVENTDATA EventData function ACT_ACCOUNT_DEADS:onenterAccountForPlayer( ProcessUnit, Task, From, Event, To, EventData ) self:T( { ProcessUnit:GetName(), Task:GetName(), From, Event, To, EventData } ) local TaskGroup = ProcessUnit:GetGroup() Task.TargetSetUnit:Remove( EventData.IniUnitName ) local MessageText = "You have destroyed a target.\nYour group assigned with task " .. self.TaskName .. " has\n" .. Task.TargetSetUnit:Count() .. " targets ( " .. Task.TargetSetUnit:GetUnitTypesText() .. " ) left to be destroyed." self:GetCommandCenter():MessageTypeToGroup( MessageText, ProcessUnit:GetGroup(), MESSAGE.Type.Information ) local PlayerName = ProcessUnit:GetPlayerName() Task:AddProgress( PlayerName, "Destroyed " .. EventData.IniTypeName, timer.getTime(), 1 ) if Task.TargetSetUnit:Count() > 0 then self:__More( 1 ) else self:__NoMore( 1 ) end end --- StateMachine callback function -- @param #ACT_ACCOUNT_DEADS self -- @param Wrapper.Unit#UNIT ProcessUnit -- @param Tasking.Task#TASK Task -- @param #string From -- @param #string Event -- @param #string To -- @param Core.Event#EVENTDATA EventData function ACT_ACCOUNT_DEADS:onenterAccountForOther( ProcessUnit, Task, From, Event, To, EventData ) self:T( { ProcessUnit:GetName(), Task:GetName(), From, Event, To, EventData } ) local TaskGroup = ProcessUnit:GetGroup() Task.TargetSetUnit:Remove( EventData.IniUnitName ) local MessageText = "One of the task targets has been destroyed.\nYour group assigned with task " .. self.TaskName .. " has\n" .. Task.TargetSetUnit:Count() .. " targets ( " .. Task.TargetSetUnit:GetUnitTypesText() .. " ) left to be destroyed." self:GetCommandCenter():MessageTypeToGroup( MessageText, ProcessUnit:GetGroup(), MESSAGE.Type.Information ) if Task.TargetSetUnit:Count() > 0 then self:__More( 1 ) else self:__NoMore( 1 ) end end --- DCS Events --- @param #ACT_ACCOUNT_DEADS self -- @param Core.Event#EVENTDATA EventData function ACT_ACCOUNT_DEADS:OnEventHit( EventData ) self:T( { "EventDead", EventData } ) if EventData.IniPlayerName and EventData.TgtDCSUnitName then self.PlayerHits = self.PlayerHits or {} self.PlayerHits[EventData.TgtDCSUnitName] = EventData.IniPlayerName end end --- @param #ACT_ACCOUNT_DEADS self -- @param Event#EVENTDATA EventData function ACT_ACCOUNT_DEADS:onfuncEventDead( EventData ) self:T( { "EventDead", EventData } ) if EventData.IniDCSUnit then self:Event( EventData ) end end --- DCS Events --- @param #ACT_ACCOUNT_DEADS self -- @param Event#EVENTDATA EventData function ACT_ACCOUNT_DEADS:onfuncEventCrash( EventData ) self:T( { "EventDead", EventData } ) if EventData.IniDCSUnit then self:Event( EventData ) end end end -- ACT_ACCOUNT DEADS --- (SP) (MP) (FSM) Route AI or players through waypoints or to zones. -- -- === -- -- # @{#ACT_ASSIST} FSM class, extends @{Fsm#FSM_PROCESS} -- -- ## ACT_ASSIST state machine: -- -- This class is a state machine: it manages a process that is triggered by events causing state transitions to occur. -- All derived classes from this class will start with the class name, followed by a \_. See the relevant derived class descriptions below. -- Each derived class follows exactly the same process, using the same events and following the same state transitions, -- but will have **different implementation behaviour** upon each event or state transition. -- -- ### ACT_ASSIST **Events**: -- -- These are the events defined in this class: -- -- * **Start**: The process is started. -- * **Next**: The process is smoking the targets in the given zone. -- -- ### ACT_ASSIST **Event methods**: -- -- Event methods are available (dynamically allocated by the state machine), that accomodate for state transitions occurring in the process. -- There are two types of event methods, which you can use to influence the normal mechanisms in the state machine: -- -- * **Immediate**: The event method has exactly the name of the event. -- * **Delayed**: The event method starts with a __ + the name of the event. The first parameter of the event method is a number value, expressing the delay in seconds when the event will be executed. -- -- ### ACT_ASSIST **States**: -- -- * **None**: The controllable did not receive route commands. -- * **AwaitSmoke (*)**: The process is awaiting to smoke the targets in the zone. -- * **Smoking (*)**: The process is smoking the targets in the zone. -- * **Failed (*)**: The process has failed. -- -- (*) End states of the process. -- -- ### ACT_ASSIST state transition methods: -- -- State transition functions can be set **by the mission designer** customizing or improving the behaviour of the state. -- There are 2 moments when state transition methods will be called by the state machine: -- -- * **Before** the state transition. -- The state transition method needs to start with the name **OnBefore + the name of the state**. -- If the state transition method returns false, then the processing of the state transition will not be done! -- If you want to change the behaviour of the AIControllable at this event, return false, -- but then you'll need to specify your own logic using the AIControllable! -- -- * **After** the state transition. -- The state transition method needs to start with the name **OnAfter + the name of the state**. -- These state transition methods need to provide a return value, which is specified at the function description. -- -- === -- -- # 1) @{#ACT_ASSIST_SMOKE_TARGETS_ZONE} class, extends @{Fsm.Route#ACT_ASSIST} -- -- The ACT_ASSIST_SMOKE_TARGETS_ZONE class implements the core functions to smoke targets in a @{Zone}. -- The targets are smoked within a certain range around each target, simulating a realistic smoking behaviour. -- At random intervals, a new target is smoked. -- -- # 1.1) ACT_ASSIST_SMOKE_TARGETS_ZONE constructor: -- -- * @{#ACT_ASSIST_SMOKE_TARGETS_ZONE.New}(): Creates a new ACT_ASSIST_SMOKE_TARGETS_ZONE object. -- -- === -- -- @module Smoke do -- ACT_ASSIST --- ACT_ASSIST class -- @type ACT_ASSIST -- @extends Core.Fsm#FSM_PROCESS ACT_ASSIST = { ClassName = "ACT_ASSIST", } --- Creates a new target smoking state machine. The process will request from the menu if it accepts the task, if not, the unit is removed from the simulator. -- @param #ACT_ASSIST self -- @return #ACT_ASSIST function ACT_ASSIST:New() -- Inherits from BASE local self = BASE:Inherit( self, FSM_PROCESS:New( "ACT_ASSIST" ) ) -- Core.Fsm#FSM_PROCESS self:AddTransition( "None", "Start", "AwaitSmoke" ) self:AddTransition( "AwaitSmoke", "Next", "Smoking" ) self:AddTransition( "Smoking", "Next", "AwaitSmoke" ) self:AddTransition( "*", "Stop", "Success" ) self:AddTransition( "*", "Fail", "Failed" ) self:AddEndState( "Failed" ) self:AddEndState( "Success" ) self:SetStartState( "None" ) return self end --- Task Events --- StateMachine callback function -- @param #ACT_ASSIST self -- @param Wrapper.Controllable#CONTROLLABLE ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ASSIST:onafterStart( ProcessUnit, From, Event, To ) local ProcessGroup = ProcessUnit:GetGroup() local MissionMenu = self:GetMission():GetMenu( ProcessGroup ) local function MenuSmoke( MenuParam ) self:E( MenuParam ) local self = MenuParam.self local SmokeColor = MenuParam.SmokeColor self.SmokeColor = SmokeColor self:__Next( 1 ) end self.Menu = MENU_GROUP:New( ProcessGroup, "Target acquisition", MissionMenu ) self.MenuSmokeBlue = MENU_GROUP_COMMAND:New( ProcessGroup, "Drop blue smoke on targets", self.Menu, MenuSmoke, { self = self, SmokeColor = SMOKECOLOR.Blue } ) self.MenuSmokeGreen = MENU_GROUP_COMMAND:New( ProcessGroup, "Drop green smoke on targets", self.Menu, MenuSmoke, { self = self, SmokeColor = SMOKECOLOR.Green } ) self.MenuSmokeOrange = MENU_GROUP_COMMAND:New( ProcessGroup, "Drop Orange smoke on targets", self.Menu, MenuSmoke, { self = self, SmokeColor = SMOKECOLOR.Orange } ) self.MenuSmokeRed = MENU_GROUP_COMMAND:New( ProcessGroup, "Drop Red smoke on targets", self.Menu, MenuSmoke, { self = self, SmokeColor = SMOKECOLOR.Red } ) self.MenuSmokeWhite = MENU_GROUP_COMMAND:New( ProcessGroup, "Drop White smoke on targets", self.Menu, MenuSmoke, { self = self, SmokeColor = SMOKECOLOR.White } ) end --- StateMachine callback function -- @param #ACT_ASSIST self -- @param Wrapper.Controllable#CONTROLLABLE ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ASSIST:onafterStop( ProcessUnit, From, Event, To ) self.Menu:Remove() -- When stopped, remove the menus end end do -- ACT_ASSIST_SMOKE_TARGETS_ZONE --- ACT_ASSIST_SMOKE_TARGETS_ZONE class -- @type ACT_ASSIST_SMOKE_TARGETS_ZONE -- @field Set#SET_UNIT TargetSetUnit -- @field Core.Zone#ZONE_BASE TargetZone -- @extends #ACT_ASSIST ACT_ASSIST_SMOKE_TARGETS_ZONE = { ClassName = "ACT_ASSIST_SMOKE_TARGETS_ZONE", } -- function ACT_ASSIST_SMOKE_TARGETS_ZONE:_Destructor() -- self:E("_Destructor") -- -- self.Menu:Remove() -- self:EventRemoveAll() -- end --- Creates a new target smoking state machine. The process will request from the menu if it accepts the task, if not, the unit is removed from the simulator. -- @param #ACT_ASSIST_SMOKE_TARGETS_ZONE self -- @param Set#SET_UNIT TargetSetUnit -- @param Core.Zone#ZONE_BASE TargetZone function ACT_ASSIST_SMOKE_TARGETS_ZONE:New( TargetSetUnit, TargetZone ) local self = BASE:Inherit( self, ACT_ASSIST:New() ) -- #ACT_ASSIST self.TargetSetUnit = TargetSetUnit self.TargetZone = TargetZone return self end function ACT_ASSIST_SMOKE_TARGETS_ZONE:Init( FsmSmoke ) self.TargetSetUnit = FsmSmoke.TargetSetUnit self.TargetZone = FsmSmoke.TargetZone end --- Creates a new target smoking state machine. The process will request from the menu if it accepts the task, if not, the unit is removed from the simulator. -- @param #ACT_ASSIST_SMOKE_TARGETS_ZONE self -- @param Set#SET_UNIT TargetSetUnit -- @param Core.Zone#ZONE_BASE TargetZone -- @return #ACT_ASSIST_SMOKE_TARGETS_ZONE self function ACT_ASSIST_SMOKE_TARGETS_ZONE:Init( TargetSetUnit, TargetZone ) self.TargetSetUnit = TargetSetUnit self.TargetZone = TargetZone return self end --- StateMachine callback function -- @param #ACT_ASSIST_SMOKE_TARGETS_ZONE self -- @param Wrapper.Controllable#CONTROLLABLE ProcessUnit -- @param #string Event -- @param #string From -- @param #string To function ACT_ASSIST_SMOKE_TARGETS_ZONE:onenterSmoking( ProcessUnit, From, Event, To ) self.TargetSetUnit:ForEachUnit( --- @param Wrapper.Unit#UNIT SmokeUnit function( SmokeUnit ) if math.random( 1, ( 100 * self.TargetSetUnit:Count() ) / 4 ) <= 100 then SCHEDULER:New( self, function() if SmokeUnit:IsAlive() then SmokeUnit:Smoke( self.SmokeColor, 150 ) end end, {}, math.random( 10, 60 ) ) end end ) end end--- **Tasking** -- A COMMANDCENTER is the owner of multiple missions within MOOSE. -- A COMMANDCENTER governs multiple missions, the tasking and the reporting. -- -- === -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module CommandCenter --- The COMMANDCENTER class -- @type COMMANDCENTER -- @field Wrapper.Group#GROUP HQ -- @field Dcs.DCSCoalitionWrapper.Object#coalition CommandCenterCoalition -- @list Missions -- @extends Core.Base#BASE --- # COMMANDCENTER class, extends @{Base#BASE} -- -- The COMMANDCENTER class governs multiple missions, the tasking and the reporting. -- -- The commandcenter communicates important messages between the various groups of human players executing tasks in missions. -- -- ## COMMANDCENTER constructor -- -- * @{#COMMANDCENTER.New}(): Creates a new COMMANDCENTER object. -- -- ## Mission Management -- -- * @{#COMMANDCENTER.AddMission}(): Adds a mission to the commandcenter control. -- * @{#COMMANDCENTER.RemoveMission}(): Removes a mission to the commandcenter control. -- * @{#COMMANDCENTER.GetMissions}(): Retrieves the missions table controlled by the commandcenter. -- -- ## Reference Zones -- -- Command Centers may be aware of certain Reference Zones within the battleground. These Reference Zones can refer to -- known areas, recognizable buildings or sites, or any other point of interest. -- Command Centers will use these Reference Zones to help pilots with defining coordinates in terms of navigation -- during the WWII era. -- The Reference Zones are related to the WWII mode that the Command Center will operate in. -- Use the method @{#COMMANDCENTER.SetModeWWII}() to set the mode of communication to the WWII mode. -- -- In WWII mode, the Command Center will receive detected targets, and will select for each target the closest -- nearby Reference Zone. This allows pilots to navigate easier through the battle field readying for combat. -- -- The Reference Zones need to be set by the Mission Designer in the Mission Editor. -- Reference Zones are set by normal trigger zones. One can color the zones in a specific color, -- and the radius of the zones doesn't matter, only the point is important. Place the center of these Reference Zones at -- specific scenery objects or points of interest (like cities, rivers, hills, crossing etc). -- The trigger zones indicating a Reference Zone need to follow a specific syntax. -- The name of each trigger zone expressing a Reference Zone need to start with a classification name of the object, -- followed by a #, followed by a symbolic name of the Reference Zone. -- A few examples: -- -- * A church at Tskinvali would be indicated as: *Church#Tskinvali* -- * A train station near Kobuleti would be indicated as: *Station#Kobuleti* -- -- The COMMANDCENTER class contains a method to indicate which trigger zones need to be used as Reference Zones. -- This is done by using the method @{#COMMANDCENTER.SetReferenceZones}(). -- For the moment, only one Reference Zone class can be specified, but in the future, more classes will become possible. -- -- @field #COMMANDCENTER COMMANDCENTER = { ClassName = "COMMANDCENTER", CommandCenterName = "", CommandCenterCoalition = nil, CommandCenterPositionable = nil, Name = "", ReferencePoints = {}, ReferenceNames = {}, CommunicationMode = "80", } --- The constructor takes an IDENTIFIABLE as the HQ command center. -- @param #COMMANDCENTER self -- @param Wrapper.Positionable#POSITIONABLE CommandCenterPositionable -- @param #string CommandCenterName -- @return #COMMANDCENTER function COMMANDCENTER:New( CommandCenterPositionable, CommandCenterName ) local self = BASE:Inherit( self, BASE:New() ) self.CommandCenterPositionable = CommandCenterPositionable self.CommandCenterName = CommandCenterName or CommandCenterPositionable:GetName() self.CommandCenterCoalition = CommandCenterPositionable:GetCoalition() self.Missions = {} self:HandleEvent( EVENTS.Birth, --- @param #COMMANDCENTER self -- @param Core.Event#EVENTDATA EventData function( self, EventData ) if EventData.IniObjectCategory == 1 then local EventGroup = GROUP:Find( EventData.IniDCSGroup ) if EventGroup and self:HasGroup( EventGroup ) then local MenuReporting = MENU_GROUP:New( EventGroup, "Missions Reports", self.CommandCenterMenu ) local MenuMissionsSummary = MENU_GROUP_COMMAND:New( EventGroup, "Missions Status Report", MenuReporting, self.ReportMissionsStatus, self, EventGroup ) local MenuMissionsDetails = MENU_GROUP_COMMAND:New( EventGroup, "Missions Players Report", MenuReporting, self.ReportMissionsPlayers, self, EventGroup ) self:ReportSummary( EventGroup ) local PlayerUnit = EventData.IniUnit for MissionID, Mission in pairs( self:GetMissions() ) do local Mission = Mission -- Tasking.Mission#MISSION local PlayerGroup = EventData.IniGroup -- The GROUP object should be filled! Mission:JoinUnit( PlayerUnit, PlayerGroup ) end self:SetMenu() _DATABASE:PlayerSettingsMenu( PlayerUnit ) end end end ) -- When a player enters a client or a unit, the CommandCenter will check for each Mission and each Task in the Mission if the player has things to do. -- For these elements, it will= -- - Set the correct menu. -- - Assign the PlayerUnit to the Task if required. -- - Send a message to the other players in the group that this player has joined. self:HandleEvent( EVENTS.PlayerEnterUnit, --- @param #COMMANDCENTER self -- @param Core.Event#EVENTDATA EventData function( self, EventData ) local PlayerUnit = EventData.IniUnit for MissionID, Mission in pairs( self:GetMissions() ) do local Mission = Mission -- Tasking.Mission#MISSION local PlayerGroup = EventData.IniGroup -- The GROUP object should be filled! Mission:JoinUnit( PlayerUnit, PlayerGroup ) end self:SetMenu() end ) -- Handle when a player leaves a slot and goes back to spectators ... -- The PlayerUnit will be UnAssigned from the Task. -- When there is no Unit left running the Task, the Task goes into Abort... self:HandleEvent( EVENTS.MissionEnd, --- @param #TASK self -- @param Core.Event#EVENTDATA EventData function( self, EventData ) local PlayerUnit = EventData.IniUnit for MissionID, Mission in pairs( self:GetMissions() ) do local Mission = Mission -- Tasking.Mission#MISSION Mission:Stop() end end ) -- Handle when a player leaves a slot and goes back to spectators ... -- The PlayerUnit will be UnAssigned from the Task. -- When there is no Unit left running the Task, the Task goes into Abort... self:HandleEvent( EVENTS.PlayerLeaveUnit, --- @param #TASK self -- @param Core.Event#EVENTDATA EventData function( self, EventData ) local PlayerUnit = EventData.IniUnit for MissionID, Mission in pairs( self:GetMissions() ) do local Mission = Mission -- Tasking.Mission#MISSION if Mission:IsENGAGED() then Mission:AbortUnit( PlayerUnit ) end end end ) -- Handle when a player leaves a slot and goes back to spectators ... -- The PlayerUnit will be UnAssigned from the Task. -- When there is no Unit left running the Task, the Task goes into Abort... self:HandleEvent( EVENTS.Crash, --- @param #TASK self -- @param Core.Event#EVENTDATA EventData function( self, EventData ) local PlayerUnit = EventData.IniUnit for MissionID, Mission in pairs( self:GetMissions() ) do local Mission = Mission -- Tasking.Mission#MISSION if Mission:IsENGAGED() then Mission:CrashUnit( PlayerUnit ) end end end ) self:SetMenu() _SETTINGS:SetSystemMenu( CommandCenterPositionable ) return self end --- Gets the name of the HQ command center. -- @param #COMMANDCENTER self -- @return #string function COMMANDCENTER:GetName() return self.CommandCenterName end --- Gets the POSITIONABLE of the HQ command center. -- @param #COMMANDCENTER self -- @return Wrapper.Positionable#POSITIONABLE function COMMANDCENTER:GetPositionable() return self.CommandCenterPositionable end --- Get the Missions governed by the HQ command center. -- @param #COMMANDCENTER self -- @return #list function COMMANDCENTER:GetMissions() return self.Missions end --- Add a MISSION to be governed by the HQ command center. -- @param #COMMANDCENTER self -- @param Tasking.Mission#MISSION Mission -- @return Tasking.Mission#MISSION function COMMANDCENTER:AddMission( Mission ) self.Missions[Mission] = Mission return Mission end --- Removes a MISSION to be governed by the HQ command center. -- The given Mission is not nilified. -- @param #COMMANDCENTER self -- @param Tasking.Mission#MISSION Mission -- @return Tasking.Mission#MISSION function COMMANDCENTER:RemoveMission( Mission ) self.Missions[Mission] = nil return Mission end --- Set special Reference Zones known by the Command Center to guide airborne pilots during WWII. -- -- These Reference Zones are normal trigger zones, with a special naming. -- The Reference Zones need to be set by the Mission Designer in the Mission Editor. -- Reference Zones are set by normal trigger zones. One can color the zones in a specific color, -- and the radius of the zones doesn't matter, only the center of the zone is important. Place the center of these Reference Zones at -- specific scenery objects or points of interest (like cities, rivers, hills, crossing etc). -- The trigger zones indicating a Reference Zone need to follow a specific syntax. -- The name of each trigger zone expressing a Reference Zone need to start with a classification name of the object, -- followed by a #, followed by a symbolic name of the Reference Zone. -- A few examples: -- -- * A church at Tskinvali would be indicated as: *Church#Tskinvali* -- * A train station near Kobuleti would be indicated as: *Station#Kobuleti* -- -- Taking the above example, this is how this method would be used: -- -- CC:SetReferenceZones( "Church" ) -- CC:SetReferenceZones( "Station" ) -- -- -- @param #COMMANDCENTER self -- @param #string ReferenceZonePrefix The name before the #-mark indicating the class of the Reference Zones. -- @return #COMMANDCENTER function COMMANDCENTER:SetReferenceZones( ReferenceZonePrefix ) local MatchPattern = "(.*)#(.*)" self:F( { MatchPattern = MatchPattern } ) for ReferenceZoneName in pairs( _DATABASE.ZONENAMES ) do local ZoneName, ReferenceName = string.match( ReferenceZoneName, MatchPattern ) self:F( { ZoneName = ZoneName, ReferenceName = ReferenceName } ) if ZoneName and ReferenceName and ZoneName == ReferenceZonePrefix then self.ReferencePoints[ReferenceZoneName] = ZONE:New( ReferenceZoneName ) self.ReferenceNames[ReferenceZoneName] = ReferenceName end end return self end --- Set the commandcenter operations in WWII mode -- This will disable LL, MGRS, BRA, BULLS navigatin messages sent by the Command Center, -- and will be replaced by a navigation using Reference Zones. -- It will also disable the settings at the settings menu for these. -- @param #COMMANDCENTER self -- @return #COMMANDCENTER function COMMANDCENTER:SetModeWWII() self.CommunicationMode = "WWII" return self end --- Returns if the commandcenter operations is in WWII mode -- @param #COMMANDCENTER self -- @return #boolean true if in WWII mode. function COMMANDCENTER:IsModeWWII() return self.CommunicationMode == "WWII" end --- Sets the menu structure of the Missions governed by the HQ command center. -- @param #COMMANDCENTER self function COMMANDCENTER:SetMenu() self:F() self.CommandCenterMenu = self.CommandCenterMenu or MENU_COALITION:New( self.CommandCenterCoalition, "Command Center (" .. self:GetName() .. ")" ) local MenuTime = timer.getTime() for MissionID, Mission in pairs( self:GetMissions() or {} ) do local Mission = Mission -- Tasking.Mission#MISSION Mission:SetMenu( MenuTime ) end for MissionID, Mission in pairs( self:GetMissions() or {} ) do local Mission = Mission -- Tasking.Mission#MISSION Mission:RemoveMenu( MenuTime ) end end --- Gets the commandcenter menu structure governed by the HQ command center. -- @param #COMMANDCENTER self -- @return Core.Menu#MENU_COALITION function COMMANDCENTER:GetMenu() return self.CommandCenterMenu end --- Checks of the COMMANDCENTER has a GROUP. -- @param #COMMANDCENTER self -- @param Wrapper.Group#GROUP -- @return #boolean function COMMANDCENTER:HasGroup( MissionGroup ) local Has = false for MissionID, Mission in pairs( self.Missions ) do local Mission = Mission -- Tasking.Mission#MISSION if Mission:HasGroup( MissionGroup ) then Has = true break end end return Has end --- Send a CC message to the coalition of the CC. -- @param #COMMANDCENTER self function COMMANDCENTER:MessageToAll( Message ) self:GetPositionable():MessageToAll( Message, 20, self:GetName() ) end --- Send a CC message to a GROUP. -- @param #COMMANDCENTER self -- @param #string Message -- @param Wrapper.Group#GROUP TaskGroup function COMMANDCENTER:MessageToGroup( Message, TaskGroup ) self:GetPositionable():MessageToGroup( Message, 15, TaskGroup, self:GetName() ) end --- Send a CC message of a specified type to a GROUP. -- @param #COMMANDCENTER self -- @param #string Message -- @param Wrapper.Group#GROUP TaskGroup -- @param Core.Message#MESSAGE.MessageType MessageType The type of the message, resulting in automatic time duration and prefix of the message. function COMMANDCENTER:MessageTypeToGroup( Message, TaskGroup, MessageType ) self:GetPositionable():MessageTypeToGroup( Message, MessageType, TaskGroup, self:GetName() ) end --- Send a CC message to the coalition of the CC. -- @param #COMMANDCENTER self function COMMANDCENTER:MessageToCoalition( Message ) local CCCoalition = self:GetPositionable():GetCoalition() --TODO: Fix coalition bug! self:GetPositionable():MessageToCoalition( Message, 15, CCCoalition ) end --- Send a CC message of a specified type to the coalition of the CC. -- @param #COMMANDCENTER self -- @param #string Message The message. -- @param Core.Message#MESSAGE.MessageType MessageType The type of the message, resulting in automatic time duration and prefix of the message. function COMMANDCENTER:MessageTypeToCoalition( Message, MessageType ) local CCCoalition = self:GetPositionable():GetCoalition() --TODO: Fix coalition bug! self:GetPositionable():MessageTypeToCoalition( Message, MessageType, CCCoalition ) end --- Report the status of all MISSIONs to a GROUP. -- Each Mission is listed, with an indication how many Tasks are still to be completed. -- @param #COMMANDCENTER self function COMMANDCENTER:ReportMissionsStatus( ReportGroup ) self:E( ReportGroup ) local Report = REPORT:New() Report:Add( "Status report of all missions." ) for MissionID, Mission in pairs( self.Missions ) do local Mission = Mission -- Tasking.Mission#MISSION Report:Add( " - " .. Mission:ReportStatus() ) end self:MessageToGroup( Report:Text(), ReportGroup ) end --- Report the players of all MISSIONs to a GROUP. -- Each Mission is listed, with an indication how many Tasks are still to be completed. -- @param #COMMANDCENTER self function COMMANDCENTER:ReportMissionsPlayers( ReportGroup ) self:E( ReportGroup ) local Report = REPORT:New() Report:Add( "Players active in all missions." ) for MissionID, Mission in pairs( self.Missions ) do local Mission = Mission -- Tasking.Mission#MISSION Report:Add( " - " .. Mission:ReportPlayers() ) end self:MessageToGroup( Report:Text(), ReportGroup ) end --- Report the status of a Task to a Group. -- Report the details of a Mission, listing the Mission, and all the Task details. -- @param #COMMANDCENTER self function COMMANDCENTER:ReportDetails( ReportGroup, Task ) self:E( ReportGroup ) local Report = REPORT:New() for MissionID, Mission in pairs( self.Missions ) do local Mission = Mission -- Tasking.Mission#MISSION Report:Add( " - " .. Mission:ReportDetails() ) end self:MessageToGroup( Report:Text(), ReportGroup ) end --- **Tasking** -- A MISSION is the main owner of a Mission orchestration within MOOSE. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- === -- -- @module Mission --- The MISSION class -- @type MISSION -- @field #MISSION.Clients _Clients -- @field Core.Menu#MENU_COALITION MissionMenu -- @field #string MissionBriefing -- @extends Core.Fsm#FSM MISSION = { ClassName = "MISSION", Name = "", MissionStatus = "PENDING", AssignedGroups = {}, } --- This is the main MISSION declaration method. Each Mission is like the master or a Mission orchestration between, Clients, Tasks, Stages etc. -- @param #MISSION self -- @param Tasking.CommandCenter#COMMANDCENTER CommandCenter -- @param #string MissionName is the name of the mission. This name will be used to reference the status of each mission by the players. -- @param #string MissionPriority is a string indicating the "priority" of the Mission. f.e. "Primary", "Secondary" or "First", "Second". It is free format and up to the Mission designer to choose. There are no rules behind this field. -- @param #string MissionBriefing is a string indicating the mission briefing to be shown when a player joins a @{CLIENT}. -- @param Dcs.DCSCoalitionWrapper.Object#coalition MissionCoalition is a string indicating the coalition or party to which this mission belongs to. It is free format and can be chosen freely by the mission designer. Note that this field is not to be confused with the coalition concept of the ME. Examples of a Mission Coalition could be "NATO", "CCCP", "Intruders", "Terrorists"... -- @return #MISSION self function MISSION:New( CommandCenter, MissionName, MissionPriority, MissionBriefing, MissionCoalition ) local self = BASE:Inherit( self, FSM:New() ) -- Core.Fsm#FSM self:T( { MissionName, MissionPriority, MissionBriefing, MissionCoalition } ) self.CommandCenter = CommandCenter CommandCenter:AddMission( self ) self.Name = MissionName self.MissionPriority = MissionPriority self.MissionBriefing = MissionBriefing self.MissionCoalition = MissionCoalition self.Tasks = {} self.PlayerNames = {} -- These are the players that achieved progress in the mission. self:SetStartState( "IDLE" ) self:AddTransition( "IDLE", "Start", "ENGAGED" ) --- OnLeave Transition Handler for State IDLE. -- @function [parent=#MISSION] OnLeaveIDLE -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State IDLE. -- @function [parent=#MISSION] OnEnterIDLE -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- OnLeave Transition Handler for State ENGAGED. -- @function [parent=#MISSION] OnLeaveENGAGED -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State ENGAGED. -- @function [parent=#MISSION] OnEnterENGAGED -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- OnBefore Transition Handler for Event Start. -- @function [parent=#MISSION] OnBeforeStart -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Start. -- @function [parent=#MISSION] OnAfterStart -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Start. -- @function [parent=#MISSION] Start -- @param #MISSION self --- Asynchronous Event Trigger for Event Start. -- @function [parent=#MISSION] __Start -- @param #MISSION self -- @param #number Delay The delay in seconds. self:AddTransition( "ENGAGED", "Stop", "IDLE" ) --- OnLeave Transition Handler for State IDLE. -- @function [parent=#MISSION] OnLeaveIDLE -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State IDLE. -- @function [parent=#MISSION] OnEnterIDLE -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- OnBefore Transition Handler for Event Stop. -- @function [parent=#MISSION] OnBeforeStop -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Stop. -- @function [parent=#MISSION] OnAfterStop -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Stop. -- @function [parent=#MISSION] Stop -- @param #MISSION self --- Asynchronous Event Trigger for Event Stop. -- @function [parent=#MISSION] __Stop -- @param #MISSION self -- @param #number Delay The delay in seconds. self:AddTransition( "ENGAGED", "Complete", "COMPLETED" ) --- OnLeave Transition Handler for State COMPLETED. -- @function [parent=#MISSION] OnLeaveCOMPLETED -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State COMPLETED. -- @function [parent=#MISSION] OnEnterCOMPLETED -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- OnBefore Transition Handler for Event Complete. -- @function [parent=#MISSION] OnBeforeComplete -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Complete. -- @function [parent=#MISSION] OnAfterComplete -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Complete. -- @function [parent=#MISSION] Complete -- @param #MISSION self --- Asynchronous Event Trigger for Event Complete. -- @function [parent=#MISSION] __Complete -- @param #MISSION self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "Fail", "FAILED" ) --- OnLeave Transition Handler for State FAILED. -- @function [parent=#MISSION] OnLeaveFAILED -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnEnter Transition Handler for State FAILED. -- @function [parent=#MISSION] OnEnterFAILED -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- OnBefore Transition Handler for Event Fail. -- @function [parent=#MISSION] OnBeforeFail -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event Fail. -- @function [parent=#MISSION] OnAfterFail -- @param #MISSION self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. --- Synchronous Event Trigger for Event Fail. -- @function [parent=#MISSION] Fail -- @param #MISSION self --- Asynchronous Event Trigger for Event Fail. -- @function [parent=#MISSION] __Fail -- @param #MISSION self -- @param #number Delay The delay in seconds. self:AddTransition( "*", "MissionGoals", "*" ) --- MissionGoals Handler OnBefore for MISSION -- @function [parent=#MISSION] OnBeforeMissionGoals -- @param #MISSION self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- MissionGoals Handler OnAfter for MISSION -- @function [parent=#MISSION] OnAfterMissionGoals -- @param #MISSION self -- @param #string From -- @param #string Event -- @param #string To --- MissionGoals Trigger for MISSION -- @function [parent=#MISSION] MissionGoals -- @param #MISSION self --- MissionGoals Asynchronous Trigger for MISSION -- @function [parent=#MISSION] __MissionGoals -- @param #MISSION self -- @param #number Delay -- Private implementations CommandCenter:SetMenu() return self end --- FSM function for a MISSION -- @param #MISSION self -- @param #string From -- @param #string Event -- @param #string To function MISSION:onenterCOMPLETED( From, Event, To ) self:GetCommandCenter():MessageTypeToCoalition( self:GetName() .. " has been completed! Good job guys!", MESSAGE.Type.Information ) end --- Gets the mission name. -- @param #MISSION self -- @return #MISSION self function MISSION:GetName() return string.format( 'Mission "%s (%s)"', self.Name, self.MissionPriority ) end --- Add a Unit to join the Mission. -- For each Task within the Mission, the Unit is joined with the Task. -- If the Unit was not part of a Task in the Mission, false is returned. -- If the Unit is part of a Task in the Mission, true is returned. -- @param #MISSION self -- @param Wrapper.Unit#UNIT PlayerUnit The CLIENT or UNIT of the Player joining the Mission. -- @param Wrapper.Group#GROUP PlayerGroup The GROUP of the player joining the Mission. -- @return #boolean true if Unit is part of a Task in the Mission. function MISSION:JoinUnit( PlayerUnit, PlayerGroup ) self:F( { PlayerUnit = PlayerUnit, PlayerGroup = PlayerGroup } ) local PlayerUnitAdded = false for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK if Task:JoinUnit( PlayerUnit, PlayerGroup ) then PlayerUnitAdded = true end end return PlayerUnitAdded end --- Aborts a PlayerUnit from the Mission. -- For each Task within the Mission, the PlayerUnit is removed from Task where it is assigned. -- If the Unit was not part of a Task in the Mission, false is returned. -- If the Unit is part of a Task in the Mission, true is returned. -- @param #MISSION self -- @param Wrapper.Unit#UNIT PlayerUnit The CLIENT or UNIT of the Player joining the Mission. -- @return #MISSION function MISSION:AbortUnit( PlayerUnit ) self:F( { PlayerUnit = PlayerUnit } ) for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK local PlayerGroup = PlayerUnit:GetGroup() Task:AbortGroup( PlayerGroup ) end return self end --- Handles a crash of a PlayerUnit from the Mission. -- For each Task within the Mission, the PlayerUnit is removed from Task where it is assigned. -- If the Unit was not part of a Task in the Mission, false is returned. -- If the Unit is part of a Task in the Mission, true is returned. -- @param #MISSION self -- @param Wrapper.Unit#UNIT PlayerUnit The CLIENT or UNIT of the Player crashing. -- @return #MISSION function MISSION:CrashUnit( PlayerUnit ) self:F( { PlayerUnit = PlayerUnit } ) for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK local PlayerGroup = PlayerUnit:GetGroup() Task:CrashGroup( PlayerGroup ) end return self end --- Add a scoring to the mission. -- @param #MISSION self -- @return #MISSION self function MISSION:AddScoring( Scoring ) self.Scoring = Scoring return self end --- Get the scoring object of a mission. -- @param #MISSION self -- @return #SCORING Scoring function MISSION:GetScoring() return self.Scoring end --- Get the groups for which TASKS are given in the mission -- @param #MISSION self -- @return Core.Set#SET_GROUP function MISSION:GetGroups() local SetGroup = SET_GROUP:New() for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK local GroupSet = Task:GetGroups() GroupSet:ForEachGroup( function( TaskGroup ) SetGroup:Add( TaskGroup, TaskGroup ) end ) end return SetGroup end --- Sets the Planned Task menu. -- @param #MISSION self -- @param #number MenuTime function MISSION:SetMenu( MenuTime ) self:F( { self:GetName(), MenuTime } ) for _, TaskData in pairs( self:GetTasks() ) do local Task = TaskData -- Tasking.Task#TASK Task:SetMenu( MenuTime ) end end --- Removes the Planned Task menu. -- @param #MISSION self -- @param #number MenuTime function MISSION:RemoveMenu( MenuTime ) self:F( { self:GetName(), MenuTime } ) for _, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK Task:RemoveMenu( MenuTime ) end end do -- Group Assignment --- Returns if the @{Mission} is assigned to the Group. -- @param #MISSION self -- @param Wrapper.Group#GROUP MissionGroup -- @return #boolean function MISSION:IsGroupAssigned( MissionGroup ) local MissionGroupName = MissionGroup:GetName() if self.AssignedGroups[MissionGroupName] == MissionGroup then self:T( { "Mission is assigned to:", MissionGroup:GetName() } ) return true end self:T( { "Mission is not assigned to:", MissionGroup:GetName() } ) return false end --- Set @{Group} assigned to the @{Mission}. -- @param #MISSION self -- @param Wrapper.Group#GROUP MissionGroup -- @return #MISSION function MISSION:SetGroupAssigned( MissionGroup ) local MissionName = self:GetName() local MissionGroupName = MissionGroup:GetName() self.AssignedGroups[MissionGroupName] = MissionGroup self:E( string.format( "Mission %s is assigned to %s", MissionName, MissionGroupName ) ) return self end --- Clear the @{Group} assignment from the @{Mission}. -- @param #MISSION self -- @param Wrapper.Group#GROUP MissionGroup -- @return #MISSION function MISSION:ClearGroupAssignment( MissionGroup ) local MissionName = self:GetName() local MissionGroupName = MissionGroup:GetName() self.AssignedGroups[MissionGroupName] = nil --self:E( string.format( "Mission %s is unassigned to %s", MissionName, MissionGroupName ) ) return self end end --- Gets the COMMANDCENTER. -- @param #MISSION self -- @return Tasking.CommandCenter#COMMANDCENTER function MISSION:GetCommandCenter() return self.CommandCenter end --- Removes a Task menu. -- @param #MISSION self -- @param Tasking.Task#TASK Task -- @return #MISSION self function MISSION:RemoveTaskMenu( Task ) Task:RemoveMenu() end --- Gets the root mission menu for the TaskGroup. -- @param #MISSION self -- @return Core.Menu#MENU_COALITION self function MISSION:GetRootMenu( TaskGroup ) -- R2.2 local CommandCenter = self:GetCommandCenter() local CommandCenterMenu = CommandCenter:GetMenu() local MissionName = self:GetName() --local MissionMenu = CommandCenterMenu:GetMenu( MissionName ) self.MissionMenu = self.MissionMenu or MENU_COALITION:New( self.MissionCoalition, self:GetName(), CommandCenterMenu ) return self.MissionMenu end --- Gets the mission menu for the TaskGroup. -- @param #MISSION self -- @return Core.Menu#MENU_COALITION self function MISSION:GetMenu( TaskGroup ) -- R2.1 -- Changed Menu Structure local CommandCenter = self:GetCommandCenter() local CommandCenterMenu = CommandCenter:GetMenu() local MissionName = self:GetName() --local MissionMenu = CommandCenterMenu:GetMenu( MissionName ) self.MissionGroupMenu = self.MissionGroupMenu or {} self.MissionGroupMenu[TaskGroup] = self.MissionGroupMenu[TaskGroup] or {} local GroupMenu = self.MissionGroupMenu[TaskGroup] self.MissionMenu = self.MissionMenu or MENU_COALITION:New( self.MissionCoalition, self:GetName(), CommandCenterMenu ) GroupMenu.BriefingMenu = GroupMenu.BriefingMenu or MENU_GROUP_COMMAND:New( TaskGroup, "Mission Briefing", self.MissionMenu, self.MenuReportBriefing, self, TaskGroup ) GroupMenu.TaskReportsMenu = GroupMenu.TaskReportsMenu or MENU_GROUP:New( TaskGroup, "Task Reports", self.MissionMenu ) GroupMenu.ReportTasksMenu = GroupMenu.ReportTasksMenu or MENU_GROUP_COMMAND:New( TaskGroup, "Report Tasks", GroupMenu.TaskReportsMenu, self.MenuReportTasksSummary, self, TaskGroup ) GroupMenu.ReportPlannedTasksMenu = GroupMenu.ReportPlannedTasksMenu or MENU_GROUP_COMMAND:New( TaskGroup, "Report Planned Tasks", GroupMenu.TaskReportsMenu, self.MenuReportTasksPerStatus, self, TaskGroup, "Planned" ) GroupMenu.ReportAssignedTasksMenu = GroupMenu.ReportAssignedTasksMenu or MENU_GROUP_COMMAND:New( TaskGroup, "Report Assigned Tasks", GroupMenu.TaskReportsMenu, self.MenuReportTasksPerStatus, self, TaskGroup, "Assigned" ) GroupMenu.ReportSuccessTasksMenu = GroupMenu.ReportSuccessTasksMenu or MENU_GROUP_COMMAND:New( TaskGroup, "Report Successful Tasks", GroupMenu.TaskReportsMenu, self.MenuReportTasksPerStatus, self, TaskGroup, "Success" ) GroupMenu.ReportFailedTasksMenu = GroupMenu.ReportFailedTasksMenu or MENU_GROUP_COMMAND:New( TaskGroup, "Report Failed Tasks", GroupMenu.TaskReportsMenu, self.MenuReportTasksPerStatus, self, TaskGroup, "Failed" ) GroupMenu.ReportHeldTasksMenu = GroupMenu.ReportHeldTasksMenu or MENU_GROUP_COMMAND:New( TaskGroup, "Report Held Tasks", GroupMenu.TaskReportsMenu, self.MenuReportTasksPerStatus, self, TaskGroup, "Hold" ) GroupMenu.PlayerReportsMenu = GroupMenu.PlayerReportsMenu or MENU_GROUP:New( TaskGroup, "Statistics Reports", self.MissionMenu ) GroupMenu.ReportMissionHistory = GroupMenu.ReportPlayersHistory or MENU_GROUP_COMMAND:New( TaskGroup, "Report Mission Progress", GroupMenu.PlayerReportsMenu, self.MenuReportPlayersProgress, self, TaskGroup ) GroupMenu.ReportPlayersPerTaskMenu = GroupMenu.ReportPlayersPerTaskMenu or MENU_GROUP_COMMAND:New( TaskGroup, "Report Players per Task", GroupMenu.PlayerReportsMenu, self.MenuReportPlayersPerTask, self, TaskGroup ) return self.MissionMenu end --- Get the TASK identified by the TaskNumber from the Mission. This function is useful in GoalFunctions. -- @param #string TaskName The Name of the @{Task} within the @{Mission}. -- @return Tasking.Task#TASK The Task -- @return #nil Returns nil if no task was found. function MISSION:GetTask( TaskName ) self:F( { TaskName } ) return self.Tasks[TaskName] end --- Register a @{Task} to be completed within the @{Mission}. -- Note that there can be multiple @{Task}s registered to be completed. -- Each Task can be set a certain Goals. The Mission will not be completed until all Goals are reached. -- @param #MISSION self -- @param Tasking.Task#TASK Task is the @{Task} object. -- @return Tasking.Task#TASK The task added. function MISSION:AddTask( Task ) local TaskName = Task:GetTaskName() self:F( TaskName ) self.Tasks[TaskName] = self.Tasks[TaskName] or { n = 0 } self.Tasks[TaskName] = Task self:GetCommandCenter():SetMenu() return Task end --- Removes a @{Task} to be completed within the @{Mission}. -- Note that there can be multiple @{Task}s registered to be completed. -- Each Task can be set a certain Goals. The Mission will not be completed until all Goals are reached. -- @param #MISSION self -- @param Tasking.Task#TASK Task is the @{Task} object. -- @return #nil The cleaned Task reference. function MISSION:RemoveTask( Task ) local TaskName = Task:GetTaskName() self:F( TaskName ) self.Tasks[TaskName] = self.Tasks[TaskName] or { n = 0 } -- Ensure everything gets garbarge collected. self.Tasks[TaskName] = nil Task = nil collectgarbage() self:GetCommandCenter():SetMenu() return nil end --- Return the next @{Task} ID to be completed within the @{Mission}. -- @param #MISSION self -- @param Tasking.Task#TASK Task is the @{Task} object. -- @return Tasking.Task#TASK The task added. function MISSION:GetNextTaskID( Task ) local TaskName = Task:GetTaskName() self:F( TaskName ) self.Tasks[TaskName] = self.Tasks[TaskName] or { n = 0 } self.Tasks[TaskName].n = self.Tasks[TaskName].n + 1 return self.Tasks[TaskName].n end --- Is the @{Mission} **COMPLETED**. -- @param #MISSION self -- @return #boolean function MISSION:IsCOMPLETED() return self:Is( "COMPLETED" ) end --- Is the @{Mission} **IDLE**. -- @param #MISSION self -- @return #boolean function MISSION:IsIDLE() return self:Is( "IDLE" ) end --- Is the @{Mission} **ENGAGED**. -- @param #MISSION self -- @return #boolean function MISSION:IsENGAGED() return self:Is( "ENGAGED" ) end --- Is the @{Mission} **FAILED**. -- @param #MISSION self -- @return #boolean function MISSION:IsFAILED() return self:Is( "FAILED" ) end --- Is the @{Mission} **HOLD**. -- @param #MISSION self -- @return #boolean function MISSION:IsHOLD() return self:Is( "HOLD" ) end --- Validates if the Mission has a Group -- @param #MISSION -- @return #boolean true if the Mission has a Group. function MISSION:HasGroup( TaskGroup ) local Has = false for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK if Task:HasGroup( TaskGroup ) then Has = true break end end return Has end --- @param #MISSION self -- @return #number function MISSION:GetTasksRemaining() -- Determine how many tasks are remaining. local TasksRemaining = 0 for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK if Task:IsStateSuccess() or Task:IsStateFailed() then else TasksRemaining = TasksRemaining + 1 end end return TasksRemaining end --- @param #MISSION self -- @return #number function MISSION:GetTaskTypes() -- Determine how many tasks are remaining. local TaskTypeList = {} local TasksRemaining = 0 for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK local TaskType = Task:GetType() TaskTypeList[TaskType] = TaskType end return TaskTypeList end function MISSION:AddPlayerName( PlayerName ) self.PlayerNames = self.PlayerNames or {} self.PlayerNames[PlayerName] = PlayerName return self end function MISSION:GetPlayerNames() return self.PlayerNames end --- Create a briefing report of the Mission. -- @param #MISSION self -- @return #string function MISSION:ReportBriefing() local Report = REPORT:New() -- List the name of the mission. local Name = self:GetName() -- Determine the status of the mission. local Status = "<" .. self:GetState() .. ">" Report:Add( string.format( '%s - %s - Mission Briefing Report', Name, Status ) ) Report:Add( self.MissionBriefing ) return Report:Text() end --- Create a status report of the Mission. -- This reports provides a one liner of the mission status. It indicates how many players and how many Tasks. -- -- Mission "" - Status "" -- - Task Types: , -- - Planned Tasks (xp) -- - Assigned Tasks(xp) -- - Success Tasks (xp) -- - Hold Tasks (xp) -- - Cancelled Tasks (xp) -- - Aborted Tasks (xp) -- - Failed Tasks (xp) -- -- @param #MISSION self -- @return #string function MISSION:ReportStatus() local Report = REPORT:New() -- List the name of the mission. local Name = self:GetName() -- Determine the status of the mission. local Status = "<" .. self:GetState() .. ">" Report:Add( string.format( '%s - Status "%s"', Name, Status ) ) local TaskTypes = self:GetTaskTypes() Report:Add( string.format( " - Task Types: %s", table.concat(TaskTypes, ", " ) ) ) local TaskStatusList = { "Planned", "Assigned", "Success", "Hold", "Cancelled", "Aborted", "Failed" } for TaskStatusID, TaskStatus in pairs( TaskStatusList ) do local TaskCount = 0 local TaskPlayerCount = 0 -- Determine how many tasks are remaining. for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK if Task:Is( TaskStatus ) then TaskCount = TaskCount + 1 TaskPlayerCount = TaskPlayerCount + Task:GetPlayerCount() end end if TaskCount > 0 then Report:Add( string.format( " - %02d %s Tasks (%dp)", TaskCount, TaskStatus, TaskPlayerCount ) ) end end return Report:Text() end --- Create an active player report of the Mission. -- This reports provides a one liner of the mission status. It indicates how many players and how many Tasks. -- -- Mission "" - - Active Players Report -- - Player ": Task , Task -- - Player : Task , Task -- - .. -- -- @param #MISSION self -- @return #string function MISSION:ReportPlayersPerTask( ReportGroup ) local Report = REPORT:New() -- List the name of the mission. local Name = self:GetName() -- Determine the status of the mission. local Status = "<" .. self:GetState() .. ">" Report:Add( string.format( '%s - %s - Players per Task Report', Name, Status ) ) local PlayerList = {} -- Determine how many tasks are remaining. for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK local PlayerNames = Task:GetPlayerNames() for PlayerName, PlayerGroup in pairs( PlayerNames ) do PlayerList[PlayerName] = Task:GetName() end end for PlayerName, TaskName in pairs( PlayerList ) do Report:Add( string.format( ' - Player (%s): Task "%s"', PlayerName, TaskName ) ) end return Report:Text() end --- Create an Mission Progress report of the Mission. -- This reports provides a one liner per player of the mission achievements per task. -- -- Mission "" - - Active Players Report -- - Player : Task : -- - Player : Task : -- - .. -- -- @param #MISSION self -- @return #string function MISSION:ReportPlayersProgress( ReportGroup ) local Report = REPORT:New() -- List the name of the mission. local Name = self:GetName() -- Determine the status of the mission. local Status = "<" .. self:GetState() .. ">" Report:Add( string.format( '%s - %s - Players per Task Progress Report', Name, Status ) ) local PlayerList = {} -- Determine how many tasks are remaining. for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK local TaskGoalTotal = Task:GetGoalTotal() or 0 local TaskName = Task:GetName() PlayerList[TaskName] = PlayerList[TaskName] or {} if TaskGoalTotal ~= 0 then local PlayerNames = self:GetPlayerNames() for PlayerName, PlayerData in pairs( PlayerNames ) do PlayerList[TaskName][PlayerName] = string.format( 'Player (%s): Task "%s": %d%%', PlayerName, TaskName, Task:GetPlayerProgress( PlayerName ) * 100 / TaskGoalTotal ) end else PlayerList[TaskName]["_"] = string.format( 'Player (---): Task "%s": %d%%', TaskName, 0 ) end end for TaskName, TaskData in pairs( PlayerList ) do for PlayerName, TaskText in pairs( TaskData ) do Report:Add( string.format( ' - %s', TaskText ) ) end end return Report:Text() end --- Create a summary report of the Mission (one line). -- @param #MISSION self -- @param Wrapper.Group#GROUP ReportGroup -- @return #string function MISSION:ReportSummary( ReportGroup ) local Report = REPORT:New() -- List the name of the mission. local Name = self:GetName() -- Determine the status of the mission. local Status = "<" .. self:GetState() .. ">" Report:Add( string.format( '%s - %s - Task Overview Report', Name, Status ) ) -- Determine how many tasks are remaining. for TaskID, Task in UTILS.spairs( self:GetTasks(), function( t, a, b ) return t[a]:ReportOrder( ReportGroup ) < t[b]:ReportOrder( ReportGroup ) end ) do local Task = Task -- Tasking.Task#TASK Report:Add( "- " .. Task:ReportSummary( ReportGroup ) ) end return Report:Text() end --- Create a overview report of the Mission (multiple lines). -- @param #MISSION self -- @return #string function MISSION:ReportOverview( ReportGroup, TaskStatus ) self:F( { TaskStatus = TaskStatus } ) local Report = REPORT:New() -- List the name of the mission. local Name = self:GetName() -- Determine the status of the mission. local Status = "<" .. self:GetState() .. ">" Report:Add( string.format( '%s - %s - %s Tasks Report', Name, Status, TaskStatus ) ) -- Determine how many tasks are remaining. local Tasks = 0 for TaskID, Task in UTILS.spairs( self:GetTasks(), function( t, a, b ) return t[a]:ReportOrder( ReportGroup ) < t[b]:ReportOrder( ReportGroup ) end ) do local Task = Task -- Tasking.Task#TASK if Task:Is( TaskStatus ) then Report:Add( string.rep( "-", 140 ) ) Report:Add( " - " .. Task:ReportOverview( ReportGroup ) ) end Tasks = Tasks + 1 if Tasks >= 8 then break end end return Report:Text() end --- Create a detailed report of the Mission, listing all the details of the Task. -- @param #MISSION self -- @return #string function MISSION:ReportDetails( ReportGroup ) local Report = REPORT:New() -- List the name of the mission. local Name = self:GetName() -- Determine the status of the mission. local Status = "<" .. self:GetState() .. ">" Report:Add( string.format( '%s - %s - Task Detailed Report', Name, Status ) ) -- Determine how many tasks are remaining. local TasksRemaining = 0 for TaskID, Task in pairs( self:GetTasks() ) do local Task = Task -- Tasking.Task#TASK Report:Add( Task:ReportDetails( ReportGroup ) ) end return Report:Text() end --- Get all the TASKs from the Mission. This function is useful in GoalFunctions. -- @return {TASK,...} Structure of TASKS with the @{TASK} number as the key. -- @usage -- -- Get Tasks from the Mission. -- Tasks = Mission:GetTasks() -- env.info( "Task 2 Completion = " .. Tasks[2]:GetGoalPercentage() .. "%" ) function MISSION:GetTasks() return self.Tasks end --- Reports the briefing. -- @param #MISSION self -- @param Wrapper.Group#GROUP ReportGroup The group to which the report needs to be sent. function MISSION:MenuReportBriefing( ReportGroup ) local Report = self:ReportBriefing() self:GetCommandCenter():MessageTypeToGroup( Report, ReportGroup, MESSAGE.Type.Briefing ) end --- Report the task summary. -- @param #MISSION self -- @param Wrapper.Group#GROUP ReportGroup function MISSION:MenuReportTasksSummary( ReportGroup ) local Report = self:ReportSummary( ReportGroup ) self:GetCommandCenter():MessageTypeToGroup( Report, ReportGroup, MESSAGE.Type.Overview ) end --- @param #MISSION self -- @param #string TaskStatus The status -- @param Wrapper.Group#GROUP ReportGroup function MISSION:MenuReportTasksPerStatus( ReportGroup, TaskStatus ) local Report = self:ReportOverview( ReportGroup, TaskStatus ) self:GetCommandCenter():MessageTypeToGroup( Report, ReportGroup, MESSAGE.Type.Overview ) end --- @param #MISSION self -- @param Wrapper.Group#GROUP ReportGroup function MISSION:MenuReportPlayersPerTask( ReportGroup ) local Report = self:ReportPlayersPerTask() self:GetCommandCenter():MessageTypeToGroup( Report, ReportGroup, MESSAGE.Type.Overview ) end --- @param #MISSION self -- @param Wrapper.Group#GROUP ReportGroup function MISSION:MenuReportPlayersProgress( ReportGroup ) local Report = self:ReportPlayersProgress() self:GetCommandCenter():MessageTypeToGroup( Report, ReportGroup, MESSAGE.Type.Overview ) end --- **Tasking** -- This module contains the TASK class, the main engine to run human taskings. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Task --- @type TASK -- @field Core.Scheduler#SCHEDULER TaskScheduler -- @field Tasking.Mission#MISSION Mission -- @field Core.Set#SET_GROUP SetGroup The Set of Groups assigned to the Task -- @field Core.Fsm#FSM_PROCESS FsmTemplate -- @field Tasking.Mission#MISSION Mission -- @field Tasking.CommandCenter#COMMANDCENTER CommandCenter -- @extends Core.Fsm#FSM_TASK --- -- # TASK class, extends @{Base#BASE} -- -- ## The TASK class implements the methods for task orchestration within MOOSE. -- -- The class provides a couple of methods to: -- -- * @{#TASK.AssignToGroup}():Assign a task to a group (of players). -- * @{#TASK.AddProcess}():Add a @{Process} to a task. -- * @{#TASK.RemoveProcesses}():Remove a running @{Process} from a running task. -- * @{#TASK.SetStateMachine}():Set a @{Fsm} to a task. -- * @{#TASK.RemoveStateMachine}():Remove @{Fsm} from a task. -- * @{#TASK.HasStateMachine}():Enquire if the task has a @{Fsm} -- * @{#TASK.AssignToUnit}(): Assign a task to a unit. (Needs to be implemented in the derived classes from @{#TASK}. -- * @{#TASK.UnAssignFromUnit}(): Unassign the task from a unit. -- * @{#TASK.SetTimeOut}(): Set timer in seconds before task gets cancelled if not assigned. -- -- ## 1.2) Set and enquire task status (beyond the task state machine processing). -- -- A task needs to implement as a minimum the following task states: -- -- * **Success**: Expresses the successful execution and finalization of the task. -- * **Failed**: Expresses the failure of a task. -- * **Planned**: Expresses that the task is created, but not yet in execution and is not assigned yet. -- * **Assigned**: Expresses that the task is assigned to a Group of players, and that the task is in execution mode. -- -- A task may also implement the following task states: -- -- * **Rejected**: Expresses that the task is rejected by a player, who was requested to accept the task. -- * **Cancelled**: Expresses that the task is cancelled by HQ or through a logical situation where a cancellation of the task is required. -- -- A task can implement more statusses than the ones outlined above. Please consult the documentation of the specific tasks to understand the different status modelled. -- -- The status of tasks can be set by the methods **State** followed by the task status. An example is `StateAssigned()`. -- The status of tasks can be enquired by the methods **IsState** followed by the task status name. An example is `if IsStateAssigned() then`. -- -- ## 1.3) Add scoring when reaching a certain task status: -- -- Upon reaching a certain task status in a task, additional scoring can be given. If the Mission has a scoring system attached, the scores will be added to the mission scoring. -- Use the method @{#TASK.AddScore}() to add scores when a status is reached. -- -- ## 1.4) Task briefing: -- -- A task briefing can be given that is shown to the player when he is assigned to the task. -- -- @field #TASK TASK -- TASK = { ClassName = "TASK", TaskScheduler = nil, ProcessClasses = {}, -- The container of the Process classes that will be used to create and assign new processes for the task to ProcessUnits. Processes = {}, -- The container of actual process objects instantiated and assigned to ProcessUnits. Players = nil, Scores = {}, Menu = {}, SetGroup = nil, FsmTemplate = nil, Mission = nil, CommandCenter = nil, TimeOut = 0, AssignedGroups = {}, } --- FSM PlayerAborted event handler prototype for TASK. -- @function [parent=#TASK] OnAfterPlayerAborted -- @param #TASK self -- @param Wrapper.Unit#UNIT PlayerUnit The Unit of the Player when he went back to spectators or left the mission. -- @param #string PlayerName The name of the Player. --- FSM PlayerCrashed event handler prototype for TASK. -- @function [parent=#TASK] OnAfterPlayerCrashed -- @param #TASK self -- @param Wrapper.Unit#UNIT PlayerUnit The Unit of the Player when he crashed in the mission. -- @param #string PlayerName The name of the Player. --- FSM PlayerDead event handler prototype for TASK. -- @function [parent=#TASK] OnAfterPlayerDead -- @param #TASK self -- @param Wrapper.Unit#UNIT PlayerUnit The Unit of the Player when he died in the mission. -- @param #string PlayerName The name of the Player. --- FSM Fail synchronous event function for TASK. -- Use this event to Fail the Task. -- @function [parent=#TASK] Fail -- @param #TASK self --- FSM Fail asynchronous event function for TASK. -- Use this event to Fail the Task. -- @function [parent=#TASK] __Fail -- @param #TASK self --- FSM Abort synchronous event function for TASK. -- Use this event to Abort the Task. -- @function [parent=#TASK] Abort -- @param #TASK self --- FSM Abort asynchronous event function for TASK. -- Use this event to Abort the Task. -- @function [parent=#TASK] __Abort -- @param #TASK self --- FSM Success synchronous event function for TASK. -- Use this event to make the Task a Success. -- @function [parent=#TASK] Success -- @param #TASK self --- FSM Success asynchronous event function for TASK. -- Use this event to make the Task a Success. -- @function [parent=#TASK] __Success -- @param #TASK self --- FSM Cancel synchronous event function for TASK. -- Use this event to Cancel the Task. -- @function [parent=#TASK] Cancel -- @param #TASK self --- FSM Cancel asynchronous event function for TASK. -- Use this event to Cancel the Task. -- @function [parent=#TASK] __Cancel -- @param #TASK self --- FSM Replan synchronous event function for TASK. -- Use this event to Replan the Task. -- @function [parent=#TASK] Replan -- @param #TASK self --- FSM Replan asynchronous event function for TASK. -- Use this event to Replan the Task. -- @function [parent=#TASK] __Replan -- @param #TASK self --- Instantiates a new TASK. Should never be used. Interface Class. -- @param #TASK self -- @param Tasking.Mission#MISSION Mission The mission wherein the Task is registered. -- @param Core.Set#SET_GROUP SetGroupAssign The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task -- @param #string TaskType The type of the Task -- @return #TASK self function TASK:New( Mission, SetGroupAssign, TaskName, TaskType, TaskBriefing ) local self = BASE:Inherit( self, FSM_TASK:New() ) -- Tasking.Task#TASK self:SetStartState( "Planned" ) self:AddTransition( "Planned", "Assign", "Assigned" ) self:AddTransition( "Assigned", "AssignUnit", "Assigned" ) self:AddTransition( "Assigned", "Success", "Success" ) self:AddTransition( "Assigned", "Hold", "Hold" ) self:AddTransition( "Assigned", "Fail", "Failed" ) self:AddTransition( "Assigned", "Abort", "Aborted" ) self:AddTransition( "Assigned", "Cancel", "Cancelled" ) self:AddTransition( "Assigned", "Goal", "*" ) --- Goal Handler OnBefore for TASK -- @function [parent=#TASK] OnBeforeGoal -- @param #TASK self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- Goal Handler OnAfter for TASK -- @function [parent=#TASK] OnAfterGoal -- @param #TASK self -- @param Wrapper.Controllable#CONTROLLABLE Controllable -- @param #string From -- @param #string Event -- @param #string To --- Goal Trigger for TASK -- @function [parent=#TASK] Goal -- @param #TASK self --- Goal Asynchronous Trigger for TASK -- @function [parent=#TASK] __Goal -- @param #TASK self -- @param #number Delay self:AddTransition( "*", "PlayerCrashed", "*" ) self:AddTransition( "*", "PlayerAborted", "*" ) self:AddTransition( "*", "PlayerDead", "*" ) self:AddTransition( { "Failed", "Aborted", "Cancelled" }, "Replan", "Planned" ) self:AddTransition( "*", "TimeOut", "Cancelled" ) self:E( "New TASK " .. TaskName ) self.Processes = {} self.Fsm = {} self.Mission = Mission self.CommandCenter = Mission:GetCommandCenter() self.SetGroup = SetGroupAssign self:SetType( TaskType ) self:SetName( TaskName ) self:SetID( Mission:GetNextTaskID( self ) ) -- The Mission orchestrates the task sequences .. self:SetBriefing( TaskBriefing ) self.FsmTemplate = self.FsmTemplate or FSM_PROCESS:New() self.TaskInfo = {} self.TaskProgress = {} return self end --- Get the Task FSM Process Template -- @param #TASK self -- @return Core.Fsm#FSM_PROCESS function TASK:GetUnitProcess( TaskUnit ) if TaskUnit then return self:GetStateMachine( TaskUnit ) else return self.FsmTemplate end end --- Sets the Task FSM Process Template -- @param #TASK self -- @param Core.Fsm#FSM_PROCESS function TASK:SetUnitProcess( FsmTemplate ) self.FsmTemplate = FsmTemplate end --- Add a PlayerUnit to join the Task. -- For each Group within the Task, the Unit is checked if it can join the Task. -- If the Unit was not part of the Task, false is returned. -- If the Unit is part of the Task, true is returned. -- @param #TASK self -- @param Wrapper.Unit#UNIT PlayerUnit The CLIENT or UNIT of the Player joining the Mission. -- @param Wrapper.Group#GROUP PlayerGroup The GROUP of the player joining the Mission. -- @return #boolean true if Unit is part of the Task. function TASK:JoinUnit( PlayerUnit, PlayerGroup ) self:F( { PlayerUnit = PlayerUnit, PlayerGroup = PlayerGroup } ) local PlayerUnitAdded = false local PlayerGroups = self:GetGroups() -- Is the PlayerGroup part of the PlayerGroups? if PlayerGroups:IsIncludeObject( PlayerGroup ) then -- Check if the PlayerGroup is already assigned to the Task. If yes, the PlayerGroup is added to the Task. -- If the PlayerGroup is not assigned to the Task, the menu needs to be set. In that case, the PlayerUnit will become the GroupPlayer leader. if self:IsStatePlanned() or self:IsStateReplanned() then --self:SetMenuForGroup( PlayerGroup ) --self:MessageToGroups( PlayerUnit:GetPlayerName() .. " is planning to join Task " .. self:GetName() ) end if self:IsStateAssigned() then local IsGroupAssigned = self:IsGroupAssigned( PlayerGroup ) self:E( { IsGroupAssigned = IsGroupAssigned } ) if IsGroupAssigned then self:AssignToUnit( PlayerUnit ) self:MessageToGroups( PlayerUnit:GetPlayerName() .. " joined Task " .. self:GetName() ) end end end return PlayerUnitAdded end --- Abort a PlayerUnit from a Task. -- If the Unit was not part of the Task, false is returned. -- If the Unit is part of the Task, true is returned. -- @param #TASK self -- @param Wrapper.Unit#UNIT PlayerUnit The CLIENT or UNIT of the Player aborting the Task. -- @return #TASK function TASK:AbortGroup( PlayerGroup ) self:F( { PlayerGroup = PlayerGroup } ) local PlayerGroups = self:GetGroups() -- Is the PlayerGroup part of the PlayerGroups? if PlayerGroups:IsIncludeObject( PlayerGroup ) then -- Check if the PlayerGroup is already assigned to the Task. If yes, the PlayerGroup is aborted from the Task. -- If the PlayerUnit was the last unit of the PlayerGroup, the menu needs to be removed from the Group. if self:IsStateAssigned() then local IsGroupAssigned = self:IsGroupAssigned( PlayerGroup ) self:E( { IsGroupAssigned = IsGroupAssigned } ) if IsGroupAssigned then local PlayerName = PlayerGroup:GetUnit(1):GetPlayerName() --self:MessageToGroups( PlayerName .. " aborted Task " .. self:GetName() ) self:UnAssignFromGroup( PlayerGroup ) --self:Abort() -- Now check if the task needs to go to hold... -- It will go to hold, if there are no players in the mission... PlayerGroups:Flush() local IsRemaining = false for GroupName, AssignedGroup in pairs( PlayerGroups:GetSet() or {} ) do if self:IsGroupAssigned( AssignedGroup ) == true then IsRemaining = true self:F( { Task = self:GetName(), IsRemaining = IsRemaining } ) break end end self:F( { Task = self:GetName(), IsRemaining = IsRemaining } ) if IsRemaining == false then self:Abort() end self:PlayerAborted( PlayerGroup:GetUnit(1) ) end end end return self end --- A PlayerUnit crashed in a Task. Abort the Player. -- If the Unit was not part of the Task, false is returned. -- If the Unit is part of the Task, true is returned. -- @param #TASK self -- @param Wrapper.Unit#UNIT PlayerUnit The CLIENT or UNIT of the Player aborting the Task. -- @return #TASK function TASK:CrashGroup( PlayerGroup ) self:F( { PlayerGroup = PlayerGroup } ) local PlayerGroups = self:GetGroups() -- Is the PlayerGroup part of the PlayerGroups? if PlayerGroups:IsIncludeObject( PlayerGroup ) then -- Check if the PlayerGroup is already assigned to the Task. If yes, the PlayerGroup is aborted from the Task. -- If the PlayerUnit was the last unit of the PlayerGroup, the menu needs to be removed from the Group. if self:IsStateAssigned() then local IsGroupAssigned = self:IsGroupAssigned( PlayerGroup ) self:E( { IsGroupAssigned = IsGroupAssigned } ) if IsGroupAssigned then local PlayerName = PlayerGroup:GetUnit(1):GetPlayerName() self:MessageToGroups( PlayerName .. " crashed! " ) self:UnAssignFromGroup( PlayerGroup ) -- Now check if the task needs to go to hold... -- It will go to hold, if there are no players in the mission... PlayerGroups:Flush() local IsRemaining = false for GroupName, AssignedGroup in pairs( PlayerGroups:GetSet() or {} ) do if self:IsGroupAssigned( AssignedGroup ) == true then IsRemaining = true self:F( { Task = self:GetName(), IsRemaining = IsRemaining } ) break end end self:F( { Task = self:GetName(), IsRemaining = IsRemaining } ) if IsRemaining == false then self:Abort() end self:PlayerCrashed( PlayerGroup:GetUnit(1) ) end end end return self end --- Gets the Mission to where the TASK belongs. -- @param #TASK self -- @return Tasking.Mission#MISSION function TASK:GetMission() return self.Mission end --- Gets the SET_GROUP assigned to the TASK. -- @param #TASK self -- @return Core.Set#SET_GROUP function TASK:GetGroups() return self.SetGroup end do -- Group Assignment --- Returns if the @{Task} is assigned to the Group. -- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup -- @return #boolean function TASK:IsGroupAssigned( TaskGroup ) local TaskGroupName = TaskGroup:GetName() if self.AssignedGroups[TaskGroupName] then self:T( { "Task is assigned to:", TaskGroup:GetName() } ) return true end self:T( { "Task is not assigned to:", TaskGroup:GetName() } ) return false end --- Set @{Group} assigned to the @{Task}. -- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup -- @return #TASK function TASK:SetGroupAssigned( TaskGroup ) local TaskName = self:GetName() local TaskGroupName = TaskGroup:GetName() self.AssignedGroups[TaskGroupName] = TaskGroup self:E( string.format( "Task %s is assigned to %s", TaskName, TaskGroupName ) ) -- Set the group to be assigned at mission level. This allows to decide the menu options on mission level for this group. self:GetMission():SetGroupAssigned( TaskGroup ) local SetAssignedGroups = self:GetGroups() -- SetAssignedGroups:ForEachGroup( -- function( AssignedGroup ) -- if self:IsGroupAssigned(AssignedGroup) then -- self:GetMission():GetCommandCenter():MessageToGroup( string.format( "Task %s is assigned to group %s.", TaskName, TaskGroupName ), AssignedGroup ) -- else -- self:GetMission():GetCommandCenter():MessageToGroup( string.format( "Task %s is assigned to your group.", TaskName ), AssignedGroup ) -- end -- end -- ) return self end --- Clear the @{Group} assignment from the @{Task}. -- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup -- @return #TASK function TASK:ClearGroupAssignment( TaskGroup ) local TaskName = self:GetName() local TaskGroupName = TaskGroup:GetName() self.AssignedGroups[TaskGroupName] = nil --self:E( string.format( "Task %s is unassigned to %s", TaskName, TaskGroupName ) ) -- Set the group to be assigned at mission level. This allows to decide the menu options on mission level for this group. self:GetMission():ClearGroupAssignment( TaskGroup ) local SetAssignedGroups = self:GetGroups() SetAssignedGroups:ForEachGroup( function( AssignedGroup ) if self:IsGroupAssigned(AssignedGroup) then --self:GetMission():GetCommandCenter():MessageToGroup( string.format( "Task %s is unassigned from group %s.", TaskName, TaskGroupName ), AssignedGroup ) else --self:GetMission():GetCommandCenter():MessageToGroup( string.format( "Task %s is unassigned from your group.", TaskName ), AssignedGroup ) end end ) return self end end do -- Group Assignment --- Assign the @{Task} to a @{Group}. -- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup -- @return #TASK function TASK:AssignToGroup( TaskGroup ) self:F( TaskGroup:GetName() ) local TaskGroupName = TaskGroup:GetName() local Mission = self:GetMission() local CommandCenter = Mission:GetCommandCenter() self:SetGroupAssigned( TaskGroup ) local TaskUnits = TaskGroup:GetUnits() for UnitID, UnitData in pairs( TaskUnits ) do local TaskUnit = UnitData -- Wrapper.Unit#UNIT local PlayerName = TaskUnit:GetPlayerName() self:E(PlayerName) if PlayerName ~= nil and PlayerName ~= "" then self:AssignToUnit( TaskUnit ) CommandCenter:MessageToGroup( string.format( 'Task "%s": Briefing for player (%s):\n%s', self:GetName(), PlayerName, self:GetBriefing() ), TaskGroup ) end end CommandCenter:SetMenu() return self end --- UnAssign the @{Task} from a @{Group}. -- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup function TASK:UnAssignFromGroup( TaskGroup ) self:F2( { TaskGroup = TaskGroup:GetName() } ) self:ClearGroupAssignment( TaskGroup ) local TaskUnits = TaskGroup:GetUnits() for UnitID, UnitData in pairs( TaskUnits ) do local TaskUnit = UnitData -- Wrapper.Unit#UNIT local PlayerName = TaskUnit:GetPlayerName() if PlayerName ~= nil and PlayerName ~= "" then -- Only remove units that have players! self:UnAssignFromUnit( TaskUnit ) end end local Mission = self:GetMission() local CommandCenter = Mission:GetCommandCenter() CommandCenter:SetMenu() end end --- -- @param #TASK self -- @param Wrapper.Group#GROUP FindGroup -- @return #boolean function TASK:HasGroup( FindGroup ) local SetAttackGroup = self:GetGroups() return SetAttackGroup:FindGroup(FindGroup) end --- Assign the @{Task} to an alive @{Unit}. -- @param #TASK self -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK self function TASK:AssignToUnit( TaskUnit ) self:F( TaskUnit:GetName() ) local FsmTemplate = self:GetUnitProcess() -- Assign a new FsmUnit to TaskUnit. local FsmUnit = self:SetStateMachine( TaskUnit, FsmTemplate:Copy( TaskUnit, self ) ) -- Core.Fsm#FSM_PROCESS FsmUnit:SetStartState( "Planned" ) FsmUnit:Accept() -- Each Task needs to start with an Accept event to start the flow. return self end --- UnAssign the @{Task} from an alive @{Unit}. -- @param #TASK self -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK self function TASK:UnAssignFromUnit( TaskUnit ) self:F( TaskUnit:GetName() ) self:RemoveStateMachine( TaskUnit ) return self end --- Sets the TimeOut for the @{Task}. If @{Task} stayed planned for longer than TimeOut, it gets into Cancelled status. -- @param #TASK self -- @param #integer Timer in seconds -- @return #TASK self function TASK:SetTimeOut ( Timer ) self:F( Timer ) self.TimeOut = Timer self:__TimeOut( self.TimeOut ) return self end --- Send a message of the @{Task} to the assigned @{Group}s. -- @param #TASK self function TASK:MessageToGroups( Message ) self:F( { Message = Message } ) local Mission = self:GetMission() local CC = Mission:GetCommandCenter() for TaskGroupName, TaskGroup in pairs( self.SetGroup:GetSet() ) do local TaskGroup = TaskGroup -- Wrapper.Group#GROUP CC:MessageToGroup( Message, TaskGroup, TaskGroup:GetName() ) end end --- Send the briefng message of the @{Task} to the assigned @{Group}s. -- @param #TASK self function TASK:SendBriefingToAssignedGroups() self:F2() for TaskGroupName, TaskGroup in pairs( self.SetGroup:GetSet() ) do if self:IsGroupAssigned( TaskGroup ) then TaskGroup:Message( self.TaskBriefing, 60 ) end end end --- UnAssign the @{Task} from the @{Group}s. -- @param #TASK self function TASK:UnAssignFromGroups() self:F2() for TaskGroupName, TaskGroup in pairs( self.SetGroup:GetSet() ) do if self:IsGroupAssigned(TaskGroup) then self:UnAssignFromGroup( TaskGroup ) end end end --- Returns if the @{Task} has still alive and assigned Units. -- @param #TASK self -- @return #boolean function TASK:HasAliveUnits() self:F() for TaskGroupID, TaskGroup in pairs( self.SetGroup:GetSet() ) do if self:IsStateAssigned() then if self:IsGroupAssigned( TaskGroup ) then for TaskUnitID, TaskUnit in pairs( TaskGroup:GetUnits() ) do if TaskUnit:IsAlive() then self:T( { HasAliveUnits = true } ) return true end end end end end self:T( { HasAliveUnits = false } ) return false end --- Set the menu options of the @{Task} to all the groups in the SetGroup. -- @param #TASK self -- @param #number MenuTime -- @return #TASK function TASK:SetMenu( MenuTime ) --R2.1 Mission Reports and Task Reports added. Fixes issue #424. self:F( { self:GetName(), MenuTime } ) --self.SetGroup:Flush() for TaskGroupID, TaskGroupData in pairs( self.SetGroup:GetSet() ) do local TaskGroup = TaskGroupData -- Wrapper.Group#GROUP if TaskGroup:IsAlive() and TaskGroup:GetPlayerNames() then -- Set Mission Menus local Mission = self:GetMission() local MissionMenu = Mission:GetMenu( TaskGroup ) if MissionMenu then self:SetMenuForGroup( TaskGroup, MenuTime ) end end end end --- Set the Menu for a Group -- @param #TASK self -- @param #number MenuTime -- @return #TASK function TASK:SetMenuForGroup( TaskGroup, MenuTime ) if self:IsStatePlanned() or self:IsStateAssigned() then self:SetPlannedMenuForGroup( TaskGroup, MenuTime ) if self:IsGroupAssigned( TaskGroup ) then self:SetAssignedMenuForGroup( TaskGroup, MenuTime ) end end end --- Set the planned menu option of the @{Task}. -- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup -- @param #string MenuText The menu text. -- @param #number MenuTime -- @return #TASK self function TASK:SetPlannedMenuForGroup( TaskGroup, MenuTime ) self:F( TaskGroup:GetName() ) local Mission = self:GetMission() local MissionName = Mission:GetName() local CommandCenter = Mission:GetCommandCenter() local CommandCenterMenu = CommandCenter:GetMenu() local TaskType = self:GetType() -- local TaskThreatLevel = self.TaskInfo["ThreatLevel"] -- local TaskThreatLevelString = TaskThreatLevel and " [" .. string.rep( "■", TaskThreatLevel ) .. "]" or " []" local TaskPlayerCount = self:GetPlayerCount() local TaskPlayerString = string.format( " (%dp)", TaskPlayerCount ) local TaskText = string.format( "%s%s", self:GetName(), TaskPlayerString ) --, TaskThreatLevelString ) local TaskName = string.format( "%s", self:GetName() ) local MissionMenu = Mission:GetMenu( TaskGroup ) --local MissionMenu = MENU_GROUP:New( TaskGroup, MissionName, CommandCenterMenu ):SetTime( MenuTime ) --local MissionMenu = Mission:GetMenu( TaskGroup ) self.MenuPlanned = self.MenuPlanned or {} self.MenuPlanned[TaskGroup] = MENU_GROUP:New( TaskGroup, "Join Planned Task", MissionMenu, Mission.MenuReportTasksPerStatus, Mission, TaskGroup, "Planned" ):SetTime( MenuTime ):SetTag( "Tasking" ) local TaskTypeMenu = MENU_GROUP:New( TaskGroup, TaskType, self.MenuPlanned[TaskGroup] ):SetTime( MenuTime ):SetTag( "Tasking" ):SetRemoveParent( true ) local TaskTypeMenu = MENU_GROUP:New( TaskGroup, TaskText, TaskTypeMenu ):SetTime( MenuTime ):SetTag( "Tasking" ):SetRemoveParent( true ) local ReportTaskMenu = MENU_GROUP_COMMAND:New( TaskGroup, string.format( "Report Task Status" ), TaskTypeMenu, self.MenuTaskStatus, self, TaskGroup ):SetTime( MenuTime ):SetTag( "Tasking" ):SetRemoveParent( true ) if not Mission:IsGroupAssigned( TaskGroup ) then self:F( { "Replacing Join Task menu" } ) local JoinTaskMenu = MENU_GROUP_COMMAND:New( TaskGroup, string.format( "Join Task" ), TaskTypeMenu, self.MenuAssignToGroup, self, TaskGroup ):SetTime( MenuTime ):SetTag( "Tasking" ):SetRemoveParent( true ) local MarkTaskMenu = MENU_GROUP_COMMAND:New( TaskGroup, string.format( "Mark Task on Map" ), TaskTypeMenu, self.MenuMarkToGroup, self, TaskGroup ):SetTime( MenuTime ):SetTag( "Tasking" ):SetRemoveParent( true ) end return self end --- Set the assigned menu options of the @{Task}. -- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup -- @param #number MenuTime -- @return #TASK self function TASK:SetAssignedMenuForGroup( TaskGroup, MenuTime ) self:F( { TaskGroup:GetName(), MenuTime } ) local Mission = self:GetMission() local MissionName = Mission:GetName() local CommandCenter = Mission:GetCommandCenter() local CommandCenterMenu = CommandCenter:GetMenu() local TaskType = self:GetType() -- local TaskThreatLevel = self.TaskInfo["ThreatLevel"] -- local TaskThreatLevelString = TaskThreatLevel and " [" .. string.rep( "■", TaskThreatLevel ) .. "]" or " []" local TaskPlayerCount = self:GetPlayerCount() local TaskPlayerString = string.format( " (%dp)", TaskPlayerCount ) local TaskText = string.format( "%s%s", self:GetName(), TaskPlayerString ) --, TaskThreatLevelString ) local TaskName = string.format( "%s", self:GetName() ) local MissionMenu = Mission:GetMenu( TaskGroup ) -- local MissionMenu = MENU_GROUP:New( TaskGroup, MissionName, CommandCenterMenu ):SetTime( MenuTime ) -- local MissionMenu = Mission:GetMenu( TaskGroup ) self.MenuAssigned = self.MenuAssigned or {} self.MenuAssigned[TaskGroup] = MENU_GROUP:New( TaskGroup, string.format( "Assigned Task %s", TaskName ), MissionMenu ):SetTime( MenuTime ):SetTag( "Tasking" ) local TaskTypeMenu = MENU_GROUP_COMMAND:New( TaskGroup, string.format( "Report Task Status" ), self.MenuAssigned[TaskGroup], self.MenuTaskStatus, self, TaskGroup ):SetTime( MenuTime ):SetTag( "Tasking" ):SetRemoveParent( true ) local TaskMenu = MENU_GROUP_COMMAND:New( TaskGroup, string.format( "Abort Group from Task" ), self.MenuAssigned[TaskGroup], self.MenuTaskAbort, self, TaskGroup ):SetTime( MenuTime ):SetTag( "Tasking" ):SetRemoveParent( true ) return self end --- Remove the menu options of the @{Task} to all the groups in the SetGroup. -- @param #TASK self -- @param #number MenuTime -- @return #TASK function TASK:RemoveMenu( MenuTime ) self:F( { self:GetName(), MenuTime } ) for TaskGroupID, TaskGroup in pairs( self.SetGroup:GetSet() ) do local TaskGroup = TaskGroup -- Wrapper.Group#GROUP self:RefreshMenus( TaskGroup, MenuTime ) end end --- Remove the menu option of the @{Task} for a @{Group}. -- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup -- @param #number MenuTime -- @return #TASK self function TASK:RefreshMenus( TaskGroup, MenuTime ) self:F( { TaskGroup:GetName(), MenuTime } ) local Mission = self:GetMission() local MissionName = Mission:GetName() local CommandCenter = Mission:GetCommandCenter() local CommandCenterMenu = CommandCenter:GetMenu() local MissionMenu = Mission:GetMenu( TaskGroup ) local TaskName = self:GetName() self.MenuPlanned = self.MenuPlanned or {} local PlannedMenu = self.MenuPlanned[TaskGroup] self.MenuAssigned = self.MenuAssigned or {} local AssignedMenu = self.MenuAssigned[TaskGroup] if PlannedMenu then PlannedMenu:Remove( MenuTime , "Tasking") end if AssignedMenu then AssignedMenu:Remove( MenuTime, "Tasking" ) end end --- Remove the assigned menu option of the @{Task} for a @{Group}. -- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup -- @param #number MenuTime -- @return #TASK self function TASK:RemoveAssignedMenuForGroup( TaskGroup ) self:F() local Mission = self:GetMission() local MissionName = Mission:GetName() local MissionMenu = Mission:GetMenu( TaskGroup ) if MissionMenu then MissionMenu:RemoveSubMenus() end end --- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup function TASK:MenuAssignToGroup( TaskGroup ) self:E( "Join Task menu selected") self:AssignToGroup( TaskGroup ) end --- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup function TASK:MenuMarkToGroup( TaskGroup ) self:E( "Mark Task menu selected") self:UpdateTaskInfo() local Report = REPORT:New():SetIndent( 0 ) -- List the name of the Task. local Name = self:GetName() Report:Add( Name .. ": " .. self:GetTaskBriefing() ) for TaskInfoID, TaskInfo in pairs( self.TaskInfo, function( t, a, b ) return t[a].TaskInfoOrder < t[b].TaskInfoOrder end ) do local TaskInfoIDText = "" --string.format( "%s: ", TaskInfoID ) if type( TaskInfo.TaskInfoText ) == "string" then if TaskInfoID == "Targets" then else Report:Add( TaskInfoIDText .. TaskInfo.TaskInfoText ) end elseif type( TaskInfo ) == "table" then if TaskInfoID == "Coordinates" then --local ToCoordinate = TaskInfo.TaskInfoText -- Core.Point#COORDINATE --Report:Add( TaskInfoIDText .. ToCoordinate:ToString() ) else end end end local Coordinate = self:GetInfo( "Coordinates" ) -- Core.Point#COORDINATE local Velocity = self.TargetSetUnit:GetVelocity() local Heading = self.TargetSetUnit:GetHeading() Coordinate:SetHeading( Heading ) Coordinate:SetVelocity( Velocity ) Report:Add( "Targets are" .. Coordinate:GetMovingText() .. "." ) local MarkText = Report:Text( ", " ) self:F( { Coordinate = Coordinate, MarkText = MarkText } ) Coordinate:MarkToGroup( MarkText, TaskGroup ) --Coordinate:MarkToAll( Briefing ) end --- Report the task status. -- @param #TASK self function TASK:MenuTaskStatus( TaskGroup ) local ReportText = self:ReportDetails( TaskGroup ) self:T( ReportText ) self:GetMission():GetCommandCenter():MessageTypeToGroup( ReportText, TaskGroup, MESSAGE.Type.Detailed ) end --- Report the task status. -- @param #TASK self function TASK:MenuTaskAbort( TaskGroup ) self:AbortGroup( TaskGroup ) end --- Returns the @{Task} name. -- @param #TASK self -- @return #string TaskName function TASK:GetTaskName() return self.TaskName end --- Returns the @{Task} briefing. -- @param #TASK self -- @return #string Task briefing. function TASK:GetTaskBriefing() return self.TaskBriefing end --- Get the default or currently assigned @{Process} template with key ProcessName. -- @param #TASK self -- @param #string ProcessName -- @return Core.Fsm#FSM_PROCESS function TASK:GetProcessTemplate( ProcessName ) local ProcessTemplate = self.ProcessClasses[ProcessName] return ProcessTemplate end -- TODO: Obscolete? --- Fail processes from @{Task} with key @{Unit} -- @param #TASK self -- @param #string TaskUnitName -- @return #TASK self function TASK:FailProcesses( TaskUnitName ) for ProcessID, ProcessData in pairs( self.Processes[TaskUnitName] ) do local Process = ProcessData Process.Fsm:Fail() end end --- Add a FiniteStateMachine to @{Task} with key Task@{Unit} -- @param #TASK self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Core.Fsm#FSM_PROCESS Fsm -- @return #TASK self function TASK:SetStateMachine( TaskUnit, Fsm ) self:F2( { TaskUnit, self.Fsm[TaskUnit] ~= nil, Fsm:GetClassNameAndID() } ) self.Fsm[TaskUnit] = Fsm return Fsm end --- Gets the FiniteStateMachine of @{Task} with key Task@{Unit} -- @param #TASK self -- @param Wrapper.Unit#UNIT TaskUnit -- @return Core.Fsm#FSM_PROCESS function TASK:GetStateMachine( TaskUnit ) self:F2( { TaskUnit, self.Fsm[TaskUnit] ~= nil } ) return self.Fsm[TaskUnit] end --- Remove FiniteStateMachines from @{Task} with key Task@{Unit} -- @param #TASK self -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK self function TASK:RemoveStateMachine( TaskUnit ) self:F( { TaskUnit = TaskUnit:GetName(), HasFsm = ( self.Fsm[TaskUnit] ~= nil ) } ) --self:E( self.Fsm ) --for TaskUnitT, Fsm in pairs( self.Fsm ) do --local Fsm = Fsm -- Core.Fsm#FSM_PROCESS --self:E( TaskUnitT ) --self.Fsm[TaskUnit] = nil --end if self.Fsm[TaskUnit] then self.Fsm[TaskUnit]:Remove() self.Fsm[TaskUnit] = nil end collectgarbage() self:E( "Garbage Collected, Processes should be finalized now ...") end --- Checks if there is a FiniteStateMachine assigned to Task@{Unit} for @{Task} -- @param #TASK self -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK self function TASK:HasStateMachine( TaskUnit ) self:F( { TaskUnit, self.Fsm[TaskUnit] ~= nil } ) return ( self.Fsm[TaskUnit] ~= nil ) end --- Gets the Scoring of the task -- @param #TASK self -- @return Functional.Scoring#SCORING Scoring function TASK:GetScoring() return self.Mission:GetScoring() end --- Gets the Task Index, which is a combination of the Task type, the Task name. -- @param #TASK self -- @return #string The Task ID function TASK:GetTaskIndex() local TaskType = self:GetType() local TaskName = self:GetName() return TaskType .. "." .. TaskName end --- Sets the Name of the Task -- @param #TASK self -- @param #string TaskName function TASK:SetName( TaskName ) self.TaskName = TaskName end --- Gets the Name of the Task -- @param #TASK self -- @return #string The Task Name function TASK:GetName() return self.TaskName end --- Sets the Type of the Task -- @param #TASK self -- @param #string TaskType function TASK:SetType( TaskType ) self.TaskType = TaskType end --- Sets the Information on the Task -- @param #TASK self -- @param #string TaskInfo The key and title of the task information. -- @param #string TaskInfoText The Task info text. -- @param #number TaskInfoOrder The ordering, a number between 0 and 99. function TASK:SetInfo( TaskInfo, TaskInfoText, TaskInfoOrder ) self.TaskInfo = self.TaskInfo or {} self.TaskInfo[TaskInfo] = self.TaskInfo[TaskInfo] or {} self.TaskInfo[TaskInfo].TaskInfoText = TaskInfoText self.TaskInfo[TaskInfo].TaskInfoOrder = TaskInfoOrder end --- Gets the Information of the Task -- @param #TASK self -- @param #string TaskInfo The key and title of the task information. -- @return #string TaskInfoText The Task info text. function TASK:GetInfo( TaskInfo ) self.TaskInfo = self.TaskInfo or {} self.TaskInfo[TaskInfo] = self.TaskInfo[TaskInfo] or {} return self.TaskInfo[TaskInfo].TaskInfoText end --- Gets the Type of the Task -- @param #TASK self -- @return #string TaskType function TASK:GetType() return self.TaskType end --- Sets the ID of the Task -- @param #TASK self -- @param #string TaskID function TASK:SetID( TaskID ) self.TaskID = TaskID end --- Gets the ID of the Task -- @param #TASK self -- @return #string TaskID function TASK:GetID() return self.TaskID end --- Sets a @{Task} to status **Success**. -- @param #TASK self function TASK:StateSuccess() self:SetState( self, "State", "Success" ) return self end --- Is the @{Task} status **Success**. -- @param #TASK self function TASK:IsStateSuccess() return self:Is( "Success" ) end --- Sets a @{Task} to status **Failed**. -- @param #TASK self function TASK:StateFailed() self:SetState( self, "State", "Failed" ) return self end --- Is the @{Task} status **Failed**. -- @param #TASK self function TASK:IsStateFailed() return self:Is( "Failed" ) end --- Sets a @{Task} to status **Planned**. -- @param #TASK self function TASK:StatePlanned() self:SetState( self, "State", "Planned" ) return self end --- Is the @{Task} status **Planned**. -- @param #TASK self function TASK:IsStatePlanned() return self:Is( "Planned" ) end --- Sets a @{Task} to status **Aborted**. -- @param #TASK self function TASK:StateAborted() self:SetState( self, "State", "Aborted" ) return self end --- Is the @{Task} status **Aborted**. -- @param #TASK self function TASK:IsStateAborted() return self:Is( "Aborted" ) end --- Sets a @{Task} to status **Cancelled**. -- @param #TASK self function TASK:StateCancelled() self:SetState( self, "State", "Cancelled" ) return self end --- Is the @{Task} status **Cancelled**. -- @param #TASK self function TASK:IsStateCancelled() return self:Is( "Cancelled" ) end --- Sets a @{Task} to status **Assigned**. -- @param #TASK self function TASK:StateAssigned() self:SetState( self, "State", "Assigned" ) return self end --- Is the @{Task} status **Assigned**. -- @param #TASK self function TASK:IsStateAssigned() return self:Is( "Assigned" ) end --- Sets a @{Task} to status **Hold**. -- @param #TASK self function TASK:StateHold() self:SetState( self, "State", "Hold" ) return self end --- Is the @{Task} status **Hold**. -- @param #TASK self function TASK:IsStateHold() return self:Is( "Hold" ) end --- Sets a @{Task} to status **Replanned**. -- @param #TASK self function TASK:StateReplanned() self:SetState( self, "State", "Replanned" ) return self end --- Is the @{Task} status **Replanned**. -- @param #TASK self function TASK:IsStateReplanned() return self:Is( "Replanned" ) end --- Gets the @{Task} status. -- @param #TASK self function TASK:GetStateString() return self:GetState( self, "State" ) end --- Sets a @{Task} briefing. -- @param #TASK self -- @param #string TaskBriefing -- @return #TASK self function TASK:SetBriefing( TaskBriefing ) self:E(TaskBriefing) self.TaskBriefing = TaskBriefing return self end --- Gets the @{Task} briefing. -- @param #TASK self -- @return #string The briefing text. function TASK:GetBriefing() return self.TaskBriefing end --- FSM function for a TASK -- @param #TASK self -- @param #string Event -- @param #string From -- @param #string To function TASK:onenterAssigned( From, Event, To, PlayerUnit, PlayerName ) --- This test is required, because the state transition will be fired also when the state does not change in case of an event. if From ~= "Assigned" then self:E( { From, Event, To, PlayerUnit:GetName(), PlayerName } ) self:GetMission():GetCommandCenter():MessageToCoalition( "Task " .. self:GetName() .. " is assigned." ) -- Set the total Progress to be achieved. self:SetGoalTotal() -- Polymorphic to set the initial goal total! if self.Dispatcher then self:E( "Firing Assign event " ) self.Dispatcher:Assign( self, PlayerUnit, PlayerName ) end self:GetMission():__Start( 1 ) -- When the task is assigned, the task goal needs to be checked of the derived classes. self:__Goal( -10 ) -- Polymorphic self:SetMenu() end end --- FSM function for a TASK -- @param #TASK self -- @param #string Event -- @param #string From -- @param #string To function TASK:onenterSuccess( From, Event, To ) self:E( "Task Success" ) self:GetMission():GetCommandCenter():MessageToCoalition( "Task " .. self:GetName() .. " is successful! Good job!" ) self:UnAssignFromGroups() self:GetMission():__MissionGoals( 1 ) end --- FSM function for a TASK -- @param #TASK self -- @param #string From -- @param #string Event -- @param #string To function TASK:onenterAborted( From, Event, To ) self:E( "Task Aborted" ) if From ~= "Aborted" then self:GetMission():GetCommandCenter():MessageToCoalition( "Task " .. self:GetName() .. " has been aborted! Task may be replanned." ) self:__Replan( 5 ) self:SetMenu() end end --- FSM function for a TASK -- @param #TASK self -- @param #string From -- @param #string Event -- @param #string To function TASK:onenterCancelled( From, Event, To ) self:E( "Task Cancelled" ) if From ~= "Cancelled" then self:GetMission():GetCommandCenter():MessageToCoalition( "Task " .. self:GetName() .. " has been cancelled! The tactical situation has changed." ) self:UnAssignFromGroups() self:SetMenu() end end --- FSM function for a TASK -- @param #TASK self -- @param #string From -- @param #string Event -- @param #string To function TASK:onafterReplan( From, Event, To ) self:E( "Task Replanned" ) self:GetMission():GetCommandCenter():MessageToCoalition( "Replanning Task " .. self:GetName() .. "." ) self:SetMenu() end --- FSM function for a TASK -- @param #TASK self -- @param #string From -- @param #string Event -- @param #string To function TASK:onenterFailed( From, Event, To ) self:E( "Task Failed" ) self:GetMission():GetCommandCenter():MessageToCoalition( "Task " .. self:GetName() .. " has failed!" ) self:UnAssignFromGroups() end --- FSM function for a TASK -- @param #TASK self -- @param #string Event -- @param #string From -- @param #string To function TASK:onstatechange( From, Event, To ) if self:IsTrace() then --MESSAGE:New( "@ Task " .. self.TaskName .. " : " .. From .. " changed to " .. To .. " by " .. Event, 2 ):ToAll() end if self.Scores[To] then local Scoring = self:GetScoring() if Scoring then self:E( { self.Scores[To].ScoreText, self.Scores[To].Score } ) Scoring:_AddMissionScore( self.Mission, self.Scores[To].ScoreText, self.Scores[To].Score ) end end end --- FSM function for a TASK -- @param #TASK self -- @param #string Event -- @param #string From -- @param #string To function TASK:onenterPlanned( From, Event, To) if not self.TimeOut == 0 then self.__TimeOut( self.TimeOut ) end end --- FSM function for a TASK -- @param #TASK self -- @param #string Event -- @param #string From -- @param #string To function TASK:onbeforeTimeOut( From, Event, To ) if From == "Planned" then self:RemoveMenu() return true end return false end do -- Links --- Set dispatcher of a task -- @param #TASK self -- @param Tasking.DetectionManager#DETECTION_MANAGER Dispatcher -- @return #TASK function TASK:SetDispatcher( Dispatcher ) self.Dispatcher = Dispatcher end --- Set detection of a task -- @param #TASK self -- @param Function.Detection#DETECTION_BASE Detection -- @param #number DetectedItemIndex -- @return #TASK function TASK:SetDetection( Detection, DetectedItemIndex ) self:E({DetectedItemIndex,Detection}) self.Detection = Detection self.DetectedItemIndex = DetectedItemIndex end end do -- Reporting --- Create a summary report of the Task. -- List the Task Name and Status -- @param #TASK self -- @param Wrapper.Group#GROUP ReportGroup -- @return #string function TASK:ReportSummary( ReportGroup ) local Report = REPORT:New() -- List the name of the Task. Report:Add( self:GetName() ) -- Determine the status of the Task. Report:Add( "State: <" .. self:GetState() .. ">" ) if self.TaskInfo["Coordinates"] then local TaskInfoIDText = string.format( "%s: ", "Coordinate" ) local TaskCoord = self.TaskInfo["Coordinates"].TaskInfoText -- Core.Point#COORDINATE Report:Add( TaskInfoIDText .. TaskCoord:ToString( ReportGroup, nil, self ) ) end return Report:Text( ', ' ) end --- Create an overiew report of the Task. -- List the Task Name and Status -- @param #TASK self -- @return #string function TASK:ReportOverview( ReportGroup ) self:UpdateTaskInfo() -- List the name of the Task. local TaskName = self:GetName() local Report = REPORT:New() local Line = 0 local LineReport = REPORT:New() for TaskInfoID, TaskInfo in UTILS.spairs( self.TaskInfo, function( t, a, b ) return t[a].TaskInfoOrder < t[b].TaskInfoOrder end ) do self:F( { TaskInfo = TaskInfo } ) if Line < math.floor( TaskInfo.TaskInfoOrder / 10 ) then if Line ~= 0 then Report:AddIndent( LineReport:Text( ", " ) ) else Report:Add( TaskName .. ", " .. LineReport:Text( ", " ) ) end LineReport = REPORT:New() Line = math.floor( TaskInfo.TaskInfoOrder / 10 ) end local TaskInfoIDText = string.format( "%s: ", TaskInfoID ) if type( TaskInfo.TaskInfoText ) == "string" then LineReport:Add( TaskInfoIDText .. TaskInfo.TaskInfoText ) elseif type(TaskInfo) == "table" then if TaskInfoID == "Coordinates" then local ToCoordinate = TaskInfo.TaskInfoText -- Core.Point#COORDINATE --Report:Add( TaskInfoIDText ) LineReport:Add( TaskInfoIDText .. ToCoordinate:ToString( ReportGroup, nil, self ) ) --Report:AddIndent( ToCoordinate:ToStringBULLS( ReportGroup:GetCoalition() ) ) else end end end Report:AddIndent( LineReport:Text( ", " ) ) return Report:Text() end --- Create a count of the players in the Task. -- @param #TASK self -- @return #number The total number of players in the task. function TASK:GetPlayerCount() --R2.1 Get a count of the players. local PlayerCount = 0 -- Loop each Unit active in the Task, and find Player Names. for TaskGroupID, PlayerGroup in pairs( self:GetGroups():GetSet() ) do local PlayerGroup = PlayerGroup -- Wrapper.Group#GROUP if self:IsGroupAssigned( PlayerGroup ) then local PlayerNames = PlayerGroup:GetPlayerNames() PlayerCount = PlayerCount + #PlayerNames end end return PlayerCount end --- Create a list of the players in the Task. -- @param #TASK self -- @return #map<#string,Wrapper.Group#GROUP> A map of the players function TASK:GetPlayerNames() --R2.1 Get a map of the players. local PlayerNameMap = {} -- Loop each Unit active in the Task, and find Player Names. for TaskGroupID, PlayerGroup in pairs( self:GetGroups():GetSet() ) do local PlayerGroup = PlayerGroup -- Wrapper.Group#GROUP if self:IsGroupAssigned( PlayerGroup ) then local PlayerNames = PlayerGroup:GetPlayerNames() for PlayerNameID, PlayerName in pairs( PlayerNames ) do PlayerNameMap[PlayerName] = PlayerGroup end end end return PlayerNameMap end --- Create a detailed report of the Task. -- List the Task Status, and the Players assigned to the Task. -- @param #TASK self -- @param Wrapper.Group#GROUP TaskGroup -- @return #string function TASK:ReportDetails( ReportGroup ) self:UpdateTaskInfo() local Report = REPORT:New():SetIndent( 3 ) -- List the name of the Task. local Name = self:GetName() -- Determine the status of the Task. local Status = "<" .. self:GetState() .. ">" Report:Add( "Task: " .. Name .. " - " .. Status .. " - Detailed Report" ) -- Loop each Unit active in the Task, and find Player Names. local PlayerNames = self:GetPlayerNames() local PlayerReport = REPORT:New() for PlayerName, PlayerGroup in pairs( PlayerNames ) do PlayerReport:Add( "Group " .. PlayerGroup:GetCallsign() .. ": " .. PlayerName ) end local Players = PlayerReport:Text() if Players ~= "" then Report:Add( " - Players assigned:" ) Report:AddIndent( Players ) end for TaskInfoID, TaskInfo in pairs( self.TaskInfo, function( t, a, b ) return t[a].TaskInfoOrder < t[b].TaskInfoOrder end ) do local TaskInfoIDText = string.format( " - %s: ", TaskInfoID ) if type( TaskInfo.TaskInfoText ) == "string" then Report:Add( TaskInfoIDText .. TaskInfo.TaskInfoText ) elseif type(TaskInfo) == "table" then if TaskInfoID == "Coordinates" then local FromCoordinate = ReportGroup:GetUnit(1):GetCoordinate() local ToCoordinate = TaskInfo.TaskInfoText -- Core.Point#COORDINATE Report:Add( TaskInfoIDText .. ToCoordinate:ToString( ReportGroup:GetUnit(1), nil, self ) ) else end end end local Coordinate = self:GetInfo( "Coordinates" ) -- Core.Point#COORDINATE local Velocity = self.TargetSetUnit:GetVelocity() local Heading = self.TargetSetUnit:GetHeading() Coordinate:SetHeading( Heading ) Coordinate:SetVelocity( Velocity ) Report:Add( "Targets are" .. Coordinate:GetMovingText() .. "." ) return Report:Text() end end -- Reporting do -- Additional Task Scoring and Task Progress --- Add Task Progress for a Player Name -- @param #TASK self -- @param #string PlayerName The name of the player. -- @param #string ProgressText The text that explains the Progress achieved. -- @param #number ProgressTime The time the progress was achieved. -- @oaram #number ProgressPoints The amount of points of magnitude granted. This will determine the shared Mission Success scoring. -- @return #TASK function TASK:AddProgress( PlayerName, ProgressText, ProgressTime, ProgressPoints ) self.TaskProgress = self.TaskProgress or {} self.TaskProgress[ProgressTime] = self.TaskProgress[ProgressTime] or {} self.TaskProgress[ProgressTime].PlayerName = PlayerName self.TaskProgress[ProgressTime].ProgressText = ProgressText self.TaskProgress[ProgressTime].ProgressPoints = ProgressPoints self:GetMission():AddPlayerName( PlayerName ) return self end function TASK:GetPlayerProgress( PlayerName ) local ProgressPlayer = 0 for ProgressTime, ProgressData in pairs( self.TaskProgress ) do if PlayerName == ProgressData.PlayerName then ProgressPlayer = ProgressPlayer + ProgressData.ProgressPoints end end return ProgressPlayer end --- Set a score when progress has been made by the player. -- @param #TASK self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points to be granted when task process has been achieved. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK function TASK:SetScoreOnProgress( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScoreProcess( "Engaging", "Account", "AccountPlayer", "Player " .. PlayerName .. " has achieved progress.", Score ) return self end --- Set a score when all the targets in scope of the A2A attack, have been destroyed. -- @param #TASK self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK function TASK:SetScoreOnSuccess( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Success", "The task is a success!", Score ) return self end --- Set a penalty when the A2A attack has failed. -- @param #TASK self -- @param #string PlayerName The name of the player. -- @param #number Penalty The penalty in points, must be a negative value! -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK function TASK:SetScoreOnFail( PlayerName, Penalty, TaskUnit ) self:F( { PlayerName, Penalty, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Failed", "The task is a failure!", Penalty ) return self end end --- This module contains the DETECTION_MANAGER class and derived classes. -- -- === -- -- 1) @{DetectionManager#DETECTION_MANAGER} class, extends @{Fsm#FSM} -- ==================================================================== -- The @{DetectionManager#DETECTION_MANAGER} class defines the core functions to report detected objects to groups. -- Reportings can be done in several manners, and it is up to the derived classes if DETECTION_MANAGER to model the reporting behaviour. -- -- 1.1) DETECTION_MANAGER constructor: -- ----------------------------------- -- * @{DetectionManager#DETECTION_MANAGER.New}(): Create a new DETECTION_MANAGER instance. -- -- 1.2) DETECTION_MANAGER reporting: -- --------------------------------- -- Derived DETECTION_MANAGER classes will reports detected units using the method @{DetectionManager#DETECTION_MANAGER.ReportDetected}(). This method implements polymorphic behaviour. -- -- The time interval in seconds of the reporting can be changed using the methods @{DetectionManager#DETECTION_MANAGER.SetRefreshTimeInterval}(). -- To control how long a reporting message is displayed, use @{DetectionManager#DETECTION_MANAGER.SetReportDisplayTime}(). -- Derived classes need to implement the method @{DetectionManager#DETECTION_MANAGER.GetReportDisplayTime}() to use the correct display time for displayed messages during a report. -- -- Reporting can be started and stopped using the methods @{DetectionManager#DETECTION_MANAGER.StartReporting}() and @{DetectionManager#DETECTION_MANAGER.StopReporting}() respectively. -- If an ad-hoc report is requested, use the method @{DetectionManager#DETECTION_MANAGER#ReportNow}(). -- -- The default reporting interval is every 60 seconds. The reporting messages are displayed 15 seconds. -- -- === -- -- 2) @{DetectionManager#DETECTION_REPORTING} class, extends @{DetectionManager#DETECTION_MANAGER} -- ========================================================================================= -- The @{DetectionManager#DETECTION_REPORTING} class implements detected units reporting. Reporting can be controlled using the reporting methods available in the @{DetectionManager#DETECTION_MANAGER} class. -- -- 2.1) DETECTION_REPORTING constructor: -- ------------------------------- -- The @{DetectionManager#DETECTION_REPORTING.New}() method creates a new DETECTION_REPORTING instance. -- -- -- === -- -- ### Contributions: Mechanist, Prof_Hilactic, FlightControl - Concept & Testing -- ### Author: FlightControl - Framework Design & Programming -- -- @module DetectionManager do -- DETECTION MANAGER --- DETECTION_MANAGER class. -- @type DETECTION_MANAGER -- @field Set#SET_GROUP SetGroup The groups to which the FAC will report to. -- @field Functional.Detection#DETECTION_BASE Detection The DETECTION_BASE object that is used to report the detected objects. -- @extends Core.Fsm#FSM DETECTION_MANAGER = { ClassName = "DETECTION_MANAGER", SetGroup = nil, Detection = nil, } --- FAC constructor. -- @param #DETECTION_MANAGER self -- @param Set#SET_GROUP SetGroup -- @param Functional.Detection#DETECTION_BASE Detection -- @return #DETECTION_MANAGER self function DETECTION_MANAGER:New( SetGroup, Detection ) -- Inherits from BASE local self = BASE:Inherit( self, FSM:New() ) -- #DETECTION_MANAGER self.SetGroup = SetGroup self.Detection = Detection self:SetStartState( "Stopped" ) self:AddTransition( "Stopped", "Start", "Started" ) --- Start Handler OnBefore for DETECTION_MANAGER -- @function [parent=#DETECTION_MANAGER] OnBeforeStart -- @param #DETECTION_MANAGER self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- Start Handler OnAfter for DETECTION_MANAGER -- @function [parent=#DETECTION_MANAGER] OnAfterStart -- @param #DETECTION_MANAGER self -- @param #string From -- @param #string Event -- @param #string To --- Start Trigger for DETECTION_MANAGER -- @function [parent=#DETECTION_MANAGER] Start -- @param #DETECTION_MANAGER self --- Start Asynchronous Trigger for DETECTION_MANAGER -- @function [parent=#DETECTION_MANAGER] __Start -- @param #DETECTION_MANAGER self -- @param #number Delay self:AddTransition( "Started", "Stop", "Stopped" ) --- Stop Handler OnBefore for DETECTION_MANAGER -- @function [parent=#DETECTION_MANAGER] OnBeforeStop -- @param #DETECTION_MANAGER self -- @param #string From -- @param #string Event -- @param #string To -- @return #boolean --- Stop Handler OnAfter for DETECTION_MANAGER -- @function [parent=#DETECTION_MANAGER] OnAfterStop -- @param #DETECTION_MANAGER self -- @param #string From -- @param #string Event -- @param #string To --- Stop Trigger for DETECTION_MANAGER -- @function [parent=#DETECTION_MANAGER] Stop -- @param #DETECTION_MANAGER self --- Stop Asynchronous Trigger for DETECTION_MANAGER -- @function [parent=#DETECTION_MANAGER] __Stop -- @param #DETECTION_MANAGER self -- @param #number Delay self:AddTransition( "Started", "Report", "Started" ) self:SetRefreshTimeInterval( 30 ) self:SetReportDisplayTime( 25 ) self:E( { Detection = Detection } ) Detection:__Start( 3 ) return self end function DETECTION_MANAGER:onafterStart( From, Event, To ) self:Report() end function DETECTION_MANAGER:onafterReport( From, Event, To ) self:E( "onafterReport" ) self:__Report( -self._RefreshTimeInterval ) self:ProcessDetected( self.Detection ) end --- Set the reporting time interval. -- @param #DETECTION_MANAGER self -- @param #number RefreshTimeInterval The interval in seconds when a report needs to be done. -- @return #DETECTION_MANAGER self function DETECTION_MANAGER:SetRefreshTimeInterval( RefreshTimeInterval ) self:F2() self._RefreshTimeInterval = RefreshTimeInterval end --- Set the reporting message display time. -- @param #DETECTION_MANAGER self -- @param #number ReportDisplayTime The display time in seconds when a report needs to be done. -- @return #DETECTION_MANAGER self function DETECTION_MANAGER:SetReportDisplayTime( ReportDisplayTime ) self:F2() self._ReportDisplayTime = ReportDisplayTime end --- Get the reporting message display time. -- @param #DETECTION_MANAGER self -- @return #number ReportDisplayTime The display time in seconds when a report needs to be done. function DETECTION_MANAGER:GetReportDisplayTime() self:F2() return self._ReportDisplayTime end --- Reports the detected items to the @{Set#SET_GROUP}. -- @param #DETECTION_MANAGER self -- @param Functional.Detection#DETECTION_BASE Detection -- @return #DETECTION_MANAGER self function DETECTION_MANAGER:ProcessDetected( Detection ) self:E() end end do -- DETECTION_REPORTING --- DETECTION_REPORTING class. -- @type DETECTION_REPORTING -- @field Set#SET_GROUP SetGroup The groups to which the FAC will report to. -- @field Functional.Detection#DETECTION_BASE Detection The DETECTION_BASE object that is used to report the detected objects. -- @extends #DETECTION_MANAGER DETECTION_REPORTING = { ClassName = "DETECTION_REPORTING", } --- DETECTION_REPORTING constructor. -- @param #DETECTION_REPORTING self -- @param Set#SET_GROUP SetGroup -- @param Functional.Detection#DETECTION_AREAS Detection -- @return #DETECTION_REPORTING self function DETECTION_REPORTING:New( SetGroup, Detection ) -- Inherits from DETECTION_MANAGER local self = BASE:Inherit( self, DETECTION_MANAGER:New( SetGroup, Detection ) ) -- #DETECTION_REPORTING self:Schedule( 1, 30 ) return self end --- Creates a string of the detected items in a @{Detection}. -- @param #DETECTION_MANAGER self -- @param Set#SET_UNIT DetectedSet The detected Set created by the @{Detection#DETECTION_BASE} object. -- @return #DETECTION_MANAGER self function DETECTION_REPORTING:GetDetectedItemsText( DetectedSet ) self:F2() local MT = {} -- Message Text local UnitTypes = {} for DetectedUnitID, DetectedUnitData in pairs( DetectedSet:GetSet() ) do local DetectedUnit = DetectedUnitData -- Wrapper.Unit#UNIT if DetectedUnit:IsAlive() then local UnitType = DetectedUnit:GetTypeName() if not UnitTypes[UnitType] then UnitTypes[UnitType] = 1 else UnitTypes[UnitType] = UnitTypes[UnitType] + 1 end end end for UnitTypeID, UnitType in pairs( UnitTypes ) do MT[#MT+1] = UnitType .. " of " .. UnitTypeID end return table.concat( MT, ", " ) end --- Reports the detected items to the @{Set#SET_GROUP}. -- @param #DETECTION_REPORTING self -- @param Wrapper.Group#GROUP Group The @{Group} object to where the report needs to go. -- @param Functional.Detection#DETECTION_AREAS Detection The detection created by the @{Detection#DETECTION_BASE} object. -- @return #boolean Return true if you want the reporting to continue... false will cancel the reporting loop. function DETECTION_REPORTING:ProcessDetected( Group, Detection ) self:F2( Group ) self:E( Group ) local DetectedMsg = {} for DetectedAreaID, DetectedAreaData in pairs( Detection:GetDetectedAreas() ) do local DetectedArea = DetectedAreaData -- Functional.Detection#DETECTION_AREAS.DetectedArea DetectedMsg[#DetectedMsg+1] = " - Group #" .. DetectedAreaID .. ": " .. self:GetDetectedItemsText( DetectedArea.Set ) end local FACGroup = Detection:GetDetectionGroups() FACGroup:MessageToGroup( "Reporting detected target groups:\n" .. table.concat( DetectedMsg, "\n" ), self:GetReportDisplayTime(), Group ) return true end end --- **Tasking** - The TASK_A2G_DISPATCHER creates and manages player TASK_A2G tasks based on detected targets. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Task_A2G_Dispatcher do -- TASK_A2G_DISPATCHER --- TASK_A2G_DISPATCHER class. -- @type TASK_A2G_DISPATCHER -- @field Set#SET_GROUP SetGroup The groups to which the FAC will report to. -- @field Functional.Detection#DETECTION_BASE Detection The DETECTION_BASE object that is used to report the detected objects. -- @field Tasking.Mission#MISSION Mission -- @extends Tasking.DetectionManager#DETECTION_MANAGER --- # TASK_A2G_DISPATCHE} class, extends @{#DETECTION_MANAGER} -- -- The TASK_A2G_DISPATCHER class implements the dynamic dispatching of tasks upon groups of detected units determined a @{Set} of FAC (groups). -- The FAC will detect units, will group them, and will dispatch @{Task}s to groups. Depending on the type of target detected, different tasks will be dispatched. -- Find a summary below describing for which situation a task type is created: -- -- * **CAS Task**: Is created when there are enemy ground units within range of the FAC, while there are friendly units in the FAC perimeter. -- * **BAI Task**: Is created when there are enemy ground units within range of the FAC, while there are NO other friendly units within the FAC perimeter. -- * **SEAD Task**: Is created when there are enemy ground units wihtin range of the FAC, with air search radars. -- -- Other task types will follow... -- -- ## TASK_A2G_DISPATCHER constructor -- -- The @{#TASK_A2G_DISPATCHER.New}() method creates a new TASK_A2G_DISPATCHER instance. -- -- @field #TASK_A2G_DISPATCHER TASK_A2G_DISPATCHER = { ClassName = "TASK_A2G_DISPATCHER", Mission = nil, Detection = nil, Tasks = {}, } --- TASK_A2G_DISPATCHER constructor. -- @param #TASK_A2G_DISPATCHER self -- @param Tasking.Mission#MISSION Mission The mission for which the task dispatching is done. -- @param Set#SET_GROUP SetGroup The set of groups that can join the tasks within the mission. -- @param Functional.Detection#DETECTION_BASE Detection The detection results that are used to dynamically assign new tasks to human players. -- @return #TASK_A2G_DISPATCHER self function TASK_A2G_DISPATCHER:New( Mission, SetGroup, Detection ) -- Inherits from DETECTION_MANAGER local self = BASE:Inherit( self, DETECTION_MANAGER:New( SetGroup, Detection ) ) -- #TASK_A2G_DISPATCHER self.Detection = Detection self.Mission = Mission self.Detection:FilterCategories( Unit.Category.GROUND_UNIT, Unit.Category.SHIP ) self.Detection:FilterFriendliesCategory( Unit.Category.GROUND_UNIT ) self:AddTransition( "Started", "Assign", "Started" ) --- OnAfter Transition Handler for Event Assign. -- @function [parent=#TASK_A2G_DISPATCHER] OnAfterAssign -- @param #TASK_A2G_DISPATCHER self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Tasking.Task_A2G#TASK_A2G Task -- @param Wrapper.Unit#UNIT TaskUnit -- @param #string PlayerName self:__Start( 5 ) return self end --- Creates a SEAD task when there are targets for it. -- @param #TASK_A2G_DISPATCHER self -- @param Functional.Detection#DETECTION_AREAS.DetectedItem DetectedItem -- @return Core.Set#SET_UNIT TargetSetUnit: The target set of units. -- @return #nil If there are no targets to be set. function TASK_A2G_DISPATCHER:EvaluateSEAD( DetectedItem ) self:F( { DetectedItem.ItemID } ) local DetectedSet = DetectedItem.Set local DetectedZone = DetectedItem.Zone -- Determine if the set has radar targets. If it does, construct a SEAD task. local RadarCount = DetectedSet:HasSEAD() if RadarCount > 0 then -- Here we're doing something advanced... We're copying the DetectedSet, but making a new Set only with SEADable Radar units in it. local TargetSetUnit = SET_UNIT:New() TargetSetUnit:SetDatabase( DetectedSet ) TargetSetUnit:FilterHasSEAD() TargetSetUnit:FilterOnce() -- Filter but don't do any events!!! Elements are added manually upon each detection. return TargetSetUnit end return nil end --- Creates a CAS task when there are targets for it. -- @param #TASK_A2G_DISPATCHER self -- @param Functional.Detection#DETECTION_AREAS.DetectedItem DetectedItem -- @return Core.Set#SET_UNIT TargetSetUnit: The target set of units. -- @return #nil If there are no targets to be set. function TASK_A2G_DISPATCHER:EvaluateCAS( DetectedItem ) self:F( { DetectedItem.ItemID } ) local DetectedSet = DetectedItem.Set local DetectedZone = DetectedItem.Zone -- Determine if the set has radar targets. If it does, construct a SEAD task. local GroundUnitCount = DetectedSet:HasGroundUnits() local FriendliesNearBy = self.Detection:IsFriendliesNearBy( DetectedItem ) local RadarCount = DetectedSet:HasSEAD() if RadarCount == 0 and GroundUnitCount > 0 and FriendliesNearBy == true then -- Copy the Set local TargetSetUnit = SET_UNIT:New() TargetSetUnit:SetDatabase( DetectedSet ) TargetSetUnit:FilterOnce() -- Filter but don't do any events!!! Elements are added manually upon each detection. return TargetSetUnit end return nil end --- Creates a BAI task when there are targets for it. -- @param #TASK_A2G_DISPATCHER self -- @param Functional.Detection#DETECTION_AREAS.DetectedItem DetectedItem -- @return Core.Set#SET_UNIT TargetSetUnit: The target set of units. -- @return #nil If there are no targets to be set. function TASK_A2G_DISPATCHER:EvaluateBAI( DetectedItem, FriendlyCoalition ) self:F( { DetectedItem.ItemID } ) local DetectedSet = DetectedItem.Set local DetectedZone = DetectedItem.Zone -- Determine if the set has radar targets. If it does, construct a SEAD task. local GroundUnitCount = DetectedSet:HasGroundUnits() local FriendliesNearBy = self.Detection:IsFriendliesNearBy( DetectedItem ) local RadarCount = DetectedSet:HasSEAD() if RadarCount == 0 and GroundUnitCount > 0 and FriendliesNearBy == false then -- Copy the Set local TargetSetUnit = SET_UNIT:New() TargetSetUnit:SetDatabase( DetectedSet ) TargetSetUnit:FilterOnce() -- Filter but don't do any events!!! Elements are added manually upon each detection. return TargetSetUnit end return nil end function TASK_A2G_DISPATCHER:RemoveTask( TaskIndex ) self.Mission:RemoveTask( self.Tasks[TaskIndex] ) self.Tasks[TaskIndex] = nil end --- Evaluates the removal of the Task from the Mission. -- Can only occur when the DetectedItem is Changed AND the state of the Task is "Planned". -- @param #TASK_A2G_DISPATCHER self -- @param Tasking.Mission#MISSION Mission -- @param Tasking.Task#TASK Task -- @param #boolean DetectedItemID -- @param #boolean DetectedItemChange -- @return Tasking.Task#TASK function TASK_A2G_DISPATCHER:EvaluateRemoveTask( Mission, Task, TaskIndex, DetectedItemChanged ) if Task then if ( Task:IsStatePlanned() and DetectedItemChanged == true ) or Task:IsStateCancelled() then --self:E( "Removing Tasking: " .. Task:GetTaskName() ) self:RemoveTask( TaskIndex ) end end return Task end --- Assigns tasks in relation to the detected items to the @{Set#SET_GROUP}. -- @param #TASK_A2G_DISPATCHER self -- @param Functional.Detection#DETECTION_BASE Detection The detection created by the @{Detection#DETECTION_BASE} derived object. -- @return #boolean Return true if you want the task assigning to continue... false will cancel the loop. function TASK_A2G_DISPATCHER:ProcessDetected( Detection ) self:E() local AreaMsg = {} local TaskMsg = {} local ChangeMsg = {} local Mission = self.Mission if Mission:IsIDLE() or Mission:IsENGAGED() then local TaskReport = REPORT:New() -- Checking the task queue for the dispatcher, and removing any obsolete task! for TaskIndex, TaskData in pairs( self.Tasks ) do local Task = TaskData -- Tasking.Task#TASK if Task:IsStatePlanned() then local DetectedItem = Detection:GetDetectedItem( TaskIndex ) if not DetectedItem then local TaskText = Task:GetName() for TaskGroupID, TaskGroup in pairs( self.SetGroup:GetSet() ) do Mission:GetCommandCenter():MessageToGroup( string.format( "Obsolete A2G task %s for %s removed.", TaskText, Mission:GetName() ), TaskGroup ) end Task = self:RemoveTask( TaskIndex ) Mission:RemoveTask( Task ) self.Tasks[TaskIndex] = nil end end end --- First we need to the detected targets. for DetectedItemID, DetectedItem in pairs( Detection:GetDetectedItems() ) do local DetectedItem = DetectedItem -- Functional.Detection#DETECTION_BASE.DetectedItem local DetectedSet = DetectedItem.Set -- Core.Set#SET_UNIT local DetectedZone = DetectedItem.Zone --self:E( { "Targets in DetectedItem", DetectedItem.ItemID, DetectedSet:Count(), tostring( DetectedItem ) } ) --DetectedSet:Flush() local DetectedItemID = DetectedItem.ID local TaskIndex = DetectedItem.Index local DetectedItemChanged = DetectedItem.Changed self:E( { DetectedItemChanged = DetectedItemChanged, DetectedItemID = DetectedItemID, TaskIndex = TaskIndex } ) local Task = self.Tasks[TaskIndex] -- Tasking.Task_A2G#TASK_A2G if Task then -- If there is a Task and the task was assigned, then we check if the task was changed ... If it was, we need to reevaluate the targets. if Task:IsStateAssigned() then if DetectedItemChanged == true then -- The detection has changed, thus a new TargetSet is to be evaluated and set local TargetsReport = REPORT:New() local TargetSetUnit = self:EvaluateSEAD( DetectedItem ) -- Returns a SetUnit if there are targets to be SEADed... if TargetSetUnit then if Task:IsInstanceOf( TASK_A2G_SEAD ) then Task:SetTargetSetUnit( TargetSetUnit ) Task:UpdateTaskInfo() TargetsReport:Add( Detection:GetChangeText( DetectedItem ) ) else Task:Cancel() end else local TargetSetUnit = self:EvaluateCAS( DetectedItem ) -- Returns a SetUnit if there are targets to be CASed... if TargetSetUnit then if Task:IsInstanceOf( TASK_A2G_CAS ) then Task:SetTargetSetUnit( TargetSetUnit ) Task:SetDetection( Detection, TaskIndex ) Task:UpdateTaskInfo() TargetsReport:Add( Detection:GetChangeText( DetectedItem ) ) else Task:Cancel() Task = self:RemoveTask( TaskIndex ) end else local TargetSetUnit = self:EvaluateBAI( DetectedItem ) -- Returns a SetUnit if there are targets to be BAIed... if TargetSetUnit then if Task:IsInstanceOf( TASK_A2G_BAI ) then Task:SetTargetSetUnit( TargetSetUnit ) Task:SetDetection( Detection, TaskIndex ) Task:UpdateTaskInfo() TargetsReport:Add( Detection:GetChangeText( DetectedItem ) ) else Task:Cancel() Task = self:RemoveTask( TaskIndex ) end end end end -- Now we send to each group the changes, if any. for TaskGroupID, TaskGroup in pairs( self.SetGroup:GetSet() ) do local TargetsText = TargetsReport:Text(", ") if ( Mission:IsGroupAssigned(TaskGroup) ) and TargetsText ~= "" then Mission:GetCommandCenter():MessageToGroup( string.format( "Task %s has change of targets:\n %s", Task:GetName(), TargetsText ), TaskGroup ) end end end end end if Task then if Task:IsStatePlanned() then if DetectedItemChanged == true then -- The detection has changed, thus a new TargetSet is to be evaluated and set if Task:IsInstanceOf( TASK_A2G_SEAD ) then local TargetSetUnit = self:EvaluateSEAD( DetectedItem ) -- Returns a SetUnit if there are targets to be SEADed... if TargetSetUnit then Task:SetTargetSetUnit( TargetSetUnit ) Task:UpdateTaskInfo() else Task:Cancel() Task = self:RemoveTask( TaskIndex ) end else if Task:IsInstanceOf( TASK_A2G_CAS ) then local TargetSetUnit = self:EvaluateCAS( DetectedItem ) -- Returns a SetUnit if there are targets to be CASed... if TargetSetUnit then Task:SetTargetSetUnit( TargetSetUnit ) Task:SetDetection( Detection, TaskIndex ) Task:UpdateTaskInfo() else Task:Cancel() Task = self:RemoveTask( TaskIndex ) end else if Task:IsInstanceOf( TASK_A2G_BAI ) then local TargetSetUnit = self:EvaluateBAI( DetectedItem ) -- Returns a SetUnit if there are targets to be BAIed... if TargetSetUnit then Task:SetTargetSetUnit( TargetSetUnit ) Task:SetDetection( Detection, TaskIndex ) Task:UpdateTaskInfo() else Task:Cancel() Task = self:RemoveTask( TaskIndex ) end else Task:Cancel() Task = self:RemoveTask( TaskIndex ) end end end end end end -- Evaluate SEAD if not Task then local TargetSetUnit = self:EvaluateSEAD( DetectedItem ) -- Returns a SetUnit if there are targets to be SEADed... if TargetSetUnit then Task = TASK_A2G_SEAD:New( Mission, self.SetGroup, string.format( "SEAD.%03d", DetectedItemID ), TargetSetUnit ) Task:SetDetection( Detection, TaskIndex ) end -- Evaluate CAS if not Task then local TargetSetUnit = self:EvaluateCAS( DetectedItem ) -- Returns a SetUnit if there are targets to be CASed... if TargetSetUnit then Task = TASK_A2G_CAS:New( Mission, self.SetGroup, string.format( "CAS.%03d", DetectedItemID ), TargetSetUnit ) Task:SetDetection( Detection, TaskIndex ) end -- Evaluate BAI if not Task then local TargetSetUnit = self:EvaluateBAI( DetectedItem, self.Mission:GetCommandCenter():GetPositionable():GetCoalition() ) -- Returns a SetUnit if there are targets to be BAIed... if TargetSetUnit then Task = TASK_A2G_BAI:New( Mission, self.SetGroup, string.format( "BAI.%03d", DetectedItemID ), TargetSetUnit ) Task:SetDetection( Detection, TaskIndex ) end end end if Task then self.Tasks[TaskIndex] = Task Task:SetTargetZone( DetectedZone ) Task:SetDispatcher( self ) Task:UpdateTaskInfo() Mission:AddTask( Task ) TaskReport:Add( Task:GetName() ) else self:E("This should not happen") end end -- OK, so the tasking has been done, now delete the changes reported for the area. Detection:AcceptChanges( DetectedItem ) end -- TODO set menus using the HQ coordinator Mission:GetCommandCenter():SetMenu() local TaskText = TaskReport:Text(", ") for TaskGroupID, TaskGroup in pairs( self.SetGroup:GetSet() ) do if ( not Mission:IsGroupAssigned(TaskGroup) ) and TaskText ~= "" then Mission:GetCommandCenter():MessageToGroup( string.format( "%s has tasks %s. Subscribe to a task using the radio menu.", Mission:GetName(), TaskText ), TaskGroup ) end end end return true end end--- **Tasking** - The TASK_A2G models tasks for players in Air to Ground engagements. -- -- ![Banner Image](..\Presentations\TASK_A2G\Dia1.JPG) -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Task_A2G do -- TASK_A2G --- The TASK_A2G class -- @type TASK_A2G -- @field Set#SET_UNIT TargetSetUnit -- @extends Tasking.Task#TASK --- # TASK_A2G class, extends @{Task#TASK} -- -- The TASK_A2G class defines Air To Ground tasks for a @{Set} of Target Units, -- based on the tasking capabilities defined in @{Task#TASK}. -- The TASK_A2G is implemented using a @{Fsm#FSM_TASK}, and has the following statuses: -- -- * **None**: Start of the process -- * **Planned**: The A2G task is planned. -- * **Assigned**: The A2G task is assigned to a @{Group#GROUP}. -- * **Success**: The A2G task is successfully completed. -- * **Failed**: The A2G task has failed. This will happen if the player exists the task early, without communicating a possible cancellation to HQ. -- -- ## Set the scoring of achievements in an A2G attack. -- -- Scoring or penalties can be given in the following circumstances: -- -- * @{#TASK_A2G.SetScoreOnDestroy}(): Set a score when a target in scope of the A2G attack, has been destroyed. -- * @{#TASK_A2G.SetScoreOnSuccess}(): Set a score when all the targets in scope of the A2G attack, have been destroyed. -- * @{#TASK_A2G.SetPenaltyOnFailed}(): Set a penalty when the A2G attack has failed. -- -- @field #TASK_A2G TASK_A2G = { ClassName = "TASK_A2G", } --- Instantiates a new TASK_A2G. -- @param #TASK_A2G self -- @param Tasking.Mission#MISSION Mission -- @param Set#SET_GROUP SetGroup The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task. -- @param Set#SET_UNIT UnitSetTargets -- @param #number TargetDistance The distance to Target when the Player is considered to have "arrived" at the engagement range. -- @param Core.Zone#ZONE_BASE TargetZone The target zone, if known. -- If the TargetZone parameter is specified, the player will be routed to the center of the zone where all the targets are assumed to be. -- @return #TASK_A2G self function TASK_A2G:New( Mission, SetGroup, TaskName, TargetSetUnit, TaskType, TaskBriefing ) local self = BASE:Inherit( self, TASK:New( Mission, SetGroup, TaskName, TaskType, TaskBriefing ) ) -- Tasking.Task#TASK_A2G self:F() self.TargetSetUnit = TargetSetUnit self.TaskType = TaskType local Fsm = self:GetUnitProcess() Fsm:AddProcess ( "Planned", "Accept", ACT_ASSIGN_ACCEPT:New( self.TaskBriefing ), { Assigned = "RouteToRendezVous", Rejected = "Reject" } ) Fsm:AddTransition( "Assigned", "RouteToRendezVous", "RoutingToRendezVous" ) Fsm:AddProcess ( "RoutingToRendezVous", "RouteToRendezVousPoint", ACT_ROUTE_POINT:New(), { Arrived = "ArriveAtRendezVous" } ) Fsm:AddProcess ( "RoutingToRendezVous", "RouteToRendezVousZone", ACT_ROUTE_ZONE:New(), { Arrived = "ArriveAtRendezVous" } ) Fsm:AddTransition( { "Arrived", "RoutingToRendezVous" }, "ArriveAtRendezVous", "ArrivedAtRendezVous" ) Fsm:AddTransition( { "ArrivedAtRendezVous", "HoldingAtRendezVous" }, "Engage", "Engaging" ) Fsm:AddTransition( { "ArrivedAtRendezVous", "HoldingAtRendezVous" }, "HoldAtRendezVous", "HoldingAtRendezVous" ) Fsm:AddProcess ( "Engaging", "Account", ACT_ACCOUNT_DEADS:New(), {} ) Fsm:AddTransition( "Engaging", "RouteToTarget", "Engaging" ) Fsm:AddProcess( "Engaging", "RouteToTargetZone", ACT_ROUTE_ZONE:New(), {} ) Fsm:AddProcess( "Engaging", "RouteToTargetPoint", ACT_ROUTE_POINT:New(), {} ) Fsm:AddTransition( "Engaging", "RouteToTargets", "Engaging" ) --Fsm:AddTransition( "Accounted", "DestroyedAll", "Accounted" ) --Fsm:AddTransition( "Accounted", "Success", "Success" ) Fsm:AddTransition( "Rejected", "Reject", "Aborted" ) Fsm:AddTransition( "Failed", "Fail", "Failed" ) --- Test -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_A2G#TASK_A2G Task function Fsm:onafterRouteToRendezVous( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) -- Determine the first Unit from the self.RendezVousSetUnit if Task:GetRendezVousZone( TaskUnit ) then self:__RouteToRendezVousZone( 0.1 ) else if Task:GetRendezVousCoordinate( TaskUnit ) then self:__RouteToRendezVousPoint( 0.1 ) else self:__ArriveAtRendezVous( 0.1 ) end end end --- Test -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task#TASK_A2G Task function Fsm:OnAfterArriveAtRendezVous( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) -- Determine the first Unit from the self.TargetSetUnit self:__Engage( 0.1 ) end --- Test -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task#TASK_A2G Task function Fsm:onafterEngage( TaskUnit, Task ) self:E( { self } ) self:__Account( 0.1 ) self:__RouteToTarget(0.1 ) self:__RouteToTargets( -10 ) end --- Test -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_A2G#TASK_A2G Task function Fsm:onafterRouteToTarget( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) -- Determine the first Unit from the self.TargetSetUnit if Task:GetTargetZone( TaskUnit ) then self:__RouteToTargetZone( 0.1 ) else local TargetUnit = Task.TargetSetUnit:GetFirst() -- Wrapper.Unit#UNIT if TargetUnit then local Coordinate = TargetUnit:GetPointVec3() self:T( { TargetCoordinate = Coordinate, Coordinate:GetX(), Coordinate:GetY(), Coordinate:GetZ() } ) Task:SetTargetCoordinate( Coordinate, TaskUnit ) end self:__RouteToTargetPoint( 0.1 ) end end --- Test -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_A2G#TASK_A2G Task function Fsm:onafterRouteToTargets( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) local TargetUnit = Task.TargetSetUnit:GetFirst() -- Wrapper.Unit#UNIT if TargetUnit then Task:SetTargetCoordinate( TargetUnit:GetCoordinate(), TaskUnit ) end self:__RouteToTargets( -10 ) end return self end --- @param #TASK_A2G self -- @param Core.Set#SET_UNIT TargetSetUnit The set of targets. function TASK_A2G:SetTargetSetUnit( TargetSetUnit ) self.TargetSetUnit = TargetSetUnit end --- @param #TASK_A2G self function TASK_A2G:GetPlannedMenuText() return self:GetStateString() .. " - " .. self:GetTaskName() .. " ( " .. self.TargetSetUnit:GetUnitTypesText() .. " )" end --- @param #TASK_A2G self -- @param Core.Point#COORDINATE RendezVousCoordinate The Coordinate object referencing to the 2D point where the RendezVous point is located on the map. -- @param #number RendezVousRange The RendezVousRange that defines when the player is considered to have arrived at the RendezVous point. -- @param Wrapper.Unit#UNIT TaskUnit function TASK_A2G:SetRendezVousCoordinate( RendezVousCoordinate, RendezVousRange, TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteRendezVous = ProcessUnit:GetProcess( "RoutingToRendezVous", "RouteToRendezVousPoint" ) -- Actions.Act_Route#ACT_ROUTE_POINT ActRouteRendezVous:SetCoordinate( RendezVousCoordinate ) ActRouteRendezVous:SetRange( RendezVousRange ) end --- @param #TASK_A2G self -- @param Wrapper.Unit#UNIT TaskUnit -- @return Core.Point#COORDINATE The Coordinate object referencing to the 2D point where the RendezVous point is located on the map. -- @return #number The RendezVousRange that defines when the player is considered to have arrived at the RendezVous point. function TASK_A2G:GetRendezVousCoordinate( TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteRendezVous = ProcessUnit:GetProcess( "RoutingToRendezVous", "RouteToRendezVousPoint" ) -- Actions.Act_Route#ACT_ROUTE_POINT return ActRouteRendezVous:GetCoordinate(), ActRouteRendezVous:GetRange() end --- @param #TASK_A2G self -- @param Core.Zone#ZONE_BASE RendezVousZone The Zone object where the RendezVous is located on the map. -- @param Wrapper.Unit#UNIT TaskUnit function TASK_A2G:SetRendezVousZone( RendezVousZone, TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteRendezVous = ProcessUnit:GetProcess( "RoutingToRendezVous", "RouteToRendezVousZone" ) -- Actions.Act_Route#ACT_ROUTE_ZONE ActRouteRendezVous:SetZone( RendezVousZone ) end --- @param #TASK_A2G self -- @param Wrapper.Unit#UNIT TaskUnit -- @return Core.Zone#ZONE_BASE The Zone object where the RendezVous is located on the map. function TASK_A2G:GetRendezVousZone( TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteRendezVous = ProcessUnit:GetProcess( "RoutingToRendezVous", "RouteToRendezVousZone" ) -- Actions.Act_Route#ACT_ROUTE_ZONE return ActRouteRendezVous:GetZone() end --- @param #TASK_A2G self -- @param Core.Point#COORDINATE TargetCoordinate The Coordinate object where the Target is located on the map. -- @param Wrapper.Unit#UNIT TaskUnit function TASK_A2G:SetTargetCoordinate( TargetCoordinate, TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteTarget = ProcessUnit:GetProcess( "Engaging", "RouteToTargetPoint" ) -- Actions.Act_Route#ACT_ROUTE_POINT ActRouteTarget:SetCoordinate( TargetCoordinate ) end --- @param #TASK_A2G self -- @param Wrapper.Unit#UNIT TaskUnit -- @return Core.Point#COORDINATE The Coordinate object where the Target is located on the map. function TASK_A2G:GetTargetCoordinate( TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteTarget = ProcessUnit:GetProcess( "Engaging", "RouteToTargetPoint" ) -- Actions.Act_Route#ACT_ROUTE_POINT return ActRouteTarget:GetCoordinate() end --- @param #TASK_A2G self -- @param Core.Zone#ZONE_BASE TargetZone The Zone object where the Target is located on the map. -- @param Wrapper.Unit#UNIT TaskUnit function TASK_A2G:SetTargetZone( TargetZone, TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteTarget = ProcessUnit:GetProcess( "Engaging", "RouteToTargetZone" ) -- Actions.Act_Route#ACT_ROUTE_ZONE ActRouteTarget:SetZone( TargetZone ) end --- @param #TASK_A2G self -- @param Wrapper.Unit#UNIT TaskUnit -- @return Core.Zone#ZONE_BASE The Zone object where the Target is located on the map. function TASK_A2G:GetTargetZone( TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteTarget = ProcessUnit:GetProcess( "Engaging", "RouteToTargetZone" ) -- Actions.Act_Route#ACT_ROUTE_ZONE return ActRouteTarget:GetZone() end function TASK_A2G:SetGoalTotal() self.GoalTotal = self.TargetSetUnit:Count() end function TASK_A2G:GetGoalTotal() return self.GoalTotal end end do -- TASK_A2G_SEAD --- The TASK_A2G_SEAD class -- @type TASK_A2G_SEAD -- @field Set#SET_UNIT TargetSetUnit -- @extends Tasking.Task#TASK --- # TASK_A2G_SEAD class, extends @{Task_A2G#TASK_A2G} -- -- The TASK_A2G_SEAD class defines an Suppression or Extermination of Air Defenses task for a human player to be executed. -- These tasks are important to be executed as they will help to achieve air superiority at the vicinity. -- -- The TASK_A2G_SEAD is used by the @{Task_A2G_Dispatcher#TASK_A2G_DISPATCHER} to automatically create SEAD tasks -- based on detected enemy ground targets. -- -- @field #TASK_A2G_SEAD TASK_A2G_SEAD = { ClassName = "TASK_A2G_SEAD", } --- Instantiates a new TASK_A2G_SEAD. -- @param #TASK_A2G_SEAD self -- @param Tasking.Mission#MISSION Mission -- @param Core.Set#SET_GROUP SetGroup The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task. -- @param Core.Set#SET_UNIT TargetSetUnit -- @param #string TaskBriefing The briefing of the task. -- @return #TASK_A2G_SEAD self function TASK_A2G_SEAD:New( Mission, SetGroup, TaskName, TargetSetUnit, TaskBriefing) local self = BASE:Inherit( self, TASK_A2G:New( Mission, SetGroup, TaskName, TargetSetUnit, "SEAD", TaskBriefing ) ) -- #TASK_A2G_SEAD self:F() Mission:AddTask( self ) self:SetBriefing( TaskBriefing or "Execute a Suppression of Enemy Air Defenses." ) return self end function TASK_A2G_SEAD:UpdateTaskInfo() local TargetCoordinate = self.Detection and self.Detection:GetDetectedItemCoordinate( self.DetectedItemIndex ) or self.TargetSetUnit:GetFirst():GetCoordinate() self:SetInfo( "Coordinates", TargetCoordinate, 0 ) local ThreatLevel, ThreatText if self.Detection then ThreatLevel, ThreatText = self.Detection:GetDetectedItemThreatLevel( self.DetectedItemIndex ) else ThreatLevel, ThreatText = self.TargetSetUnit:CalculateThreatLevelA2G() end self:SetInfo( "Threat", ThreatText .. " [" .. string.rep( "■", ThreatLevel ) .. "]", 11 ) if self.Detection then local DetectedItemsCount = self.TargetSetUnit:Count() local ReportTypes = REPORT:New() local TargetTypes = {} for TargetUnitName, TargetUnit in pairs( self.TargetSetUnit:GetSet() ) do local TargetType = self.Detection:GetDetectedUnitTypeName( TargetUnit ) if not TargetTypes[TargetType] then TargetTypes[TargetType] = TargetType ReportTypes:Add( TargetType ) end end self:SetInfo( "Targets", string.format( "%d of %s", DetectedItemsCount, ReportTypes:Text( ", " ) ), 10 ) else local DetectedItemsCount = self.TargetSetUnit:Count() local DetectedItemsTypes = self.TargetSetUnit:GetTypeNames() self:SetInfo( "Targets", string.format( "%d of %s", DetectedItemsCount, DetectedItemsTypes ), 10 ) end end function TASK_A2G_SEAD:ReportOrder( ReportGroup ) local Coordinate = self:GetInfo( "Coordinates" ) --local Coordinate = self.TaskInfo.Coordinates.TaskInfoText local Distance = ReportGroup:GetCoordinate():Get2DDistance( Coordinate ) return Distance end --- @param #TASK_A2G_SEAD self function TASK_A2G_SEAD:onafterGoal( TaskUnit, From, Event, To ) local TargetSetUnit = self.TargetSetUnit -- Core.Set#SET_UNIT if TargetSetUnit:Count() == 0 then self:Success() end self:__Goal( -10 ) end --- Set a score when a target in scope of the A2G attack, has been destroyed . -- @param #TASK_A2G_SEAD self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points to be granted when task process has been achieved. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2G_SEAD function TASK_A2G_SEAD:SetScoreOnProgress( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScoreProcess( "Engaging", "Account", "AccountForPlayer", "Player " .. PlayerName .. " has SEADed a target.", Score ) return self end --- Set a score when all the targets in scope of the A2G attack, have been destroyed. -- @param #TASK_A2G_SEAD self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2G_SEAD function TASK_A2G_SEAD:SetScoreOnSuccess( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Success", "All radar emitting targets have been successfully SEADed!", Score ) return self end --- Set a penalty when the A2G attack has failed. -- @param #TASK_A2G_SEAD self -- @param #string PlayerName The name of the player. -- @param #number Penalty The penalty in points, must be a negative value! -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2G_SEAD function TASK_A2G_SEAD:SetScoreOnFail( PlayerName, Penalty, TaskUnit ) self:F( { PlayerName, Penalty, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Failed", "The SEADing has failed!", Penalty ) return self end end do -- TASK_A2G_BAI --- The TASK_A2G_BAI class -- @type TASK_A2G_BAI -- @field Set#SET_UNIT TargetSetUnit -- @extends Tasking.Task#TASK --- # TASK_A2G_BAI class, extends @{Task_A2G#TASK_A2G} -- -- The TASK_A2G_BAI class defines an Battlefield Air Interdiction task for a human player to be executed. -- These tasks are more strategic in nature and are most of the time further away from friendly forces. -- BAI tasks can also be used to express the abscence of friendly forces near the vicinity. -- -- The TASK_A2G_BAI is used by the @{Task_A2G_Dispatcher#TASK_A2G_DISPATCHER} to automatically create BAI tasks -- based on detected enemy ground targets. -- -- @field #TASK_A2G_BAI TASK_A2G_BAI = { ClassName = "TASK_A2G_BAI", } --- Instantiates a new TASK_A2G_BAI. -- @param #TASK_A2G_BAI self -- @param Tasking.Mission#MISSION Mission -- @param Core.Set#SET_GROUP SetGroup The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task. -- @param Core.Set#SET_UNIT TargetSetUnit -- @param #string TaskBriefing The briefing of the task. -- @return #TASK_A2G_BAI self function TASK_A2G_BAI:New( Mission, SetGroup, TaskName, TargetSetUnit, TaskBriefing ) local self = BASE:Inherit( self, TASK_A2G:New( Mission, SetGroup, TaskName, TargetSetUnit, "BAI", TaskBriefing ) ) -- #TASK_A2G_BAI self:F() Mission:AddTask( self ) self:SetBriefing( TaskBriefing or "Execute a Battlefield Air Interdiction of a group of enemy targets." ) return self end function TASK_A2G_BAI:UpdateTaskInfo() self:E({self.Detection, self.DetectedItemIndex}) local TargetCoordinate = self.Detection and self.Detection:GetDetectedItemCoordinate( self.DetectedItemIndex ) or self.TargetSetUnit:GetFirst():GetCoordinate() self:SetInfo( "Coordinates", TargetCoordinate, 0 ) local ThreatLevel, ThreatText if self.Detection then ThreatLevel, ThreatText = self.Detection:GetDetectedItemThreatLevel( self.DetectedItemIndex ) else ThreatLevel, ThreatText = self.TargetSetUnit:CalculateThreatLevelA2G() end self:SetInfo( "Threat", ThreatText .. " [" .. string.rep( "■", ThreatLevel ) .. "]", 11 ) if self.Detection then local DetectedItemsCount = self.TargetSetUnit:Count() local ReportTypes = REPORT:New() local TargetTypes = {} for TargetUnitName, TargetUnit in pairs( self.TargetSetUnit:GetSet() ) do local TargetType = self.Detection:GetDetectedUnitTypeName( TargetUnit ) if not TargetTypes[TargetType] then TargetTypes[TargetType] = TargetType ReportTypes:Add( TargetType ) end end self:SetInfo( "Targets", string.format( "%d of %s", DetectedItemsCount, ReportTypes:Text( ", " ) ), 10 ) else local DetectedItemsCount = self.TargetSetUnit:Count() local DetectedItemsTypes = self.TargetSetUnit:GetTypeNames() self:SetInfo( "Targets", string.format( "%d of %s", DetectedItemsCount, DetectedItemsTypes ), 10 ) end end function TASK_A2G_BAI:ReportOrder( ReportGroup ) local Coordinate = self:GetInfo( "Coordinates" ) --local Coordinate = self.TaskInfo.Coordinates.TaskInfoText local Distance = ReportGroup:GetCoordinate():Get2DDistance( Coordinate ) return Distance end --- @param #TASK_A2G_BAI self function TASK_A2G_BAI:onafterGoal( TaskUnit, From, Event, To ) local TargetSetUnit = self.TargetSetUnit -- Core.Set#SET_UNIT if TargetSetUnit:Count() == 0 then self:Success() end self:__Goal( -10 ) end --- Set a score when a target in scope of the A2G attack, has been destroyed . -- @param #TASK_A2G_BAI self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points to be granted when task process has been achieved. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2G_BAI function TASK_A2G_BAI:SetScoreOnProgress( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScoreProcess( "Engaging", "Account", "AccountForPlayer", "Player " .. PlayerName .. " has destroyed a target in Battlefield Air Interdiction (BAI).", Score ) return self end --- Set a score when all the targets in scope of the A2G attack, have been destroyed. -- @param #TASK_A2G_BAI self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2G_BAI function TASK_A2G_BAI:SetScoreOnSuccess( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Success", "All targets have been successfully destroyed! The Battlefield Air Interdiction (BAI) is a success!", Score ) return self end --- Set a penalty when the A2G attack has failed. -- @param #TASK_A2G_BAI self -- @param #string PlayerName The name of the player. -- @param #number Penalty The penalty in points, must be a negative value! -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2G_BAI function TASK_A2G_BAI:SetScoreOnFail( PlayerName, Penalty, TaskUnit ) self:F( { PlayerName, Penalty, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Failed", "The Battlefield Air Interdiction (BAI) has failed!", Penalty ) return self end end do -- TASK_A2G_CAS --- The TASK_A2G_CAS class -- @type TASK_A2G_CAS -- @field Set#SET_UNIT TargetSetUnit -- @extends Tasking.Task#TASK --- # TASK_A2G_CAS class, extends @{Task_A2G#TASK_A2G} -- -- The TASK_A2G_CAS class defines an Close Air Support task for a human player to be executed. -- Friendly forces will be in the vicinity within 6km from the enemy. -- -- The TASK_A2G_CAS is used by the @{Task_A2G_Dispatcher#TASK_A2G_DISPATCHER} to automatically create CAS tasks -- based on detected enemy ground targets. -- -- @field #TASK_A2G_CAS TASK_A2G_CAS = { ClassName = "TASK_A2G_CAS", } --- Instantiates a new TASK_A2G_CAS. -- @param #TASK_A2G_CAS self -- @param Tasking.Mission#MISSION Mission -- @param Core.Set#SET_GROUP SetGroup The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task. -- @param Core.Set#SET_UNIT TargetSetUnit -- @param #string TaskBriefing The briefing of the task. -- @return #TASK_A2G_CAS self function TASK_A2G_CAS:New( Mission, SetGroup, TaskName, TargetSetUnit, TaskBriefing ) local self = BASE:Inherit( self, TASK_A2G:New( Mission, SetGroup, TaskName, TargetSetUnit, "CAS", TaskBriefing ) ) -- #TASK_A2G_CAS self:F() Mission:AddTask( self ) self:SetBriefing( TaskBriefing or "Execute a Close Air Support for a group of enemy targets. " .. "Beware of friendlies at the vicinity! " ) return self end function TASK_A2G_CAS:UpdateTaskInfo() local TargetCoordinate = ( self.Detection and self.Detection:GetDetectedItemCoordinate( self.DetectedItemIndex ) ) or self.TargetSetUnit:GetFirst():GetCoordinate() self:SetInfo( "Coordinates", TargetCoordinate, 0 ) local ThreatLevel, ThreatText if self.Detection then ThreatLevel, ThreatText = self.Detection:GetDetectedItemThreatLevel( self.DetectedItemIndex ) else ThreatLevel, ThreatText = self.TargetSetUnit:CalculateThreatLevelA2G() end self:SetInfo( "Threat", ThreatText .. " [" .. string.rep( "■", ThreatLevel ) .. "]", 11 ) if self.Detection then local DetectedItemsCount = self.TargetSetUnit:Count() local ReportTypes = REPORT:New() local TargetTypes = {} for TargetUnitName, TargetUnit in pairs( self.TargetSetUnit:GetSet() ) do local TargetType = self.Detection:GetDetectedUnitTypeName( TargetUnit ) if not TargetTypes[TargetType] then TargetTypes[TargetType] = TargetType ReportTypes:Add( TargetType ) end end self:SetInfo( "Targets", string.format( "%d of %s", DetectedItemsCount, ReportTypes:Text( ", " ) ), 10 ) else local DetectedItemsCount = self.TargetSetUnit:Count() local DetectedItemsTypes = self.TargetSetUnit:GetTypeNames() self:SetInfo( "Targets", string.format( "%d of %s", DetectedItemsCount, DetectedItemsTypes ), 10 ) end end --- @param #TASK_A2G_CAS self function TASK_A2G_CAS:ReportOrder( ReportGroup ) local Coordinate = self:GetInfo( "Coordinates" ) local Distance = ReportGroup:GetCoordinate():Get2DDistance( Coordinate ) return Distance end --- @param #TASK_A2G_CAS self function TASK_A2G_CAS:onafterGoal( TaskUnit, From, Event, To ) local TargetSetUnit = self.TargetSetUnit -- Core.Set#SET_UNIT if TargetSetUnit:Count() == 0 then self:Success() end self:__Goal( -10 ) end --- Set a score when a target in scope of the A2G attack, has been destroyed . -- @param #TASK_A2G_CAS self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points to be granted when task process has been achieved. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2G_CAS function TASK_A2G_CAS:SetScoreOnProgress( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScoreProcess( "Engaging", "Account", "AccountForPlayer", "Player " .. PlayerName .. " has destroyed a target in Close Air Support (CAS).", Score ) return self end --- Set a score when all the targets in scope of the A2G attack, have been destroyed. -- @param #TASK_A2G_CAS self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2G_CAS function TASK_A2G_CAS:SetScoreOnSuccess( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Success", "All targets have been successfully destroyed! The Close Air Support (CAS) was a success!", Score ) return self end --- Set a penalty when the A2G attack has failed. -- @param #TASK_A2G_CAS self -- @param #string PlayerName The name of the player. -- @param #number Penalty The penalty in points, must be a negative value! -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2G_CAS function TASK_A2G_CAS:SetScoreOnFail( PlayerName, Penalty, TaskUnit ) self:F( { PlayerName, Penalty, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Failed", "The Close Air Support (CAS) has failed!", Penalty ) return self end end --- **Tasking** - The TASK_A2A_DISPATCHER creates and manages player TASK_A2A tasks based on detected targets. -- -- The @{#TASK_A2A_DISPATCHER} classes implement the dynamic dispatching of tasks upon groups of detected units determined a @{Set} of EWR installation groups. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Task_A2A_Dispatcher do -- TASK_A2A_DISPATCHER --- TASK_A2A_DISPATCHER class. -- @type TASK_A2A_DISPATCHER -- @extends Tasking.DetectionManager#DETECTION_MANAGER --- # TASK_A2A_DISPATCHER class, extends @{Tasking#DETECTION_MANAGER} -- -- ![Banner Image](..\Presentations\TASK_A2A_DISPATCHER\Dia1.JPG) -- -- The @{#TASK_A2A_DISPATCHER} class implements the dynamic dispatching of tasks upon groups of detected units determined a @{Set} of EWR installation groups. -- -- ![Banner Image](..\Presentations\TASK_A2A_DISPATCHER\Dia3.JPG) -- -- The EWR will detect units, will group them, and will dispatch @{Task}s to groups. Depending on the type of target detected, different tasks will be dispatched. -- Find a summary below describing for which situation a task type is created: -- -- ![Banner Image](..\Presentations\TASK_A2A_DISPATCHER\Dia9.JPG) -- -- * **INTERCEPT Task**: Is created when the target is known, is detected and within a danger zone, and there is no friendly airborne in range. -- * **SWEEP Task**: Is created when the target is unknown, was detected and the last position is only known, and within a danger zone, and there is no friendly airborne in range. -- * **ENGAGE Task**: Is created when the target is known, is detected and within a danger zone, and there is a friendly airborne in range, that will receive this task. -- -- ## 1. TASK\_A2A\_DISPATCHER constructor: -- -- The @{#TASK_A2A_DISPATCHER.New}() method creates a new TASK\_A2A\_DISPATCHER instance. -- -- ### 1.1. Define or set the **Mission**: -- -- Tasking is executed to accomplish missions. Therefore, a MISSION object needs to be given as the first parameter. -- -- local HQ = GROUP:FindByName( "HQ", "Bravo" ) -- local CommandCenter = COMMANDCENTER:New( HQ, "Lima" ) -- local Mission = MISSION:New( CommandCenter, "A2A Mission", "High", "Watch the air enemy units being detected.", coalition.side.RED ) -- -- Missions are governed by COMMANDCENTERS, so, ensure you have a COMMANDCENTER object installed and setup within your mission. -- Create the MISSION object, and hook it under the command center. -- -- ### 1.2. Build a set of the groups seated by human players: -- -- ![Banner Image](..\Presentations\TASK_A2A_DISPATCHER\Dia6.JPG) -- -- A set or collection of the groups wherein human players can be seated, these can be clients or units that can be joined as a slot or jumping into. -- -- local AttackGroups = SET_GROUP:New():FilterCoalitions( "red" ):FilterPrefixes( "Defender" ):FilterStart() -- -- The set is built using the SET_GROUP class. Apply any filter criteria to identify the correct groups for your mission. -- Only these slots or units will be able to execute the mission and will receive tasks for this mission, once available. -- -- ### 1.3. Define the **EWR network**: -- -- As part of the TASK\_A2A\_DISPATCHER constructor, an EWR network must be given as the third parameter. -- An EWR network, or, Early Warning Radar network, is used to early detect potential airborne targets and to understand the position of patrolling targets of the enemy. -- -- ![Banner Image](..\Presentations\TASK_A2A_DISPATCHER\Dia5.JPG) -- -- Typically EWR networks are setup using 55G6 EWR, 1L13 EWR, Hawk sr and Patriot str ground based radar units. -- These radars have different ranges and 55G6 EWR and 1L13 EWR radars are Eastern Bloc units (eg Russia, Ukraine, Georgia) while the Hawk and Patriot radars are Western (eg US). -- Additionally, ANY other radar capable unit can be part of the EWR network! Also AWACS airborne units, planes, helicopters can help to detect targets, as long as they have radar. -- The position of these units is very important as they need to provide enough coverage -- to pick up enemy aircraft as they approach so that CAP and GCI flights can be tasked to intercept them. -- -- ![Banner Image](..\Presentations\TASK_A2A_DISPATCHER\Dia7.JPG) -- -- Additionally in a hot war situation where the border is no longer respected the placement of radars has a big effect on how fast the war escalates. -- For example if they are a long way forward and can detect enemy planes on the ground and taking off -- they will start to vector CAP and GCI flights to attack them straight away which will immediately draw a response from the other coalition. -- Having the radars further back will mean a slower escalation because fewer targets will be detected and -- therefore less CAP and GCI flights will spawn and this will tend to make just the border area active rather than a melee over the whole map. -- It all depends on what the desired effect is. -- -- EWR networks are **dynamically constructed**, that is, they form part of the @{Functional#DETECTION_BASE} object that is given as the input parameter of the TASK\_A2A\_DISPATCHER class. -- By defining in a **smart way the names or name prefixes of the groups** with EWR capable units, these groups will be **automatically added or deleted** from the EWR network, -- increasing or decreasing the radar coverage of the Early Warning System. -- -- See the following example to setup an EWR network containing EWR stations and AWACS. -- -- local EWRSet = SET_GROUP:New():FilterPrefixes( "EWR" ):FilterCoalitions("red"):FilterStart() -- -- local EWRDetection = DETECTION_AREAS:New( EWRSet, 6000 ) -- EWRDetection:SetFriendliesRange( 10000 ) -- EWRDetection:SetRefreshTimeInterval(30) -- -- -- Setup the A2A dispatcher, and initialize it. -- A2ADispatcher = TASK_A2A_DISPATCHER:New( Mission, AttackGroups, EWRDetection ) -- -- The above example creates a SET_GROUP instance, and stores this in the variable (object) **EWRSet**. -- **EWRSet** is then being configured to filter all active groups with a group name starting with **EWR** to be included in the Set. -- **EWRSet** is then being ordered to start the dynamic filtering. Note that any destroy or new spawn of a group with the above names will be removed or added to the Set. -- Then a new **EWRDetection** object is created from the class DETECTION_AREAS. A grouping radius of 6000 is choosen, which is 6km. -- The **EWRDetection** object is then passed to the @{#TASK_A2A_DISPATCHER.New}() method to indicate the EWR network configuration and setup the A2A tasking and detection mechanism. -- -- ### 2. Define the detected **target grouping radius**: -- -- ![Banner Image](..\Presentations\TASK_A2A_DISPATCHER\Dia8.JPG) -- -- The target grouping radius is a property of the Detection object, that was passed to the AI\_A2A\_DISPATCHER object, but can be changed. -- The grouping radius should not be too small, but also depends on the types of planes and the era of the simulation. -- Fast planes like in the 80s, need a larger radius than WWII planes. -- Typically I suggest to use 30000 for new generation planes and 10000 for older era aircraft. -- -- Note that detected targets are constantly re-grouped, that is, when certain detected aircraft are moving further than the group radius, then these aircraft will become a separate -- group being detected. This may result in additional GCI being started by the dispatcher! So don't make this value too small! -- -- ## 3. Set the **Engage radius**: -- -- Define the radius to engage any target by airborne friendlies, which are executing cap or returning from an intercept mission. -- -- ![Banner Image](..\Presentations\TASK_A2A_DISPATCHER\Dia11.JPG) -- -- So, if there is a target area detected and reported, -- then any friendlies that are airborne near this target area, -- will be commanded to (re-)engage that target when available (if no other tasks were commanded). -- For example, if 100000 is given as a value, then any friendly that is airborne within 100km from the detected target, -- will be considered to receive the command to engage that target area. -- You need to evaluate the value of this parameter carefully. -- If too small, more intercept missions may be triggered upon detected target areas. -- If too large, any airborne cap may not be able to reach the detected target area in time, because it is too far. -- -- ## 4. Set **Scoring** and **Messages**: -- -- The TASK\_A2A\_DISPATCHER is a state machine. It triggers the event Assign when a new player joins a @{Task} dispatched by the TASK\_A2A\_DISPATCHER. -- An _event handler_ can be defined to catch the **Assign** event, and add **additional processing** to set _scoring_ and to _define messages_, -- when the player reaches certain achievements in the task. -- -- The prototype to handle the **Assign** event needs to be developed as follows: -- -- TaskDispatcher = TASK_A2A_DISPATCHER:New( ... ) -- -- --- @param #TaskDispatcher self -- -- @param #string From Contains the name of the state from where the Event was triggered. -- -- @param #string Event Contains the name of the event that was triggered. In this case Assign. -- -- @param #string To Contains the name of the state that will be transitioned to. -- -- @param Tasking.Task_A2A#TASK_A2A Task The Task object, which is any derived object from TASK_A2A. -- -- @param Wrapper.Unit#UNIT TaskUnit The Unit or Client that contains the Player. -- -- @param #string PlayerName The name of the Player that joined the TaskUnit. -- function TaskDispatcher:OnAfterAssign( From, Event, To, Task, TaskUnit, PlayerName ) -- Task:SetScoreOnProgress( PlayerName, 20, TaskUnit ) -- Task:SetScoreOnSuccess( PlayerName, 200, TaskUnit ) -- Task:SetScoreOnFail( PlayerName, -100, TaskUnit ) -- end -- -- The **OnAfterAssign** method (function) is added to the TaskDispatcher object. -- This method will be called when a new player joins a unit in the set of groups in scope of the dispatcher. -- So, this method will be called only **ONCE** when a player joins a unit in scope of the task. -- -- The TASK class implements various methods to additional **set scoring** for player achievements: -- -- * @{Tasking.Task#TASK.SetScoreOnProgress}() will add additional scores when a player achieves **Progress** while executing the task. -- Examples of **task progress** can be destroying units, arriving at zones etc. -- -- * @{Tasking.Task#TASK.SetScoreOnSuccess}() will add additional scores when the task goes into **Success** state. -- This means the **task has been successfully completed**. -- -- * @{Tasking.Task#TASK.SetScoreOnSuccess}() will add additional (negative) scores when the task goes into **Failed** state. -- This means the **task has not been successfully completed**, and the scores must be given with a negative value! -- -- @field #TASK_A2A_DISPATCHER TASK_A2A_DISPATCHER = { ClassName = "TASK_A2A_DISPATCHER", Mission = nil, Detection = nil, Tasks = {}, SweepZones = {}, } --- TASK_A2A_DISPATCHER constructor. -- @param #TASK_A2A_DISPATCHER self -- @param Tasking.Mission#MISSION Mission The mission for which the task dispatching is done. -- @param Set#SET_GROUP SetGroup The set of groups that can join the tasks within the mission. -- @param Functional.Detection#DETECTION_BASE Detection The detection results that are used to dynamically assign new tasks to human players. -- @return #TASK_A2A_DISPATCHER self function TASK_A2A_DISPATCHER:New( Mission, SetGroup, Detection ) -- Inherits from DETECTION_MANAGER local self = BASE:Inherit( self, DETECTION_MANAGER:New( SetGroup, Detection ) ) -- #TASK_A2A_DISPATCHER self.Detection = Detection self.Mission = Mission -- TODO: Check detection through radar. self.Detection:FilterCategories( Unit.Category.AIRPLANE, Unit.Category.HELICOPTER ) self.Detection:InitDetectRadar( true ) self.Detection:SetRefreshTimeInterval( 30 ) self:AddTransition( "Started", "Assign", "Started" ) --- OnAfter Transition Handler for Event Assign. -- @function [parent=#TASK_A2A_DISPATCHER] OnAfterAssign -- @param #TASK_A2A_DISPATCHER self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Tasking.Task_A2A#TASK_A2A Task -- @param Wrapper.Unit#UNIT TaskUnit -- @param #string PlayerName self:__Start( 5 ) return self end --- Define the radius to when an ENGAGE task will be generated for any nearby by airborne friendlies, which are executing cap or returning from an intercept mission. -- So, if there is a target area detected and reported, -- then any friendlies that are airborne near this target area, -- will be commanded to (re-)engage that target when available (if no other tasks were commanded). -- An ENGAGE task will be created for those pilots. -- For example, if 100000 is given as a value, then any friendly that is airborne within 100km from the detected target, -- will be considered to receive the command to engage that target area. -- You need to evaluate the value of this parameter carefully. -- If too small, more intercept missions may be triggered upon detected target areas. -- If too large, any airborne cap may not be able to reach the detected target area in time, because it is too far. -- @param #TASK_A2A_DISPATCHER self -- @param #number EngageRadius (Optional, Default = 100000) The radius to report friendlies near the target. -- @return #TASK_A2A_DISPATCHER -- @usage -- -- -- Set 50km as the radius to engage any target by airborne friendlies. -- TaskA2ADispatcher:SetEngageRadius( 50000 ) -- -- -- Set 100km as the radius to engage any target by airborne friendlies. -- TaskA2ADispatcher:SetEngageRadius() -- 100000 is the default value. -- function TASK_A2A_DISPATCHER:SetEngageRadius( EngageRadius ) self.Detection:SetFriendliesRange( EngageRadius or 100000 ) return self end --- Creates an INTERCEPT task when there are targets for it. -- @param #TASK_A2A_DISPATCHER self -- @param Functional.Detection#DETECTION_BASE.DetectedItem DetectedItem -- @return Set#SET_UNIT TargetSetUnit: The target set of units. -- @return #nil If there are no targets to be set. function TASK_A2A_DISPATCHER:EvaluateINTERCEPT( DetectedItem ) self:F( { DetectedItem.ItemID } ) local DetectedSet = DetectedItem.Set local DetectedZone = DetectedItem.Zone -- Check if there is at least one UNIT in the DetectedSet is visible. if DetectedItem.IsDetected == true then -- Here we're doing something advanced... We're copying the DetectedSet. local TargetSetUnit = SET_UNIT:New() TargetSetUnit:SetDatabase( DetectedSet ) TargetSetUnit:FilterOnce() -- Filter but don't do any events!!! Elements are added manually upon each detection. return TargetSetUnit end return nil end --- Creates an SWEEP task when there are targets for it. -- @param #TASK_A2A_DISPATCHER self -- @param Functional.Detection#DETECTION_BASE.DetectedItem DetectedItem -- @return Set#SET_UNIT TargetSetUnit: The target set of units. -- @return #nil If there are no targets to be set. function TASK_A2A_DISPATCHER:EvaluateSWEEP( DetectedItem ) self:F( { DetectedItem.ItemID } ) local DetectedSet = DetectedItem.Set local DetectedZone = DetectedItem.Zone if DetectedItem.IsDetected == false then -- Here we're doing something advanced... We're copying the DetectedSet. local TargetSetUnit = SET_UNIT:New() TargetSetUnit:SetDatabase( DetectedSet ) TargetSetUnit:FilterOnce() -- Filter but don't do any events!!! Elements are added manually upon each detection. return TargetSetUnit end return nil end --- Creates an ENGAGE task when there are human friendlies airborne near the targets. -- @param #TASK_A2A_DISPATCHER self -- @param Functional.Detection#DETECTION_BASE.DetectedItem DetectedItem -- @return Set#SET_UNIT TargetSetUnit: The target set of units. -- @return #nil If there are no targets to be set. function TASK_A2A_DISPATCHER:EvaluateENGAGE( DetectedItem ) self:F( { DetectedItem.ItemID } ) local DetectedSet = DetectedItem.Set local DetectedZone = DetectedItem.Zone local PlayersCount, PlayersReport = self:GetPlayerFriendliesNearBy( DetectedItem ) -- Only allow ENGAGE when there are Players near the zone, and when the Area has detected items since the last run in a 60 seconds time zone. if PlayersCount > 0 and DetectedItem.IsDetected == true then -- Here we're doing something advanced... We're copying the DetectedSet. local TargetSetUnit = SET_UNIT:New() TargetSetUnit:SetDatabase( DetectedSet ) TargetSetUnit:FilterOnce() -- Filter but don't do any events!!! Elements are added manually upon each detection. return TargetSetUnit end return nil end --- Evaluates the removal of the Task from the Mission. -- Can only occur when the DetectedItem is Changed AND the state of the Task is "Planned". -- @param #TASK_A2A_DISPATCHER self -- @param Tasking.Mission#MISSION Mission -- @param Tasking.Task#TASK Task -- @param Functional.Detection#DETECTION_BASE Detection The detection created by the @{Detection#DETECTION_BASE} derived object. -- @param #boolean DetectedItemID -- @param #boolean DetectedItemChange -- @return Tasking.Task#TASK function TASK_A2A_DISPATCHER:EvaluateRemoveTask( Mission, Task, Detection, DetectedItem, DetectedItemIndex, DetectedItemChanged ) if Task then if Task:IsStatePlanned() then local TaskName = Task:GetName() local TaskType = TaskName:match( "(%u+)%.%d+" ) self:T2( { TaskType = TaskType } ) local Remove = false local IsPlayers = Detection:IsPlayersNearBy( DetectedItem ) if TaskType == "ENGAGE" then if IsPlayers == false then Remove = true end end if TaskType == "INTERCEPT" then if IsPlayers == true then Remove = true end if DetectedItem.IsDetected == false then Remove = true end end if TaskType == "SWEEP" then if DetectedItem.IsDetected == true then Remove = true end end local DetectedSet = DetectedItem.Set -- Core.Set#SET_UNIT --DetectedSet:Flush() --self:E( { DetectedSetCount = DetectedSet:Count() } ) if DetectedSet:Count() == 0 then Remove = true end if DetectedItemChanged == true or Remove then Task = self:RemoveTask( DetectedItemIndex ) end end end return Task end --- Calculates which friendlies are nearby the area -- @param #TASK_A2A_DISPATCHER self -- @param DetectedItem -- @return #number, Core.CommandCenter#REPORT function TASK_A2A_DISPATCHER:GetFriendliesNearBy( DetectedItem ) local DetectedSet = DetectedItem.Set local FriendlyUnitsNearBy = self.Detection:GetFriendliesNearBy( DetectedItem ) local FriendlyTypes = {} local FriendliesCount = 0 if FriendlyUnitsNearBy then local DetectedTreatLevel = DetectedSet:CalculateThreatLevelA2G() for FriendlyUnitName, FriendlyUnitData in pairs( FriendlyUnitsNearBy ) do local FriendlyUnit = FriendlyUnitData -- Wrapper.Unit#UNIT if FriendlyUnit:IsAirPlane() then local FriendlyUnitThreatLevel = FriendlyUnit:GetThreatLevel() FriendliesCount = FriendliesCount + 1 local FriendlyType = FriendlyUnit:GetTypeName() FriendlyTypes[FriendlyType] = FriendlyTypes[FriendlyType] and ( FriendlyTypes[FriendlyType] + 1 ) or 1 if DetectedTreatLevel < FriendlyUnitThreatLevel + 2 then end end end end --self:E( { FriendliesCount = FriendliesCount } ) local FriendlyTypesReport = REPORT:New() if FriendliesCount > 0 then for FriendlyType, FriendlyTypeCount in pairs( FriendlyTypes ) do FriendlyTypesReport:Add( string.format("%d of %s", FriendlyTypeCount, FriendlyType ) ) end else FriendlyTypesReport:Add( "-" ) end return FriendliesCount, FriendlyTypesReport end --- Calculates which HUMAN friendlies are nearby the area -- @param #TASK_A2A_DISPATCHER self -- @param DetectedItem -- @return #number, Core.CommandCenter#REPORT function TASK_A2A_DISPATCHER:GetPlayerFriendliesNearBy( DetectedItem ) local DetectedSet = DetectedItem.Set local PlayersNearBy = self.Detection:GetPlayersNearBy( DetectedItem ) local PlayerTypes = {} local PlayersCount = 0 if PlayersNearBy then local DetectedTreatLevel = DetectedSet:CalculateThreatLevelA2G() for PlayerUnitName, PlayerUnitData in pairs( PlayersNearBy ) do local PlayerUnit = PlayerUnitData -- Wrapper.Unit#UNIT local PlayerName = PlayerUnit:GetPlayerName() --self:E( { PlayerName = PlayerName, PlayerUnit = PlayerUnit } ) if PlayerUnit:IsAirPlane() and PlayerName ~= nil then local FriendlyUnitThreatLevel = PlayerUnit:GetThreatLevel() PlayersCount = PlayersCount + 1 local PlayerType = PlayerUnit:GetTypeName() PlayerTypes[PlayerName] = PlayerType if DetectedTreatLevel < FriendlyUnitThreatLevel + 2 then end end end end --self:E( { PlayersCount = PlayersCount } ) local PlayerTypesReport = REPORT:New() if PlayersCount > 0 then for PlayerName, PlayerType in pairs( PlayerTypes ) do PlayerTypesReport:Add( string.format('"%s" in %s', PlayerName, PlayerType ) ) end else PlayerTypesReport:Add( "-" ) end return PlayersCount, PlayerTypesReport end function TASK_A2A_DISPATCHER:RemoveTask( TaskIndex ) self.Mission:RemoveTask( self.Tasks[TaskIndex] ) self.Tasks[TaskIndex] = nil end --- Assigns tasks in relation to the detected items to the @{Set#SET_GROUP}. -- @param #TASK_A2A_DISPATCHER self -- @param Functional.Detection#DETECTION_BASE Detection The detection created by the @{Detection#DETECTION_BASE} derived object. -- @return #boolean Return true if you want the task assigning to continue... false will cancel the loop. function TASK_A2A_DISPATCHER:ProcessDetected( Detection ) self:E() local AreaMsg = {} local TaskMsg = {} local ChangeMsg = {} local Mission = self.Mission if Mission:IsIDLE() or Mission:IsENGAGED() then local TaskReport = REPORT:New() -- Checking the task queue for the dispatcher, and removing any obsolete task! for TaskIndex, TaskData in pairs( self.Tasks ) do local Task = TaskData -- Tasking.Task#TASK if Task:IsStatePlanned() then local DetectedItem = Detection:GetDetectedItem( TaskIndex ) if not DetectedItem then local TaskText = Task:GetName() for TaskGroupID, TaskGroup in pairs( self.SetGroup:GetSet() ) do Mission:GetCommandCenter():MessageToGroup( string.format( "Obsolete A2A task %s for %s removed.", TaskText, Mission:GetName() ), TaskGroup ) end Task = self:RemoveTask( TaskIndex ) end end end -- Now that all obsolete tasks are removed, loop through the detected targets. for DetectedItemID, DetectedItem in pairs( Detection:GetDetectedItems() ) do local DetectedItem = DetectedItem -- Functional.Detection#DETECTION_BASE.DetectedItem local DetectedSet = DetectedItem.Set -- Core.Set#SET_UNIT local DetectedCount = DetectedSet:Count() local DetectedZone = DetectedItem.Zone --self:E( { "Targets in DetectedItem", DetectedItem.ItemID, DetectedSet:Count(), tostring( DetectedItem ) } ) --DetectedSet:Flush() local DetectedID = DetectedItem.ID local TaskIndex = DetectedItem.Index local DetectedItemChanged = DetectedItem.Changed local Task = self.Tasks[TaskIndex] Task = self:EvaluateRemoveTask( Mission, Task, Detection, DetectedItem, TaskIndex, DetectedItemChanged ) -- Task will be removed if it is planned and changed. -- Evaluate INTERCEPT if not Task and DetectedCount > 0 then local TargetSetUnit = self:EvaluateENGAGE( DetectedItem ) -- Returns a SetUnit if there are targets to be INTERCEPTed... if TargetSetUnit then Task = TASK_A2A_ENGAGE:New( Mission, self.SetGroup, string.format( "ENGAGE.%03d", DetectedID ), TargetSetUnit ) Task:SetDetection( Detection, TaskIndex ) else local TargetSetUnit = self:EvaluateINTERCEPT( DetectedItem ) -- Returns a SetUnit if there are targets to be INTERCEPTed... if TargetSetUnit then Task = TASK_A2A_INTERCEPT:New( Mission, self.SetGroup, string.format( "INTERCEPT.%03d", DetectedID ), TargetSetUnit ) Task:SetDetection( Detection, TaskIndex ) else local TargetSetUnit = self:EvaluateSWEEP( DetectedItem ) -- Returns a SetUnit if TargetSetUnit then Task = TASK_A2A_SWEEP:New( Mission, self.SetGroup, string.format( "SWEEP.%03d", DetectedID ), TargetSetUnit ) Task:SetDetection( Detection, TaskIndex ) end end end if Task then self.Tasks[TaskIndex] = Task Task:SetTargetZone( DetectedZone, DetectedItem.Coordinate.y, DetectedItem.Coordinate.Heading ) Task:SetDispatcher( self ) Mission:AddTask( Task ) TaskReport:Add( Task:GetName() ) else self:E("This should not happen") end end if Task then local FriendliesCount, FriendliesReport = self:GetFriendliesNearBy( DetectedItem ) Task:SetInfo( "Friendlies", string.format( "%d ( %s )", FriendliesCount, FriendliesReport:Text( "," ) ), 30 ) local PlayersCount, PlayersReport = self:GetPlayerFriendliesNearBy( DetectedItem ) Task:SetInfo( "Players", string.format( "%d ( %s )", PlayersCount, PlayersReport:Text( "," ) ), 31 ) end -- OK, so the tasking has been done, now delete the changes reported for the area. Detection:AcceptChanges( DetectedItem ) end -- TODO set menus using the HQ coordinator Mission:GetCommandCenter():SetMenu() local TaskText = TaskReport:Text(", ") for TaskGroupID, TaskGroup in pairs( self.SetGroup:GetSet() ) do if ( not Mission:IsGroupAssigned(TaskGroup) ) and TaskText ~= "" then Mission:GetCommandCenter():MessageToGroup( string.format( "%s has tasks %s. Subscribe to a task using the radio menu.", Mission:GetName(), TaskText ), TaskGroup ) end end end return true end end --- **Tasking** - The TASK_A2A models tasks for players in Air to Air engagements. -- -- ![Banner Image](..\Presentations\TASK_A2A\Dia1.JPG) -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Task_A2A do -- TASK_A2A --- The TASK_A2A class -- @type TASK_A2A -- @field Set#SET_UNIT TargetSetUnit -- @extends Tasking.Task#TASK --- # TASK_A2A class, extends @{Task#TASK} -- -- The TASK_A2A class defines Air To Air tasks for a @{Set} of Target Units, -- based on the tasking capabilities defined in @{Task#TASK}. -- The TASK_A2A is implemented using a @{Fsm#FSM_TASK}, and has the following statuses: -- -- * **None**: Start of the process -- * **Planned**: The A2A task is planned. -- * **Assigned**: The A2A task is assigned to a @{Group#GROUP}. -- * **Success**: The A2A task is successfully completed. -- * **Failed**: The A2A task has failed. This will happen if the player exists the task early, without communicating a possible cancellation to HQ. -- -- # 1.1) Set the scoring of achievements in an A2A attack. -- -- Scoring or penalties can be given in the following circumstances: -- -- * @{#TASK_A2A.SetScoreOnDestroy}(): Set a score when a target in scope of the A2A attack, has been destroyed. -- * @{#TASK_A2A.SetScoreOnSuccess}(): Set a score when all the targets in scope of the A2A attack, have been destroyed. -- * @{#TASK_A2A.SetPenaltyOnFailed}(): Set a penalty when the A2A attack has failed. -- -- @field #TASK_A2A TASK_A2A = { ClassName = "TASK_A2A", } --- Instantiates a new TASK_A2A. -- @param #TASK_A2A self -- @param Tasking.Mission#MISSION Mission -- @param Set#SET_GROUP SetAttack The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task. -- @param Set#SET_UNIT UnitSetTargets -- @param #number TargetDistance The distance to Target when the Player is considered to have "arrived" at the engagement range. -- @param Core.Zone#ZONE_BASE TargetZone The target zone, if known. -- If the TargetZone parameter is specified, the player will be routed to the center of the zone where all the targets are assumed to be. -- @return #TASK_A2A self function TASK_A2A:New( Mission, SetAttack, TaskName, TargetSetUnit, TaskType, TaskBriefing ) local self = BASE:Inherit( self, TASK:New( Mission, SetAttack, TaskName, TaskType, TaskBriefing ) ) -- Tasking.Task#TASK_A2A self:F() self.TargetSetUnit = TargetSetUnit self.TaskType = TaskType local Fsm = self:GetUnitProcess() Fsm:AddProcess ( "Planned", "Accept", ACT_ASSIGN_ACCEPT:New( self.TaskBriefing ), { Assigned = "RouteToRendezVous", Rejected = "Reject" } ) Fsm:AddTransition( "Assigned", "RouteToRendezVous", "RoutingToRendezVous" ) Fsm:AddProcess ( "RoutingToRendezVous", "RouteToRendezVousPoint", ACT_ROUTE_POINT:New(), { Arrived = "ArriveAtRendezVous" } ) Fsm:AddProcess ( "RoutingToRendezVous", "RouteToRendezVousZone", ACT_ROUTE_ZONE:New(), { Arrived = "ArriveAtRendezVous" } ) Fsm:AddTransition( { "Arrived", "RoutingToRendezVous" }, "ArriveAtRendezVous", "ArrivedAtRendezVous" ) Fsm:AddTransition( { "ArrivedAtRendezVous", "HoldingAtRendezVous" }, "Engage", "Engaging" ) Fsm:AddTransition( { "ArrivedAtRendezVous", "HoldingAtRendezVous" }, "HoldAtRendezVous", "HoldingAtRendezVous" ) Fsm:AddProcess ( "Engaging", "Account", ACT_ACCOUNT_DEADS:New(), {} ) Fsm:AddTransition( "Engaging", "RouteToTarget", "Engaging" ) Fsm:AddProcess( "Engaging", "RouteToTargetZone", ACT_ROUTE_ZONE:New(), {} ) Fsm:AddProcess( "Engaging", "RouteToTargetPoint", ACT_ROUTE_POINT:New(), {} ) Fsm:AddTransition( "Engaging", "RouteToTargets", "Engaging" ) -- Fsm:AddTransition( "Accounted", "DestroyedAll", "Accounted" ) -- Fsm:AddTransition( "Accounted", "Success", "Success" ) Fsm:AddTransition( "Rejected", "Reject", "Aborted" ) Fsm:AddTransition( "Failed", "Fail", "Failed" ) --- Test -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_A2A#TASK_A2A Task function Fsm:onafterRouteToRendezVous( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) -- Determine the first Unit from the self.RendezVousSetUnit if Task:GetRendezVousZone( TaskUnit ) then self:__RouteToRendezVousZone( 0.1 ) else if Task:GetRendezVousCoordinate( TaskUnit ) then self:__RouteToRendezVousPoint( 0.1 ) else self:__ArriveAtRendezVous( 0.1 ) end end end --- Test -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task#TASK_A2A Task function Fsm:OnAfterArriveAtRendezVous( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) -- Determine the first Unit from the self.TargetSetUnit self:__Engage( 0.1 ) end --- Test -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task#TASK_A2A Task function Fsm:onafterEngage( TaskUnit, Task ) self:E( { self } ) self:__Account( 0.1 ) self:__RouteToTarget(0.1 ) self:__RouteToTargets( -10 ) end --- Test -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_A2A#TASK_A2A Task function Fsm:onafterRouteToTarget( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) -- Determine the first Unit from the self.TargetSetUnit if Task:GetTargetZone( TaskUnit ) then self:__RouteToTargetZone( 0.1 ) else local TargetUnit = Task.TargetSetUnit:GetFirst() -- Wrapper.Unit#UNIT if TargetUnit then local Coordinate = TargetUnit:GetCoordinate() self:T( { TargetCoordinate = Coordinate, Coordinate:GetX(), Coordinate:GetAlt(), Coordinate:GetZ() } ) Task:SetTargetCoordinate( TargetUnit:GetCoordinate(), TaskUnit ) end self:__RouteToTargetPoint( 0.1 ) end end --- Test -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_A2A#TASK_A2A Task function Fsm:onafterRouteToTargets( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) local TargetUnit = Task.TargetSetUnit:GetFirst() -- Wrapper.Unit#UNIT if TargetUnit then Task:SetTargetCoordinate( TargetUnit:GetCoordinate(), TaskUnit ) end self:__RouteToTargets( -10 ) end return self end --- @param #TASK_A2A self function TASK_A2A:GetPlannedMenuText() return self:GetStateString() .. " - " .. self:GetTaskName() .. " ( " .. self.TargetSetUnit:GetUnitTypesText() .. " )" end --- @param #TASK_A2A self -- @param Core.Point#COORDINATE RendezVousCoordinate The Coordinate object referencing to the 2D point where the RendezVous point is located on the map. -- @param #number RendezVousRange The RendezVousRange that defines when the player is considered to have arrived at the RendezVous point. -- @param Wrapper.Unit#UNIT TaskUnit function TASK_A2A:SetRendezVousCoordinate( RendezVousCoordinate, RendezVousRange, TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteRendezVous = ProcessUnit:GetProcess( "RoutingToRendezVous", "RouteToRendezVousPoint" ) -- Actions.Act_Route#ACT_ROUTE_POINT ActRouteRendezVous:SetCoordinate( RendezVousCoordinate ) ActRouteRendezVous:SetRange( RendezVousRange ) end --- @param #TASK_A2A self -- @param Wrapper.Unit#UNIT TaskUnit -- @return Core.Point#COORDINATE The Coordinate object referencing to the 2D point where the RendezVous point is located on the map. -- @return #number The RendezVousRange that defines when the player is considered to have arrived at the RendezVous point. function TASK_A2A:GetRendezVousCoordinate( TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteRendezVous = ProcessUnit:GetProcess( "RoutingToRendezVous", "RouteToRendezVousPoint" ) -- Actions.Act_Route#ACT_ROUTE_POINT return ActRouteRendezVous:GetCoordinate(), ActRouteRendezVous:GetRange() end --- @param #TASK_A2A self -- @param Core.Zone#ZONE_BASE RendezVousZone The Zone object where the RendezVous is located on the map. -- @param Wrapper.Unit#UNIT TaskUnit function TASK_A2A:SetRendezVousZone( RendezVousZone, TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteRendezVous = ProcessUnit:GetProcess( "RoutingToRendezVous", "RouteToRendezVousZone" ) -- Actions.Act_Route#ACT_ROUTE_ZONE ActRouteRendezVous:SetZone( RendezVousZone ) end --- @param #TASK_A2A self -- @param Wrapper.Unit#UNIT TaskUnit -- @return Core.Zone#ZONE_BASE The Zone object where the RendezVous is located on the map. function TASK_A2A:GetRendezVousZone( TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteRendezVous = ProcessUnit:GetProcess( "RoutingToRendezVous", "RouteToRendezVousZone" ) -- Actions.Act_Route#ACT_ROUTE_ZONE return ActRouteRendezVous:GetZone() end --- @param #TASK_A2A self -- @param Core.Point#COORDINATE TargetCoordinate The Coordinate object where the Target is located on the map. -- @param Wrapper.Unit#UNIT TaskUnit function TASK_A2A:SetTargetCoordinate( TargetCoordinate, TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteTarget = ProcessUnit:GetProcess( "Engaging", "RouteToTargetPoint" ) -- Actions.Act_Route#ACT_ROUTE_POINT ActRouteTarget:SetCoordinate( TargetCoordinate ) end --- @param #TASK_A2A self -- @param Wrapper.Unit#UNIT TaskUnit -- @return Core.Point#COORDINATE The Coordinate object where the Target is located on the map. function TASK_A2A:GetTargetCoordinate( TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteTarget = ProcessUnit:GetProcess( "Engaging", "RouteToTargetPoint" ) -- Actions.Act_Route#ACT_ROUTE_POINT return ActRouteTarget:GetCoordinate() end --- @param #TASK_A2A self -- @param Core.Zone#ZONE_BASE TargetZone The Zone object where the Target is located on the map. -- @param Wrapper.Unit#UNIT TaskUnit function TASK_A2A:SetTargetZone( TargetZone, Altitude, Heading, TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteTarget = ProcessUnit:GetProcess( "Engaging", "RouteToTargetZone" ) -- Actions.Act_Route#ACT_ROUTE_ZONE ActRouteTarget:SetZone( TargetZone, Altitude, Heading ) end --- @param #TASK_A2A self -- @param Wrapper.Unit#UNIT TaskUnit -- @return Core.Zone#ZONE_BASE The Zone object where the Target is located on the map. function TASK_A2A:GetTargetZone( TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteTarget = ProcessUnit:GetProcess( "Engaging", "RouteToTargetZone" ) -- Actions.Act_Route#ACT_ROUTE_ZONE return ActRouteTarget:GetZone() end function TASK_A2A:SetGoalTotal() self.GoalTotal = self.TargetSetUnit:Count() end function TASK_A2A:GetGoalTotal() return self.GoalTotal end end do -- TASK_A2A_INTERCEPT --- The TASK_A2A_INTERCEPT class -- @type TASK_A2A_INTERCEPT -- @field Set#SET_UNIT TargetSetUnit -- @extends Tasking.Task#TASK --- # TASK_A2A_INTERCEPT class, extends @{Task_A2A#TASK_A2A} -- -- The TASK_A2A_INTERCEPT class defines an intercept task for a human player to be executed. -- When enemy planes need to be intercepted by human players, use this task type to urgen the players to get out there! -- -- The TASK_A2A_INTERCEPT is used by the @{Task_A2A_Dispatcher#TASK_A2A_DISPATCHER} to automatically create intercept tasks -- based on detected airborne enemy targets intruding friendly airspace. -- -- The task is defined for a @{Mission#MISSION}, where a friendly @{Set#SET_GROUP} consisting of GROUPs with one human players each, is intercepting the targets. -- The task is given a name and a briefing, that is used in the menu structure and in the reporting. -- -- @field #TASK_A2A_INTERCEPT TASK_A2A_INTERCEPT = { ClassName = "TASK_A2A_INTERCEPT", } --- Instantiates a new TASK_A2A_INTERCEPT. -- @param #TASK_A2A_INTERCEPT self -- @param Tasking.Mission#MISSION Mission -- @param Core.Set#SET_GROUP SetGroup The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task. -- @param Core.Set#SET_UNIT TargetSetUnit -- @param #string TaskBriefing The briefing of the task. -- @return #TASK_A2A_INTERCEPT function TASK_A2A_INTERCEPT:New( Mission, SetGroup, TaskName, TargetSetUnit, TaskBriefing ) local self = BASE:Inherit( self, TASK_A2A:New( Mission, SetGroup, TaskName, TargetSetUnit, "INTERCEPT", TaskBriefing ) ) -- #TASK_A2A_INTERCEPT self:F() Mission:AddTask( self ) --TODO: Add BR, Altitude, type of planes... self:SetBriefing( TaskBriefing or "Intercept incoming intruders.\n" ) self:UpdateTaskInfo() return self end function TASK_A2A_INTERCEPT:UpdateTaskInfo() local TargetCoordinate = self.Detection and self.Detection:GetDetectedItemCoordinate( self.DetectedItemIndex ) or self.TargetSetUnit:GetFirst():GetCoordinate() self:SetInfo( "Coordinates", TargetCoordinate, 0 ) self:SetInfo( "Threat", "[" .. string.rep( "■", self.Detection and self.Detection:GetDetectedItemThreatLevel( self.DetectedItemIndex ) or self.TargetSetUnit:CalculateThreatLevelA2G() ) .. "]", 11 ) if self.Detection then local DetectedItemsCount = self.TargetSetUnit:Count() local ReportTypes = REPORT:New() local TargetTypes = {} for TargetUnitName, TargetUnit in pairs( self.TargetSetUnit:GetSet() ) do local TargetType = self.Detection:GetDetectedUnitTypeName( TargetUnit ) if not TargetTypes[TargetType] then TargetTypes[TargetType] = TargetType ReportTypes:Add( TargetType ) end end self:SetInfo( "Targets", string.format( "%d of %s", DetectedItemsCount, ReportTypes:Text( ", " ) ), 10 ) else local DetectedItemsCount = self.TargetSetUnit:Count() local DetectedItemsTypes = self.TargetSetUnit:GetTypeNames() self:SetInfo( "Targets", string.format( "%d of %s", DetectedItemsCount, DetectedItemsTypes ), 10 ) end end --- @param #TASK_A2A_INTERCEPT self -- @param Wrapper.Group#GROUP ReportGroup function TASK_A2A_INTERCEPT:ReportOrder( ReportGroup ) self:F( { TaskInfo = self.TaskInfo } ) local Coordinate = self.TaskInfo.Coordinates.TaskInfoText local Distance = ReportGroup:GetCoordinate():Get2DDistance( Coordinate ) return Distance end --- @param #TASK_A2A_INTERCEPT self function TASK_A2A_INTERCEPT:onafterGoal( TaskUnit, From, Event, To ) local TargetSetUnit = self.TargetSetUnit -- Core.Set#SET_UNIT if TargetSetUnit:Count() == 0 then self:Success() end self:__Goal( -10 ) end --- Set a score when a target in scope of the A2A attack, has been destroyed . -- @param #TASK_A2A_INTERCEPT self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points to be granted when task process has been achieved. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2A_INTERCEPT function TASK_A2A_INTERCEPT:SetScoreOnProgress( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScoreProcess( "Engaging", "Account", "AccountForPlayer", "Player " .. PlayerName .. " has intercepted a target.", Score ) return self end --- Set a score when all the targets in scope of the A2A attack, have been destroyed. -- @param #TASK_A2A_INTERCEPT self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2A_INTERCEPT function TASK_A2A_INTERCEPT:SetScoreOnSuccess( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Success", "All targets have been successfully intercepted!", Score ) return self end --- Set a penalty when the A2A attack has failed. -- @param #TASK_A2A_INTERCEPT self -- @param #string PlayerName The name of the player. -- @param #number Penalty The penalty in points, must be a negative value! -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2A_INTERCEPT function TASK_A2A_INTERCEPT:SetScoreOnFail( PlayerName, Penalty, TaskUnit ) self:F( { PlayerName, Penalty, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Failed", "The intercept has failed!", Penalty ) return self end end do -- TASK_A2A_SWEEP --- The TASK_A2A_SWEEP class -- @type TASK_A2A_SWEEP -- @field Set#SET_UNIT TargetSetUnit -- @extends Tasking.Task#TASK --- # TASK_A2A_SWEEP class, extends @{Task_A2A#TASK_A2A} -- -- The TASK_A2A_SWEEP class defines a sweep task for a human player to be executed. -- A sweep task needs to be given when targets were detected but somehow the detection was lost. -- Most likely, these enemy planes are hidden in the mountains or are flying under radar. -- These enemy planes need to be sweeped by human players, and use this task type to urge the players to get out there and find those enemy fighters. -- -- The TASK_A2A_SWEEP is used by the @{Task_A2A_Dispatcher#TASK_A2A_DISPATCHER} to automatically create sweep tasks -- based on detected airborne enemy targets intruding friendly airspace, for which the detection has been lost for more than 60 seconds. -- -- The task is defined for a @{Mission#MISSION}, where a friendly @{Set#SET_GROUP} consisting of GROUPs with one human players each, is sweeping the targets. -- The task is given a name and a briefing, that is used in the menu structure and in the reporting. -- -- @field #TASK_A2A_SWEEP TASK_A2A_SWEEP = { ClassName = "TASK_A2A_SWEEP", } --- Instantiates a new TASK_A2A_SWEEP. -- @param #TASK_A2A_SWEEP self -- @param Tasking.Mission#MISSION Mission -- @param Core.Set#SET_GROUP SetGroup The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task. -- @param Core.Set#SET_UNIT TargetSetUnit -- @param #string TaskBriefing The briefing of the task. -- @return #TASK_A2A_SWEEP self function TASK_A2A_SWEEP:New( Mission, SetGroup, TaskName, TargetSetUnit, TaskBriefing ) local self = BASE:Inherit( self, TASK_A2A:New( Mission, SetGroup, TaskName, TargetSetUnit, "SWEEP", TaskBriefing ) ) -- #TASK_A2A_SWEEP self:F() Mission:AddTask( self ) --TODO: Add BR, Altitude, type of planes... self:SetBriefing( TaskBriefing or "Perform a fighter sweep. Incoming intruders were detected and could be hiding at the location.\n" ) self:UpdateTaskInfo() return self end function TASK_A2A_SWEEP:UpdateTaskInfo() local TargetCoordinate = self.Detection and self.Detection:GetDetectedItemCoordinate( self.DetectedItemIndex ) or self.TargetSetUnit:GetFirst():GetCoordinate() self:SetInfo( "Coordinates", TargetCoordinate, 0 ) self:SetInfo( "Assumed Threat", "[" .. string.rep( "■", self.Detection and self.Detection:GetDetectedItemThreatLevel( self.DetectedItemIndex ) or self.TargetSetUnit:CalculateThreatLevelA2G() ) .. "]", 11 ) if self.Detection then local DetectedItemsCount = self.TargetSetUnit:Count() local ReportTypes = REPORT:New() local TargetTypes = {} for TargetUnitName, TargetUnit in pairs( self.TargetSetUnit:GetSet() ) do local TargetType = self.Detection:GetDetectedUnitTypeName( TargetUnit ) if not TargetTypes[TargetType] then TargetTypes[TargetType] = TargetType ReportTypes:Add( TargetType ) end end self:SetInfo( "Lost Targets", string.format( "%d of %s", DetectedItemsCount, ReportTypes:Text( ", " ) ), 10 ) else local DetectedItemsCount = self.TargetSetUnit:Count() local DetectedItemsTypes = self.TargetSetUnit:GetTypeNames() self:SetInfo( "Lost Targets", string.format( "%d of %s", DetectedItemsCount, DetectedItemsTypes ), 10 ) end end function TASK_A2A_SWEEP:ReportOrder( ReportGroup ) local Coordinate = self.TaskInfo.Coordinates.TaskInfoText local Distance = ReportGroup:GetCoordinate():Get2DDistance( Coordinate ) return Distance end --- @param #TASK_A2A_SWEEP self function TASK_A2A_SWEEP:onafterGoal( TaskUnit, From, Event, To ) local TargetSetUnit = self.TargetSetUnit -- Core.Set#SET_UNIT if TargetSetUnit:Count() == 0 then self:Success() end self:__Goal( -10 ) end --- Set a score when a target in scope of the A2A attack, has been destroyed . -- @param #TASK_A2A_SWEEP self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points to be granted when task process has been achieved. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2A_SWEEP function TASK_A2A_SWEEP:SetScoreOnProgress( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScoreProcess( "Engaging", "Account", "AccountForPlayer", "Player " .. PlayerName .. " has sweeped a target.", Score ) return self end --- Set a score when all the targets in scope of the A2A attack, have been destroyed. -- @param #TASK_A2A_SWEEP self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2A_SWEEP function TASK_A2A_SWEEP:SetScoreOnSuccess( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Success", "All targets have been successfully sweeped!", Score ) return self end --- Set a penalty when the A2A attack has failed. -- @param #TASK_A2A_SWEEP self -- @param #string PlayerName The name of the player. -- @param #number Penalty The penalty in points, must be a negative value! -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2A_SWEEP function TASK_A2A_SWEEP:SetScoreOnFail( PlayerName, Penalty, TaskUnit ) self:F( { PlayerName, Penalty, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Failed", "The sweep has failed!", Penalty ) return self end end do -- TASK_A2A_ENGAGE --- The TASK_A2A_ENGAGE class -- @type TASK_A2A_ENGAGE -- @field Set#SET_UNIT TargetSetUnit -- @extends Tasking.Task#TASK --- # TASK_A2A_ENGAGE class, extends @{Task_A2A#TASK_A2A} -- -- The TASK_A2A_ENGAGE class defines an engage task for a human player to be executed. -- When enemy planes are close to human players, use this task type is used urge the players to get out there! -- -- The TASK_A2A_ENGAGE is used by the @{Task_A2A_Dispatcher#TASK_A2A_DISPATCHER} to automatically create engage tasks -- based on detected airborne enemy targets intruding friendly airspace. -- -- The task is defined for a @{Mission#MISSION}, where a friendly @{Set#SET_GROUP} consisting of GROUPs with one human players each, is engaging the targets. -- The task is given a name and a briefing, that is used in the menu structure and in the reporting. -- -- @field #TASK_A2A_ENGAGE TASK_A2A_ENGAGE = { ClassName = "TASK_A2A_ENGAGE", } --- Instantiates a new TASK_A2A_ENGAGE. -- @param #TASK_A2A_ENGAGE self -- @param Tasking.Mission#MISSION Mission -- @param Core.Set#SET_GROUP SetGroup The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task. -- @param Core.Set#SET_UNIT TargetSetUnit -- @param #string TaskBriefing The briefing of the task. -- @return #TASK_A2A_ENGAGE self function TASK_A2A_ENGAGE:New( Mission, SetGroup, TaskName, TargetSetUnit, TaskBriefing ) local self = BASE:Inherit( self, TASK_A2A:New( Mission, SetGroup, TaskName, TargetSetUnit, "ENGAGE", TaskBriefing ) ) -- #TASK_A2A_ENGAGE self:F() Mission:AddTask( self ) --TODO: Add BR, Altitude, type of planes... self:SetBriefing( TaskBriefing or "Bogeys are nearby! Players close by are ordered to ENGAGE the intruders!\n" ) self:UpdateTaskInfo() return self end function TASK_A2A_ENGAGE:UpdateTaskInfo() local TargetCoordinate = self.Detection and self.Detection:GetDetectedItemCoordinate( self.DetectedItemIndex ) or self.TargetSetUnit:GetFirst():GetCoordinate() self:SetInfo( "Coordinates", TargetCoordinate, 0 ) self:SetInfo( "Threat", "[" .. string.rep( "■", self.Detection and self.Detection:GetDetectedItemThreatLevel( self.DetectedItemIndex ) or self.TargetSetUnit:CalculateThreatLevelA2G() ) .. "]", 11 ) if self.Detection then local DetectedItemsCount = self.TargetSetUnit:Count() local ReportTypes = REPORT:New() local TargetTypes = {} for TargetUnitName, TargetUnit in pairs( self.TargetSetUnit:GetSet() ) do local TargetType = self.Detection:GetDetectedUnitTypeName( TargetUnit ) if not TargetTypes[TargetType] then TargetTypes[TargetType] = TargetType ReportTypes:Add( TargetType ) end end self:SetInfo( "Targets", string.format( "%d of %s", DetectedItemsCount, ReportTypes:Text( ", " ) ), 10 ) else local DetectedItemsCount = self.TargetSetUnit:Count() local DetectedItemsTypes = self.TargetSetUnit:GetTypeNames() self:SetInfo( "Targets", string.format( "%d of %s", DetectedItemsCount, DetectedItemsTypes ), 10 ) end end function TASK_A2A_ENGAGE:ReportOrder( ReportGroup ) local Coordinate = self.TaskInfo.Coordinates.TaskInfoText local Distance = ReportGroup:GetCoordinate():Get2DDistance( Coordinate ) return Distance end --- @param #TASK_A2A_ENGAGE self function TASK_A2A_ENGAGE:onafterGoal( TaskUnit, From, Event, To ) local TargetSetUnit = self.TargetSetUnit -- Core.Set#SET_UNIT if TargetSetUnit:Count() == 0 then self:Success() end self:__Goal( -10 ) end --- Set a score when a target in scope of the A2A attack, has been destroyed . -- @param #TASK_A2A_ENGAGE self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points to be granted when task process has been achieved. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2A_ENGAGE function TASK_A2A_ENGAGE:SetScoreOnProgress( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScoreProcess( "Engaging", "Account", "AccountForPlayer", "Player " .. PlayerName .. " has engaged and destroyed a target.", Score ) return self end --- Set a score when all the targets in scope of the A2A attack, have been destroyed. -- @param #TASK_A2A_ENGAGE self -- @param #string PlayerName The name of the player. -- @param #number Score The score in points. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2A_ENGAGE function TASK_A2A_ENGAGE:SetScoreOnSuccess( PlayerName, Score, TaskUnit ) self:F( { PlayerName, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Success", "All targets have been successfully engaged!", Score ) return self end --- Set a penalty when the A2A attack has failed. -- @param #TASK_A2A_ENGAGE self -- @param #string PlayerName The name of the player. -- @param #number Penalty The penalty in points, must be a negative value! -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_A2A_ENGAGE function TASK_A2A_ENGAGE:SetScoreOnFail( PlayerName, Penalty, TaskUnit ) self:F( { PlayerName, Penalty, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Failed", "The target engagement has failed!", Penalty ) return self end end --- **Tasking** -- The TASK_CARGO models tasks for players to transport @{Cargo}. -- -- ![Banner Image](..\Presentations\TASK_CARGO\Dia1.JPG) -- -- ==== -- -- The Moose framework provides various CARGO classes that allow DCS phisical or logical objects to be transported or sling loaded by Carriers. -- The CARGO_ classes, as part of the moose core, are able to Board, Load, UnBoard and UnLoad cargo between Carrier units. -- -- This collection of classes in this module define tasks for human players to handle these cargo objects. -- Cargo can be transported, picked-up, deployed and sling-loaded from and to other places. -- -- The following classes are important to consider: -- -- * @{#TASK_CARGO_TRANSPORT}: Defines a task for a human player to transport a set of cargo between various zones. -- -- ==== -- -- ### Author: **Sven Van de Velde (FlightControl)** -- -- ### Contributions: -- -- ==== -- -- @module Task_Cargo do -- TASK_CARGO --- @type TASK_CARGO -- @extends Tasking.Task#TASK --- -- # TASK_CARGO class, extends @{Task#TASK} -- -- ## A flexible tasking system -- -- The TASK_CARGO classes provide you with a flexible tasking sytem, -- that allows you to transport cargo of various types between various locations -- and various dedicated deployment zones. -- -- The cargo in scope of the TASK_CARGO classes must be explicitly given, and is of type SET_CARGO. -- The SET_CARGO contains a collection of CARGO objects that must be handled by the players in the mission. -- -- -- ## Task execution experience from the player perspective -- -- A human player can join the battle field in a client airborne slot or a ground vehicle within the CA module (ALT-J). -- The player needs to accept the task from the task overview list within the mission, using the radio menus. -- -- Once the TASK_CARGO is assigned to the player and accepted by the player, the player will obtain -- an extra **Cargo Handling Radio Menu** that contains the CARGO objects that need to be transported. -- -- Each CARGO object has a certain state: -- -- * **UnLoaded**: The CARGO is located within the battlefield. It may still need to be transported. -- * **Loaded**: The CARGO is loaded within a Carrier. This can be your air unit, or another air unit, or even a vehicle. -- * **Boarding**: The CARGO is running or moving towards your Carrier for loading. -- * **UnBoarding**: The CARGO is driving or jumping out of your Carrier and moves to a location in the Deployment Zone. -- -- Cargo must be transported towards different **Deployment @{Zone}s**. -- -- The Cargo Handling Radio Menu system allows to execute **various actions** to handle the cargo. -- In the menu, you'll find for each CARGO, that is part of the scope of the task, various actions that can be completed. -- Depending on the location of your Carrier unit, the menu options will vary. -- -- -- ## Cargo Pickup and Boarding -- -- For cargo boarding, a cargo can only execute the boarding actions if it is within the foreseen **Reporting Range**. -- Therefore, it is important that you steer your Carrier within the Reporting Range, -- so that boarding actions can be executed on the cargo. -- To Pickup and Board cargo, the following menu items will be shown in your carrier radio menu: -- -- ### Board Cargo -- -- If your Carrier is within the Reporting Range of the cargo, it will allow to pickup the cargo by selecting this menu option. -- Depending on the Cargo type, the cargo will either move to your Carrier or you will receive instructions how to handle the cargo -- pickup. If the cargo moves to your carrier, it will indicate the boarding status. -- Note that multiple units need to board your Carrier, so it is required to await the full boarding process. -- Once the cargo is fully boarded within your Carrier, you will be notified of this. -- -- Note that for airborne Carriers, it is required to land first before the Boarding process can be initiated. -- If during boarding the Carrier gets airborne, the boarding process will be cancelled. -- -- ## Pickup Cargo -- -- If your Carrier is not within the Reporting Range of the cargo, the HQ will guide you to its location. -- Routing information is shown in flight that directs you to the cargo within Reporting Range. -- Upon arrival, the Cargo will contact you and further instructions will be given. -- When your Carrier is airborne, you will receive instructions to land your Carrier. -- The action will not be completed until you've landed your Carrier. -- -- -- ## Cargo Deploy and UnBoarding -- -- Various Deployment Zones can be foreseen in the scope of the Cargo transportation. Each deployment zone can be of varying @{Zone} type. -- The Cargo Handling Radio Menu provides with menu options to execute an action to steer your Carrier to a specific Zone. -- -- ### UnBoard Cargo -- -- If your Carrier is already within a Deployment Zone, -- then the Cargo Handling Radio Menu allows to **UnBoard** a specific cargo that is -- loaded within your Carrier group into the Deployment Zone. -- Note that the Unboarding process takes a while, as the cargo units (infantry or vehicles) must unload from your Carrier. -- Ensure that you stay at the position or stay on the ground while Unboarding. -- If any unforeseen manoeuvre is done by the Carrier, then the Unboarding will be cancelled. -- -- ### Deploy Cargo -- -- If your Carrier is not within a Deployment Zone, you'll need to fly towards one. -- Fortunately, the Cargo Handling Radio Menu provides you with menu options to select a specific Deployment Zone to fly towards. -- Once a Deployment Zone has been selected, your Carrier will receive routing information from HQ towards the Deployment Zone center. -- Upon arrival, the HQ will provide you with further instructions. -- When your Carrier is airborne, you will receive instructions to land your Carrier. -- The action will not be completed until you've landed your Carrier! -- -- ## Handle TASK_CARGO Events ... -- -- The TASK_CARGO classes define @{Cargo} transport tasks, -- based on the tasking capabilities defined in @{Task#TASK}. -- -- ### Specific TASK_CARGO Events -- -- Specific Cargo Handling event can be captured, that allow to trigger specific actions! -- -- * **Boarded**: Triggered when the Cargo has been Boarded into your Carrier. -- * **UnBoarded**: Triggered when the cargo has been Unboarded from your Carrier and has arrived at the Deployment Zone. -- -- ### Standard TASK_CARGO Events -- -- The TASK_CARGO is implemented using a @{Statemachine#FSM_TASK}, and has the following standard statuses: -- -- * **None**: Start of the process. -- * **Planned**: The cargo task is planned. -- * **Assigned**: The cargo task is assigned to a @{Group#GROUP}. -- * **Success**: The cargo task is successfully completed. -- * **Failed**: The cargo task has failed. This will happen if the player exists the task early, without communicating a possible cancellation to HQ. -- -- === -- -- @field #TASK_CARGO -- TASK_CARGO = { ClassName = "TASK_CARGO", } --- Instantiates a new TASK_CARGO. -- @param #TASK_CARGO self -- @param Tasking.Mission#MISSION Mission -- @param Set#SET_GROUP SetGroup The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task. -- @param Core.Set#SET_CARGO SetCargo The scope of the cargo to be transported. -- @param #string TaskType The type of Cargo task. -- @param #string TaskBriefing The Cargo Task briefing. -- @return #TASK_CARGO self function TASK_CARGO:New( Mission, SetGroup, TaskName, SetCargo, TaskType, TaskBriefing ) local self = BASE:Inherit( self, TASK:New( Mission, SetGroup, TaskName, TaskType, TaskBriefing ) ) -- #TASK_CARGO self:F( {Mission, SetGroup, TaskName, SetCargo, TaskType}) self.SetCargo = SetCargo self.TaskType = TaskType self.SmokeColor = SMOKECOLOR.Red self.CargoItemCount = {} -- Map of Carriers having a cargo item count to check the cargo loading limits. self.CargoLimit = 2 self.DeployZones = {} -- setmetatable( {}, { __mode = "v" } ) -- weak table on value local Fsm = self:GetUnitProcess() Fsm:SetStartState( "Planned" ) Fsm:AddProcess ( "Planned", "Accept", ACT_ASSIGN_ACCEPT:New( self.TaskBriefing ), { Assigned = "SelectAction", Rejected = "Reject" } ) Fsm:AddTransition( { "Assigned", "WaitingForCommand", "ArrivedAtPickup", "ArrivedAtDeploy", "Boarded", "UnBoarded", "Landed", "Boarding" }, "SelectAction", "*" ) Fsm:AddTransition( "*", "RouteToPickup", "RoutingToPickup" ) Fsm:AddProcess ( "RoutingToPickup", "RouteToPickupPoint", ACT_ROUTE_POINT:New(), { Arrived = "ArriveAtPickup", Cancelled = "CancelRouteToPickup" } ) Fsm:AddTransition( "Arrived", "ArriveAtPickup", "ArrivedAtPickup" ) Fsm:AddTransition( "Cancelled", "CancelRouteToPickup", "WaitingForCommand" ) Fsm:AddTransition( "*", "RouteToDeploy", "RoutingToDeploy" ) Fsm:AddProcess ( "RoutingToDeploy", "RouteToDeployZone", ACT_ROUTE_ZONE:New(), { Arrived = "ArriveAtDeploy", Cancelled = "CancelRouteToDeploy" } ) Fsm:AddTransition( "Arrived", "ArriveAtDeploy", "ArrivedAtDeploy" ) Fsm:AddTransition( "Cancelled", "CancelRouteToDeploy", "WaitingForCommand" ) Fsm:AddTransition( { "ArrivedAtPickup", "ArrivedAtDeploy", "Landing" }, "Land", "Landing" ) Fsm:AddTransition( "Landing", "Landed", "Landed" ) Fsm:AddTransition( "*", "PrepareBoarding", "AwaitBoarding" ) Fsm:AddTransition( "AwaitBoarding", "Board", "Boarding" ) Fsm:AddTransition( "Boarding", "Boarded", "Boarded" ) Fsm:AddTransition( "*", "PrepareUnBoarding", "AwaitUnBoarding" ) Fsm:AddTransition( "AwaitUnBoarding", "UnBoard", "UnBoarding" ) Fsm:AddTransition( "UnBoarding", "UnBoarded", "UnBoarded" ) Fsm:AddTransition( "Deployed", "Success", "Success" ) Fsm:AddTransition( "Rejected", "Reject", "Aborted" ) Fsm:AddTransition( "Failed", "Fail", "Failed" ) --- -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_CARGO#TASK_CARGO Task function Fsm:onafterSelectAction( TaskUnit, Task ) local TaskUnitName = TaskUnit:GetName() self:E( { TaskUnit = TaskUnitName, Task = Task and Task:GetClassNameAndID() } ) local MenuTime = timer.getTime() TaskUnit.Menu = MENU_GROUP:New( TaskUnit:GetGroup(), Task:GetName() .. " @ " .. TaskUnit:GetName() ):SetTime( MenuTime ) local CargoItemCount = TaskUnit:CargoItemCount() --Task:GetMission():GetCommandCenter():MessageToGroup( "Cargo in carrier: " .. CargoItemCount, TaskUnit:GetGroup() ) Task.SetCargo:ForEachCargo( --- @param Core.Cargo#CARGO Cargo function( Cargo ) if Cargo:IsAlive() then -- if Task:is( "RoutingToPickup" ) then -- MENU_GROUP_COMMAND:New( -- TaskUnit:GetGroup(), -- "Cancel Route " .. Cargo.Name, -- TaskUnit.Menu, -- self.MenuRouteToPickupCancel, -- self, -- Cargo -- ):SetTime(MenuTime) -- end if Cargo:IsUnLoaded() then if CargoItemCount < Task.CargoLimit then if Cargo:IsInRadius( TaskUnit:GetPointVec2() ) then local NotInDeployZones = true for DeployZoneName, DeployZone in pairs( Task.DeployZones ) do if Cargo:IsInZone( DeployZone ) then NotInDeployZones = false end end if NotInDeployZones then if not TaskUnit:InAir() then MENU_GROUP_COMMAND:New( TaskUnit:GetGroup(), "Board cargo " .. Cargo.Name, TaskUnit.Menu, self.MenuBoardCargo, self, Cargo ):SetTime(MenuTime) end end else MENU_GROUP_COMMAND:New( TaskUnit:GetGroup(), "Route to Pickup cargo " .. Cargo.Name, TaskUnit.Menu, self.MenuRouteToPickup, self, Cargo ):SetTime(MenuTime) end end end if Cargo:IsLoaded() then if not TaskUnit:InAir() then MENU_GROUP_COMMAND:New( TaskUnit:GetGroup(), "Unboard cargo " .. Cargo.Name, TaskUnit.Menu, self.MenuUnBoardCargo, self, Cargo ):SetTime(MenuTime) end -- Deployzones are optional zones that can be selected to request routing information. for DeployZoneName, DeployZone in pairs( Task.DeployZones ) do if not Cargo:IsInZone( DeployZone ) then MENU_GROUP_COMMAND:New( TaskUnit:GetGroup(), "Route to Deploy cargo at " .. DeployZoneName, TaskUnit.Menu, self.MenuRouteToDeploy, self, DeployZone ):SetTime(MenuTime) end end end end end ) TaskUnit.Menu:Remove( MenuTime ) self:__SelectAction( -15 ) end --- -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:OnLeaveWaitingForCommand( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) TaskUnit.Menu:Remove() end function Fsm:MenuBoardCargo( Cargo ) self:__PrepareBoarding( 1.0, Cargo ) end function Fsm:MenuUnBoardCargo( Cargo, DeployZone ) self:__PrepareUnBoarding( 1.0, Cargo, DeployZone ) end function Fsm:MenuRouteToPickup( Cargo ) self:__RouteToPickup( 1.0, Cargo ) end function Fsm:MenuRouteToDeploy( DeployZone ) self:__RouteToDeploy( 1.0, DeployZone ) end --- --#TASK_CAROG_TRANSPORT self --#Wrapper.Unit#UNIT --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task -- @param From -- @param Event -- @param To -- @param Core.Cargo#CARGO Cargo function Fsm:onafterRouteToPickup( TaskUnit, Task, From, Event, To, Cargo ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) if Cargo:IsAlive() then self.Cargo = Cargo -- Core.Cargo#CARGO Task:SetCargoPickup( self.Cargo, TaskUnit ) self:__RouteToPickupPoint( -0.1 ) end end --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:onafterArriveAtPickup( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) if self.Cargo:IsAlive() then self.Cargo:Smoke( Task:GetSmokeColor(), 15 ) if TaskUnit:IsAir() then Task:GetMission():GetCommandCenter():MessageToGroup( "Land", TaskUnit:GetGroup() ) self:__Land( -0.1, "Pickup" ) else self:__SelectAction( -0.1 ) end end end --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:onafterCancelRouteToPickup( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) self:__SelectAction( -0.1 ) end --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit function Fsm:onafterRouteToDeploy( TaskUnit, Task, From, Event, To, DeployZone ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) self:E( DeployZone ) self.DeployZone = DeployZone Task:SetDeployZone( self.DeployZone, TaskUnit ) self:__RouteToDeployZone( -0.1 ) end --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:onafterArriveAtDeploy( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) if TaskUnit:IsAir() then Task:GetMission():GetCommandCenter():MessageToGroup( "Land", TaskUnit:GetGroup() ) self:__Land( -0.1, "Deploy" ) else self:__SelectAction( -0.1 ) end end --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:onafterCancelRouteToDeploy( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) self:__SelectAction( -0.1 ) end --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:onafterLand( TaskUnit, Task, From, Event, To, Action ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) if self.Cargo:IsAlive() then if self.Cargo:IsInRadius( TaskUnit:GetPointVec2() ) then if TaskUnit:InAir() then self:__Land( -10, Action ) else Task:GetMission():GetCommandCenter():MessageToGroup( "Landed ...", TaskUnit:GetGroup() ) self:__Landed( -0.1, Action ) end else if Action == "Pickup" then self:__RouteToPickupZone( -0.1 ) else self:__RouteToDeployZone( -0.1 ) end end end end --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:onafterLanded( TaskUnit, Task, From, Event, To, Action ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) if self.Cargo:IsAlive() then if self.Cargo:IsInRadius( TaskUnit:GetPointVec2() ) then if TaskUnit:InAir() then self:__Land( -0.1, Action ) else self:__SelectAction( -0.1 ) end else if Action == "Pickup" then self:__RouteToPickupZone( -0.1 ) else self:__RouteToDeployZone( -0.1 ) end end end end --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:onafterPrepareBoarding( TaskUnit, Task, From, Event, To, Cargo ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) if Cargo and Cargo:IsAlive() then self.Cargo = Cargo -- Core.Cargo#CARGO_GROUP self:__Board( -0.1 ) end end --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:onafterBoard( TaskUnit, Task ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID() } ) function self.Cargo:OnEnterLoaded( From, Event, To, TaskUnit, TaskProcess ) self:E({From, Event, To, TaskUnit, TaskProcess }) TaskProcess:__Boarded( 0.1 ) end if self.Cargo:IsAlive() then if self.Cargo:IsInRadius( TaskUnit:GetPointVec2() ) then if TaskUnit:InAir() then --- ABORT the boarding. Split group if any and go back to select action. else self.Cargo:MessageToGroup( "Boarding ...", TaskUnit:GetGroup() ) self.Cargo:Board( TaskUnit, 20, self ) end else --self:__ArriveAtCargo( -0.1 ) end end end --- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:onafterBoarded( TaskUnit, Task ) local TaskUnitName = TaskUnit:GetName() self:E( { TaskUnit = TaskUnitName, Task = Task and Task:GetClassNameAndID() } ) self.Cargo:MessageToGroup( "Boarded ...", TaskUnit:GetGroup() ) TaskUnit:AddCargo( self.Cargo ) self:__SelectAction( 1 ) -- TODO:I need to find a more decent solution for this. Task:E( { CargoPickedUp = Task.CargoPickedUp } ) if self.Cargo:IsAlive() then if Task.CargoPickedUp then Task:CargoPickedUp( TaskUnit, self.Cargo ) end end end --- -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task -- @param From -- @param Event -- @param To -- @param Cargo -- @param Core.Zone#ZONE_BASE DeployZone function Fsm:onafterPrepareUnBoarding( TaskUnit, Task, From, Event, To, Cargo ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID(), From, Event, To, Cargo } ) self.Cargo = Cargo self.DeployZone = nil -- Check if the Cargo is at a deployzone... If it is, provide it as a parameter! if Cargo:IsAlive() then for DeployZoneName, DeployZone in pairs( Task.DeployZones ) do if Cargo:IsInZone( DeployZone ) then self.DeployZone = DeployZone -- Core.Zone#ZONE_BASE break end end self:__UnBoard( -0.1, Cargo, self.DeployZone ) end end --- -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task -- @param From -- @param Event -- @param To -- @param Cargo -- @param Core.Zone#ZONE_BASE DeployZone function Fsm:onafterUnBoard( TaskUnit, Task, From, Event, To, Cargo, DeployZone ) self:E( { TaskUnit = TaskUnit, Task = Task and Task:GetClassNameAndID(), From, Event, To, Cargo, DeployZone } ) function self.Cargo:OnEnterUnLoaded( From, Event, To, DeployZone, TaskProcess ) self:E({From, Event, To, DeployZone, TaskProcess }) TaskProcess:__UnBoarded( -0.1 ) end if self.Cargo:IsAlive() then self.Cargo:MessageToGroup( "UnBoarding ...", TaskUnit:GetGroup() ) if DeployZone then self.Cargo:UnBoard( DeployZone:GetPointVec2(), 400, self ) else self.Cargo:UnBoard( TaskUnit:GetPointVec2():AddX(60), 400, self ) end end end --- -- @param #FSM_PROCESS self -- @param Wrapper.Unit#UNIT TaskUnit -- @param Tasking.Task_Cargo#TASK_CARGO Task function Fsm:onafterUnBoarded( TaskUnit, Task ) local TaskUnitName = TaskUnit:GetName() self:E( { TaskUnit = TaskUnitName, Task = Task and Task:GetClassNameAndID() } ) self.Cargo:MessageToGroup( "UnBoarded ...", TaskUnit:GetGroup() ) TaskUnit:RemoveCargo( self.Cargo ) local NotInDeployZones = true for DeployZoneName, DeployZone in pairs( Task.DeployZones ) do if self.Cargo:IsInZone( DeployZone ) then NotInDeployZones = false end end if NotInDeployZones == false then self.Cargo:SetDeployed( true ) end -- TODO:I need to find a more decent solution for this. Task:E( { CargoDeployed = Task.CargoDeployed and "true" or "false" } ) Task:E( { CargoIsAlive = self.Cargo:IsAlive() and "true" or "false" } ) if self.Cargo:IsAlive() then if Task.CargoDeployed then Task:CargoDeployed( TaskUnit, self.Cargo, self.DeployZone ) end end self:__SelectAction( 1 ) end return self end --- Set a limit on the amount of cargo items that can be loaded into the Carriers. -- @param #TASK_CARGO self -- @param CargoLimit Specifies a number of cargo items that can be loaded in the helicopter. -- @return #TASK_CARGO function TASK_CARGO:SetCargoLimit( CargoLimit ) self.CargoLimit = CargoLimit return self end ---@param Color Might be SMOKECOLOR.Blue, SMOKECOLOR.Red SMOKECOLOR.Orange, SMOKECOLOR.White or SMOKECOLOR.Green function TASK_CARGO:SetSmokeColor(SmokeColor) -- Makes sure Coloe is set if SmokeColor == nil then self.SmokeColor = SMOKECOLOR.Red -- Make sure a default color is exist elseif type(SmokeColor) == "number" then self:F2(SmokeColor) if SmokeColor > 0 and SmokeColor <=5 then -- Make sure number is within ragne, assuming first enum is one self.SmokeColor = SMOKECOLOR.SmokeColor end end end --@return SmokeColor function TASK_CARGO:GetSmokeColor() return self.SmokeColor end --- @param #TASK_CARGO self function TASK_CARGO:GetPlannedMenuText() return self:GetStateString() .. " - " .. self:GetTaskName() .. " ( " .. self.TargetSetUnit:GetUnitTypesText() .. " )" end --- @param #TASK_CARGO self -- @return Core.Set#SET_CARGO The Cargo Set. function TASK_CARGO:GetCargoSet() return self.SetCargo end --- @param #TASK_CARGO self -- @return #list The Deployment Zones. function TASK_CARGO:GetDeployZones() return self.DeployZones end --- @param #TASK_CARGO self -- @param AI.AI_Cargo#AI_CARGO Cargo The cargo. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_CARGO function TASK_CARGO:SetCargoPickup( Cargo, TaskUnit ) self:F({Cargo, TaskUnit}) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteCargo = ProcessUnit:GetProcess( "RoutingToPickup", "RouteToPickupPoint" ) -- Actions.Act_Route#ACT_ROUTE_POINT ActRouteCargo:Reset() ActRouteCargo:SetCoordinate( Cargo:GetCoordinate() ) ActRouteCargo:SetRange( Cargo:GetBoardingRange() ) ActRouteCargo:SetMenuCancel( TaskUnit:GetGroup(), "Cancel Routing to Cargo " .. Cargo:GetName(), TaskUnit.Menu ) ActRouteCargo:Start() return self end --- @param #TASK_CARGO self -- @param Core.Zone#ZONE DeployZone -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_CARGO function TASK_CARGO:SetDeployZone( DeployZone, TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteDeployZone = ProcessUnit:GetProcess( "RoutingToDeploy", "RouteToDeployZone" ) -- Actions.Act_Route#ACT_ROUTE_ZONE ActRouteDeployZone:Reset() ActRouteDeployZone:SetZone( DeployZone ) ActRouteDeployZone:SetMenuCancel( TaskUnit:GetGroup(), "Cancel Routing to Deploy Zone" .. DeployZone:GetName(), TaskUnit.Menu ) ActRouteDeployZone:Start() return self end --- @param #TASK_CARGO self -- @param Core.Zone#ZONE DeployZone -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_CARGO function TASK_CARGO:AddDeployZone( DeployZone, TaskUnit ) self.DeployZones[DeployZone:GetName()] = DeployZone return self end --- @param #TASK_CARGO self -- @param Core.Zone#ZONE DeployZone -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_CARGO function TASK_CARGO:RemoveDeployZone( DeployZone, TaskUnit ) self.DeployZones[DeployZone:GetName()] = nil return self end --- @param #TASK_CARGO self -- @param @list DeployZones -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_CARGO function TASK_CARGO:SetDeployZones( DeployZones, TaskUnit ) for DeployZoneID, DeployZone in pairs( DeployZones ) do self.DeployZones[DeployZone:GetName()] = DeployZone end return self end --- @param #TASK_CARGO self -- @param Wrapper.Unit#UNIT TaskUnit -- @return Core.Zone#ZONE_BASE The Zone object where the Target is located on the map. function TASK_CARGO:GetTargetZone( TaskUnit ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) local ActRouteTarget = ProcessUnit:GetProcess( "Engaging", "RouteToTargetZone" ) -- Actions.Act_Route#ACT_ROUTE_ZONE return ActRouteTarget:GetZone() end --- Set a score when a target in scope of the A2G attack, has been destroyed . -- @param #TASK_CARGO self -- @param #string Text The text to display to the player, when the target has been destroyed. -- @param #number Score The score in points. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_CARGO function TASK_CARGO:SetScoreOnProgress( Text, Score, TaskUnit ) self:F( { Text, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScoreProcess( "Engaging", "Account", "Account", Text, Score ) return self end --- Set a score when all the targets in scope of the A2G attack, have been destroyed. -- @param #TASK_CARGO self -- @param #string Text The text to display to the player, when all targets hav been destroyed. -- @param #number Score The score in points. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_CARGO function TASK_CARGO:SetScoreOnSuccess( Text, Score, TaskUnit ) self:F( { Text, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Success", Text, Score ) return self end --- Set a penalty when the A2G attack has failed. -- @param #TASK_CARGO self -- @param #string Text The text to display to the player, when the A2G attack has failed. -- @param #number Penalty The penalty in points. -- @param Wrapper.Unit#UNIT TaskUnit -- @return #TASK_CARGO function TASK_CARGO:SetScoreOnFail( Text, Penalty, TaskUnit ) self:F( { Text, Score, TaskUnit } ) local ProcessUnit = self:GetUnitProcess( TaskUnit ) ProcessUnit:AddScore( "Failed", Text, Penalty ) return self end function TASK_CARGO:SetGoalTotal() self.GoalTotal = self.SetCargo:Count() end function TASK_CARGO:GetGoalTotal() return self.GoalTotal end end do -- TASK_CARGO_TRANSPORT --- The TASK_CARGO_TRANSPORT class -- @type TASK_CARGO_TRANSPORT -- @extends #TASK_CARGO TASK_CARGO_TRANSPORT = { ClassName = "TASK_CARGO_TRANSPORT", } --- Instantiates a new TASK_CARGO_TRANSPORT. -- @param #TASK_CARGO_TRANSPORT self -- @param Tasking.Mission#MISSION Mission -- @param Set#SET_GROUP SetGroup The set of groups for which the Task can be assigned. -- @param #string TaskName The name of the Task. -- @param Core.Set#SET_CARGO SetCargo The scope of the cargo to be transported. -- @param #string TaskBriefing The Cargo Task briefing. -- @return #TASK_CARGO_TRANSPORT self function TASK_CARGO_TRANSPORT:New( Mission, SetGroup, TaskName, SetCargo, TaskBriefing ) local self = BASE:Inherit( self, TASK_CARGO:New( Mission, SetGroup, TaskName, SetCargo, "Transport", TaskBriefing ) ) -- #TASK_CARGO_TRANSPORT self:F() Mission:AddTask( self ) -- Events self:AddTransition( "*", "CargoPickedUp", "*" ) self:AddTransition( "*", "CargoDeployed", "*" ) self:E( { CargoDeployed = self.CargoDeployed ~= nil and "true" or "false" } ) --- OnBefore Transition Handler for Event CargoPickedUp. -- @function [parent=#TASK_CARGO_TRANSPORT] OnBeforeCargoPickedUp -- @param #TASK_CARGO_TRANSPORT self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Wrapper.Unit#UNIT TaskUnit The Unit (Client) that PickedUp the cargo. You can use this to retrieve the PlayerName etc. -- @param Core.Cargo#CARGO Cargo The Cargo that got PickedUp by the TaskUnit. You can use this to check Cargo Status. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event CargoPickedUp. -- @function [parent=#TASK_CARGO_TRANSPORT] OnAfterCargoPickedUp -- @param #TASK_CARGO_TRANSPORT self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Wrapper.Unit#UNIT TaskUnit The Unit (Client) that PickedUp the cargo. You can use this to retrieve the PlayerName etc. -- @param Core.Cargo#CARGO Cargo The Cargo that got PickedUp by the TaskUnit. You can use this to check Cargo Status. --- Synchronous Event Trigger for Event CargoPickedUp. -- @function [parent=#TASK_CARGO_TRANSPORT] CargoPickedUp -- @param #TASK_CARGO_TRANSPORT self -- @param Wrapper.Unit#UNIT TaskUnit The Unit (Client) that PickedUp the cargo. You can use this to retrieve the PlayerName etc. -- @param Core.Cargo#CARGO Cargo The Cargo that got PickedUp by the TaskUnit. You can use this to check Cargo Status. --- Asynchronous Event Trigger for Event CargoPickedUp. -- @function [parent=#TASK_CARGO_TRANSPORT] __CargoPickedUp -- @param #TASK_CARGO_TRANSPORT self -- @param #number Delay The delay in seconds. -- @param Wrapper.Unit#UNIT TaskUnit The Unit (Client) that PickedUp the cargo. You can use this to retrieve the PlayerName etc. -- @param Core.Cargo#CARGO Cargo The Cargo that got PickedUp by the TaskUnit. You can use this to check Cargo Status. --- OnBefore Transition Handler for Event CargoDeployed. -- @function [parent=#TASK_CARGO_TRANSPORT] OnBeforeCargoDeployed -- @param #TASK_CARGO_TRANSPORT self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Wrapper.Unit#UNIT TaskUnit The Unit (Client) that Deployed the cargo. You can use this to retrieve the PlayerName etc. -- @param Core.Cargo#CARGO Cargo The Cargo that got PickedUp by the TaskUnit. You can use this to check Cargo Status. -- @param Core.Zone#ZONE DeployZone The zone where the Cargo got Deployed or UnBoarded. -- @return #boolean Return false to cancel Transition. --- OnAfter Transition Handler for Event CargoDeployed. -- @function [parent=#TASK_CARGO_TRANSPORT] OnAfterCargoDeployed -- @param #TASK_CARGO_TRANSPORT self -- @param #string From The From State string. -- @param #string Event The Event string. -- @param #string To The To State string. -- @param Wrapper.Unit#UNIT TaskUnit The Unit (Client) that Deployed the cargo. You can use this to retrieve the PlayerName etc. -- @param Core.Cargo#CARGO Cargo The Cargo that got PickedUp by the TaskUnit. You can use this to check Cargo Status. -- @param Core.Zone#ZONE DeployZone The zone where the Cargo got Deployed or UnBoarded. --- Synchronous Event Trigger for Event CargoDeployed. -- @function [parent=#TASK_CARGO_TRANSPORT] CargoDeployed -- @param #TASK_CARGO_TRANSPORT self -- @param Wrapper.Unit#UNIT TaskUnit The Unit (Client) that Deployed the cargo. You can use this to retrieve the PlayerName etc. -- @param Core.Cargo#CARGO Cargo The Cargo that got PickedUp by the TaskUnit. You can use this to check Cargo Status. -- @param Core.Zone#ZONE DeployZone The zone where the Cargo got Deployed or UnBoarded. --- Asynchronous Event Trigger for Event CargoDeployed. -- @function [parent=#TASK_CARGO_TRANSPORT] __CargoDeployed -- @param #TASK_CARGO_TRANSPORT self -- @param #number Delay The delay in seconds. -- @param Wrapper.Unit#UNIT TaskUnit The Unit (Client) that Deployed the cargo. You can use this to retrieve the PlayerName etc. -- @param Core.Cargo#CARGO Cargo The Cargo that got PickedUp by the TaskUnit. You can use this to check Cargo Status. -- @param Core.Zone#ZONE DeployZone The zone where the Cargo got Deployed or UnBoarded. local Fsm = self:GetUnitProcess() local CargoReport = REPORT:New( "Transport Cargo. The following cargo needs to be transported including initial positions:") SetCargo:ForEachCargo( --- @param Core.Cargo#CARGO Cargo function( Cargo ) local CargoType = Cargo:GetType() local CargoName = Cargo:GetName() local CargoCoordinate = Cargo:GetCoordinate() CargoReport:Add( string.format( '- "%s" (%s) at %s', CargoName, CargoType, CargoCoordinate:ToStringMGRS() ) ) end ) self:SetBriefing( TaskBriefing or CargoReport:Text() ) return self end function TASK_CARGO_TRANSPORT:ReportOrder( ReportGroup ) return true end --- -- @param #TASK_CARGO_TRANSPORT self -- @return #boolean function TASK_CARGO_TRANSPORT:IsAllCargoTransported() local CargoSet = self:GetCargoSet() local Set = CargoSet:GetSet() local DeployZones = self:GetDeployZones() local CargoDeployed = true -- Loop the CargoSet (so evaluate each Cargo in the SET_CARGO ). for CargoID, CargoData in pairs( Set ) do local Cargo = CargoData -- Core.Cargo#CARGO if Cargo:IsDeployed() then -- Loop the DeployZones set for the TASK_CARGO_TRANSPORT. for DeployZoneID, DeployZone in pairs( DeployZones ) do -- If there is a Cargo not in one of DeployZones, then not all Cargo is deployed. self:T( { Cargo.CargoObject } ) if Cargo:IsInZone( DeployZone ) == false then CargoDeployed = false end end else CargoDeployed = false end end return CargoDeployed end --- @param #TASK_CARGO_TRANSPORT self function TASK_CARGO_TRANSPORT:onafterGoal( TaskUnit, From, Event, To ) local CargoSet = self.CargoSet if self:IsAllCargoTransported() then self:Success() end self:__Goal( -10 ) end end -- The order of the declarations is important here. Don't touch it. --- Declare the event dispatcher based on the EVENT class _EVENTDISPATCHER = EVENT:New() -- Core.Event#EVENT --- Declare the timer dispatcher based on the SCHEDULEDISPATCHER class _SCHEDULEDISPATCHER = SCHEDULEDISPATCHER:New() -- Core.Timer#SCHEDULEDISPATCHER --- Declare the main database object, which is used internally by the MOOSE classes. _DATABASE = DATABASE:New() -- Core.Database#DATABASE _SETTINGS = SETTINGS:Set() BASE:TraceOnOff( false ) env.info( '*** MOOSE INCLUDE END *** ' )