DCSOlympus/scripts/payLoadConverter.py

56 lines
1.9 KiB
Python

import pandas as pd
import json
# pip3 install pandas, if pandas hasn't been installed yet
# Load data from an Excel file
df = pd.read_excel('data.xlsx')
# Group by 'Name', 'Fuel', and 'Roles' and aggregate 'Items - Name' and 'Items - Quantity'
grouped = df.groupby(['Name', 'Fuel', 'Roles'])['Items - Name', 'Items - Quantity'].agg(lambda x: list(x)).reset_index()
# Convert the grouped data into the desired format
result = {}
for index, row in grouped.iterrows():
name = row['Name']
if name not in result:
result[name] = {
"name": row['Name'],
"label": row['Name'],
"loadouts": [
{
"fuel": row['Fuel'],
"items": [
{
"name": item,
"quantity": quantity
} for item, quantity in zip(row['Items - Name'], row['Items - Quantity'])
],
"roles": [row['Roles']]
}
]
}
else:
loadouts = result[name]["loadouts"]
loadout = next((l for l in loadouts if l["roles"][0] == row['Roles']), None)
if loadout:
loadout["items"] += [
{
"name": item,
"quantity": quantity
} for item, quantity in zip(row['Items - Name'], row['Items - Quantity'])
]
else:
result[name]["loadouts"].append({
"fuel": row['Fuel'],
"items": [
{
"name": item,
"quantity": quantity
} for item, quantity in zip(row['Items - Name'], row['Items - Quantity'])
],
"roles": [row['Roles']]
})
# Print the result with the correct indents, kinda cough
print(json.dumps(result, indent=2))