DCSOlympus/scripts/python/API/infantry_boarding.py
bobprofisker a67540c12c
Infantry boarding python script
First version of working python script to manage units embarking and disembarking more natively than DCS core can handle / do.
2025-10-10 20:04:15 +01:00

776 lines
44 KiB
Python

import asyncio
from asyncio import Semaphore
from random import randrange
from api import API, Unit, UnitSpawnTable
from math import pi
import logging
import time
#Set some globals up
before_can_re_embark_time = 300 # this is the time it takes for the infantry, after disembarking, to become embarkable again
min_toggle_time_period = 30 # this should typically be however long it takes the longest thing to load or unload, used to prevent accidental re toggling the toggle switch too early by accident
####Transport types#####
transport_ground = {}
transport_helicopters = {
"UH-1H":{
"max_capacity": 8,
"max_embark_range": 100,
"doors": 2,
"door_positions": [(2.5,-pi/2),(0.8,0),(2.5,pi/2),(0.8,0)], #two values here offset and heading offset in radians and second distance offset and heading offset in radians
"centre_offset_position": [(0,0),(0,0)], #used for calculating the unit door centre, when the doors aren't in line with the centre
"door_argument_nos": [43,44], #draw argument numbers for the doors
"door_open_thresholds": [0.8,0.8], #value above which the door is considered open
"is_rear_loader": False,
"boarding_distance": 5,
"rotor_radius": 15
},
"CH-47Fbl1":{
"max_capacity": 30,
"max_embark_range": 100,
"doors": 1,
"door_positions": [(12,-pi),(0,0)], #two values here offset and heading offset in radians and second distance offset and heading offset in radians
"centre_offset_position": [(11,-pi),(0,0)], #used for calculating the unit door centre, when the doors aren't in line with the centre
"door_argument_nos": [86], #draw argument numbers for the doors
"door_open_thresholds": [0.55], #value above which the door is considered open
"is_rear_loader": True,
"boarding_distance": 10,
"rotor_radius": 31
},
"Mi-8MT":{
"max_capacity": 24,
"max_embark_range": 100,
"doors": 1,
"door_positions": [(6,-pi),(0,0)], #two values here offset and heading offset in radians and second distance offset and heading offset in radians
"centre_offset_position": [(5.5,-pi),(0,0)], #used for calculating the unit door centre, when the doors aren't in line with the centre
"door_argument_nos": [86], #draw argument numbers for the doors
"door_open_thresholds": [0.8], #value above which the door is considered open
"is_rear_loader": True,
"boarding_distance": 10,
"rotor_radius": 22
},
"Mi-24P":{
"max_capacity": 8,
"max_embark_range": 100,
"doors": 2,
"door_positions": [(2.5,+pi/2),(1.2,0),(2.5,-pi/2),(1.2,0)], #two values here offset and heading offset in radians and second distance offset and heading offset in radians
"centre_offset_position": [(0,0),(0,0)], #used for calculating the unit door centre, when the doors aren't in line with the centre
"door_argument_nos": [38,86], #draw argument numbers for the doors
"door_open_thresholds": [0.8,0.8], #value above which the door is considered open
"is_rear_loader": False,
"boarding_distance": 5,
"rotor_radius": 18
}
}
transport_types = set(transport_helicopters.keys()).union(transport_ground.keys())
#Infantry transport
embarker_inf_red = {}
embarker_inf_blue = {"Soldier M4 GRG","soldier_wwii_us"}
embarker_types = embarker_inf_blue.union(embarker_inf_red)
#Time it takes after loading or unloading to swap back to the other
# Setup a logger for the module
logger = logging.getLogger("infantry_boarding")
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter('[%(asctime)s] %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
def cross_product_2d(v1, v2):
return v1[0] * v2[1] - v1[1] * v2[0]
def determine_side(self, door):
# Calculate relative vectors
vector_to_unit = [
self.position.lat - self.transport_unit.position.lat,
self.position.lng - self.transport_unit.position.lng
]
vector_to_door = [
door.lat - self.transport_unit.position.lat,
door.lng - self.transport_unit.position.lng
]
# Compute the 2D cross product
cross_z = cross_product_2d(vector_to_unit, vector_to_door)
# Determine the side based on the sign of the cross product
if cross_z > 0:
return True
elif cross_z < 0:
return False
else:
return True
class Transporter(Unit):
def __init__(self, Unit):
self.unit = Unit
def set_as_transport(self):
self.unit.is_transport = True
if self.unit.name in transport_helicopters:
if self.unit.name == "UH-1H":
self.unit.max_capacity = transport_helicopters["UH-1H"]["max_capacity"]
self.unit.max_embark_range = transport_helicopters["UH-1H"]["max_embark_range"]
self.unit.boarding_distance = transport_helicopters["UH-1H"]["boarding_distance"]
self.unit.current_capacity = 0
self.unit.current_cargo_weight = 0
self.unit.unit_array = []
self.unit.en_boarding_queue = []
self.unit.current_max_capacity = 0
self.unit.doors = transport_helicopters["UH-1H"]["doors"]
self.unit.door_positions = transport_helicopters["UH-1H"]["door_positions"]
self.unit.centre_offset_position = transport_helicopters["UH-1H"]["centre_offset_position"]
self.unit.door_argument_nos = transport_helicopters["UH-1H"]["door_argument_nos"]
self.unit.door_open_thresholds = transport_helicopters["UH-1H"]["door_open_thresholds"]
self.unit.will_disembark = True
self.unit.register_draw_argument(43) #left door
self.unit.register_draw_argument(44) #right door
self.unit.register_draw_argument(446) #interior light colour switch, we use as a toggle
self.unit.loading_toggle_argument = 2 #this is the argument registered in the index on the draw arguments that controls loading state, have to trial and error what it is for each transport type
self.unit.disembark_embark_argument_toggle_argument_threshold = 0.7
self.unit.is_rear_loader = transport_helicopters["UH-1H"]["is_rear_loader"]
self.unit.rotor_radius = transport_helicopters["UH-1H"]["rotor_radius"]
elif self.unit.name == "CH-47Fbl1":
self.unit.max_capacity = transport_helicopters["CH-47Fbl1"]["max_capacity"]
self.unit.max_embark_range = transport_helicopters["CH-47Fbl1"]["max_embark_range"]
self.unit.boarding_distance = transport_helicopters["CH-47Fbl1"]["boarding_distance"]
self.unit.current_capacity = 0
self.unit.current_cargo_weight = 0
self.unit.unit_array = []
self.unit.en_boarding_queue = []
self.unit.current_max_capacity = 0
self.unit.doors = transport_helicopters["CH-47Fbl1"]["doors"]
self.unit.centre_offset_position = transport_helicopters["CH-47Fbl1"]["centre_offset_position"]
self.unit.door_positions = transport_helicopters["CH-47Fbl1"]["door_positions"]
self.unit.door_argument_nos = transport_helicopters["CH-47Fbl1"]["door_argument_nos"]
self.unit.door_open_thresholds = transport_helicopters["CH-47Fbl1"]["door_open_thresholds"]
self.unit.will_disembark = True
self.unit.register_draw_argument(86) #rear ramp
self.unit.register_draw_argument(606) #interior light colour switch, we use as a toggle
self.unit.loading_toggle_argument = 1 #this is the argument registered in the index on the draw arguments that controls loading state, have to trial and error what it is for each transport type
self.unit.disembark_embark_argument_toggle_argument_threshold = 0.5
self.unit.is_rear_loader = transport_helicopters["CH-47Fbl1"]["is_rear_loader"]
self.unit.rotor_radius = transport_helicopters["CH-47Fbl1"]["rotor_radius"]
elif self.unit.name == "Mi-8MT":
self.unit.max_capacity = transport_helicopters["Mi-8MT"]["max_capacity"]
self.unit.max_embark_range = transport_helicopters["Mi-8MT"]["max_embark_range"]
self.unit.boarding_distance = transport_helicopters["Mi-8MT"]["boarding_distance"]
self.unit.current_capacity = 0
self.unit.current_cargo_weight = 0
self.unit.unit_array = []
self.unit.en_boarding_queue = []
self.unit.current_max_capacity = 0
self.unit.doors = transport_helicopters["Mi-8MT"]["doors"]
self.unit.centre_offset_position = transport_helicopters["Mi-8MT"]["centre_offset_position"]
self.unit.door_positions = transport_helicopters["Mi-8MT"]["door_positions"]
self.unit.door_argument_nos = transport_helicopters["Mi-8MT"]["door_argument_nos"]
self.unit.door_open_thresholds = transport_helicopters["Mi-8MT"]["door_open_thresholds"]
self.unit.will_disembark = True
self.unit.register_draw_argument(86) #rear ramp
self.unit.register_draw_argument(133) #interior light colour switch, we use as a toggle
self.unit.loading_toggle_argument = 1 #this is the argument registered in the index on the draw arguments that controls loading state, have to trial and error what it is for each transport type
self.unit.disembark_embark_argument_toggle_argument_threshold = 0.8
self.unit.is_rear_loader = transport_helicopters["Mi-8MT"]["is_rear_loader"]
self.unit.rotor_radius = transport_helicopters["Mi-8MT"]["rotor_radius"]
elif self.unit.name == "Mi-24P":
self.unit.max_capacity = transport_helicopters["Mi-24P"]["max_capacity"]
self.unit.max_embark_range = transport_helicopters["Mi-24P"]["max_embark_range"]
self.unit.boarding_distance = transport_helicopters["Mi-24P"]["boarding_distance"]
self.unit.current_capacity = 0
self.unit.current_cargo_weight = 0
self.unit.unit_array = []
self.unit.en_boarding_queue = []
self.unit.current_max_capacity = 0
self.unit.doors = transport_helicopters["Mi-24P"]["doors"]
self.unit.centre_offset_position = transport_helicopters["Mi-24P"]["centre_offset_position"]
self.unit.door_positions = transport_helicopters["Mi-24P"]["door_positions"]
self.unit.door_argument_nos = transport_helicopters["Mi-24P"]["door_argument_nos"]
self.unit.door_open_thresholds = transport_helicopters["Mi-24P"]["door_open_thresholds"]
self.unit.will_disembark = True
self.unit.register_draw_argument(38) #left door
self.unit.register_draw_argument(86) #right door
self.unit.register_draw_argument(47) #interior light colour switch, we use as a toggle
self.unit.loading_toggle_argument = 2 #this is the argument registered in the index on the draw arguments that controls loading state, have to trial and error what it is for each transport type
self.unit.disembark_embark_argument_toggle_argument_threshold = 0.8
self.unit.is_rear_loader = transport_helicopters["Mi-24P"]["is_rear_loader"]
self.unit.rotor_radius = transport_helicopters["Mi-24P"]["rotor_radius"]
else:
pass
class DisembarkedInfantry(Unit):
def __str__(self):
return f"DisembarkedInfrantry(unit_id={self.unit_id}, group_id={self.group_id}, position={self.position}, heading={self.heading})"
def __init__(self, Unit):
self.unit = Unit
def disembark_from_transport(self):
destination = self.position.project_with_bearing_and_distance(30, self.heading)
# Set the destination for the unit
self.set_roe(4) #set to hold fire to avoid stopping to shoot
self.is_loadable = False
self.set_path([destination])
if self.check_for_enemy_in_range():
self.set_speed(10)
else:
self.set_speed(2)
self.register_on_destination_reached_callback(
self.on_destination_reached,
destination,
threshold=15.0,
timeout=30.0 # Timeout after 30 seconds if the destination is not reached
)
def check_for_enemy_in_range(self):
units = api.get_units()
for unit in units.values():
if unit.alive and unit.coalition != self.coalition:
distance_to_enemy = self.position.distance_to(unit.position)
if distance_to_enemy < 2000: #if an enemy is within 2000m, approx rifle max range
return True
return False
async def on_destination_reached(self, _, reached: bool):
if not reached:
# logger.info(f"Unit {self} did not reach its destination.")
self.set_roe(1)
new_patrol = self.position.project_with_bearing_and_distance(1000, self.transport_spawn_heading)
await asyncio.sleep(10) #wait a bit before trying again
try:
if self.og_transport.is_rear_loader:
side_offset = self.position.project_with_bearing_and_distance(30,self.transport_spawn_heading-pi/2)
self.set_path([side_offset,new_patrol])
else:
self.set_path([new_patrol])
except AttributeError:
self.set_path([new_patrol])
if self.check_for_enemy_in_range():
self.set_speed(10)
else:
self.set_speed(1.3)
await asyncio.sleep(before_can_re_embark_time) #wait before setting to be boardable
self.is_loadable = True
logger.info(f"Unit {self} is now boardable again.")
else:
self.set_roe(1)
new_patrol = self.position.project_with_bearing_and_distance(1000, self.transport_spawn_heading)
await asyncio.sleep(10) #wait a bit before trying again
try:
if self.og_transport.is_rear_loader:
side_offset = self.position.project_with_bearing_and_distance(30,self.transport_spawn_heading-pi/2)
self.set_path([side_offset,new_patrol])
else:
self.set_path([new_patrol])
except AttributeError:
self.set_path([new_patrol])
if self.check_for_enemy_in_range():
self.set_speed(10)
else:
self.set_speed(1.3)
await asyncio.sleep(before_can_re_embark_time) #wait before setting to be boardable
self.is_loadable = True
logger.info(f"Unit {self} is now boardable again.")
class Embarker(Unit):
def __str__(self):
return f"DisembarkedInfrantry(unit_id={self.unit_id}, group_id={self.group_id}, position={self.position}, heading={self.heading})"
def __init__(self, Unit):
self.unit = Unit
def set_as_embarker(self):
self.unit.is_embarker = True
self.unit.is_moving = False
self.unit.is_loadable = True
logger.info(f"Set unit '{self.unit.name}' as embarker.")
def can_board(self):
transport = self.transport_unit
if transport.current_capacity < transport.max_capacity:
transport.unit_array.append(self.name)
transport.current_capacity += 1
self.delete_unit()
else:
pass
def board_transport(self):
door, num_doors_open = self.get_closest_door()
if num_doors_open > 1:
door_bypass = True
else:
door_bypass = False
if door is None:
pass
elif door is not None:
if self.is_moving:
pass
elif not self.is_moving:
distance = self.position.distance_to(door)
distance_centre_offset_position = self.position.distance_to(self.transport_unit.position.project_with_bearing_and_distance(self.transport_unit.centre_offset_position[0][0], self.transport_unit.centre_offset_position[0][1]))
if distance >= distance_centre_offset_position:
if determine_side(self,door): #right side
if self.transport_unit.is_rear_loader: # chinook rear loader
destination = door.project_with_bearing_and_distance(self.transport_unit.rotor_radius/3, self.transport_unit.heading-pi)
destination = destination.project_with_bearing_and_distance(self.transport_unit.rotor_radius/2, self.transport_unit.heading+pi/2)
destination.threshold = 2
self.set_path([destination])
self.register_on_destination_reached_callback(
self.on_destination_reached,
destination,
threshold=2.0,
timeout=10.0 # Timeout after 30 seconds if the destination is not reached
)
self.is_moving = True
else: # huey front loader
destination = door.project_with_bearing_and_distance(self.transport_unit.rotor_radius, self.transport_unit.heading)
destination = destination.project_with_bearing_and_distance(self.transport_unit.rotor_radius/2, self.transport_unit.heading+pi/2)
destination.threshold = 2
self.set_path([destination])
self.register_on_destination_reached_callback(
self.on_destination_reached,
destination,
threshold=2.0,
timeout=10.0 # Timeout after 30 seconds if the destination is not reached
)
self.is_moving = True
else: #left side
if self.transport_unit.is_rear_loader: # chinook rear loader
destination = door.project_with_bearing_and_distance(self.transport_unit.rotor_radius/3, self.transport_unit.heading-pi)
destination = destination.project_with_bearing_and_distance(self.transport_unit.rotor_radius/2, self.transport_unit.heading-pi/2)
destination.threshold = 2
self.set_path([destination])
self.register_on_destination_reached_callback(
self.on_destination_reached,
destination,
threshold=2.0,
timeout=10.0 # Timeout after 30 seconds if the destination is not reached
)
self.is_moving = True
else: # huey front loader
destination = door.project_with_bearing_and_distance(self.transport_unit.rotor_radius, self.transport_unit.heading)
destination = destination.project_with_bearing_and_distance(self.transport_unit.rotor_radius/2, self.transport_unit.heading-pi/2)
destination.threshold = 2
self.set_path([destination])
self.register_on_destination_reached_callback(
self.on_destination_reached,
destination,
threshold=2.0,
timeout=10.0 # Timeout after 30 seconds if the destination is not reached
)
self.is_moving = True
else:
destination = self.position.project_with_bearing_and_distance(distance+2, self.position.bearing_to(door))
#destination = destination.project_with_bearing_and_distance(self.transport_unit.rotor_radius, self.transport_unit.heading+pi/2)
destination.threshold = 2
self.set_path([destination,door])
self.is_moving = True
def get_closest_door(self):
return check_closest_open_door(self.transport_unit, self)
async def on_destination_reached(self, _, reached: bool):
if not reached:
logger.info(f"Unit {self} did not reach its destination.")
self.is_moving = False
else:
logger.info(f"Unit {self} has reached its destination.")
self.is_moving = False
await asyncio.sleep(10)
self.board_transport() # Attempt to board again
def check_closest_open_door(transport, embarker):
if transport.name in transport_helicopters:
if transport.door_argument_nos is None and transport.doors > 0:
return transport.position.project_with_bearing_and_distance(5,transport.heading + pi), transport.heading + pi
elif transport.door_argument_nos is not None and transport.doors > 0:
closest_door = None
doors_open = 0
distance_to_closest_door = float('inf')
for i in range(transport.doors):
if transport.draw_arguments[i].value >= transport.door_open_thresholds[i]:
doors_open += 1
distance = embarker.position.distance_to(transport.position.project_with_bearing_and_distance(transport.door_positions[i*2][0], transport.heading + transport.door_positions[i*2][1]).project_with_bearing_and_distance(transport.door_positions[i*2+1][0], transport.heading + transport.door_positions[i*2+1][1]))
if distance < distance_to_closest_door:
distance_to_closest_door = distance
closest_door = transport.position.project_with_bearing_and_distance(transport.door_positions[i*2][0], transport.heading + transport.door_positions[i*2][1]).project_with_bearing_and_distance(transport.door_positions[i*2+1][0], transport.heading + transport.door_positions[i*2+1][1])
return closest_door, doors_open
else:
return None, 0
def check_for_door_status(transporter):
if not hasattr(transporter, 'draw_arguments') or len(transporter.draw_arguments) < transporter.doors:
#logger.warning(f"Transporter '{transporter.name}' does not have enough draw arguments registered.")
return False
if transporter.name in transport_helicopters:
if transporter.door_argument_nos is None and transporter.doors > 0:
return True
elif transporter.door_argument_nos is not None and transporter.doors > 0:
a_door_is_open = False
for i in range(transporter.doors):
if i >= len(transporter.draw_arguments): # Ensure the index is valid
#logger.error(f"Index {i} out of range for draw_arguments in transporter '{transporter.name}'.")
continue
if transporter.draw_arguments[i].value >= transporter.door_open_thresholds[i]:
a_door_is_open = True
return a_door_is_open
else:
return False
elif transporter.name in transport_ground:
if transporter.door_argument_nos is None and transporter.doors > 0:
return True
elif transporter.door_argument_nos is not None and transporter.doors > 0:
a_door_is_open = False
for i in range(transporter.doors):
if i >= len(transporter.draw_arguments): # Ensure the index is valid
#logger.error(f"Index {i} out of range for draw_arguments in transporter '{transporter.name}'.")
continue
if transporter.draw_arguments[i].value >= transporter.door_open_thresholds[i]:
a_door_is_open = True
return a_door_is_open
else:
return False
async def load_loadable_units():
units = api.get_units()
for embarker in units.values():
if embarker.alive and hasattr(embarker, 'is_embarker'):
if hasattr(embarker, 'in_embark_queue') and hasattr(embarker, 'transport_unit') and hasattr(embarker, 'is_moving'):
if embarker.transport_unit.name in transport_types:
if embarker.roe != "hold":
embarker.set_roe(4) #set to hold fire to avoid stopping to shoot
#check the doors are open
if check_for_door_status(embarker.transport_unit):
closest_door, num_doors_open = check_closest_open_door(embarker.transport_unit, embarker)
if closest_door is not None:
#print(f"A door is open on {embarker.transport_unit.name}, closest door is {closest_door}, {num_doors_open} doors open")
embarker.__class__ = Embarker
#check if close enough to board
closest_door, _ = embarker.get_closest_door()
door_distance = embarker.position.distance_to(closest_door)
if door_distance < embarker.transport_unit.boarding_distance or embarker.position.distance_to(embarker.transport_unit.position) < embarker.transport_unit.boarding_distance:
transport = embarker.transport_unit
embarker_units = [
(embarker, embarker.position.distance_to(transport.position))
for embarker in units.values()
if embarker.alive
and hasattr(embarker, 'is_embarker')
and embarker.position.distance_to(closest_door) < transport.boarding_distance
]
embarkers_sorted = sorted(embarker_units, key=lambda x: x[1])
if not embarkers_sorted:
pass
else:
if embarker.ID == embarkers_sorted[0][0].ID:
transport.current_capacity += 1
transport.current_max_capacity +=1
transport.unit_array.append(embarker)
transport.set_cargo_weight(transport.current_cargo_weight + 100) #assume 100kg per infantry with kit
transport.current_cargo_weight += 100
embarker.delete_unit()
#asyncio.create_task(set_as_disembarking(transport))
break
#else run it closer
if embarker.is_moving:
if hasattr(embarker, 'last_pos'):
if embarker.position == embarker.last_pos:
embarker.is_moving = False
embarker.last_pos = embarker.position
pass
elif not embarker.is_moving:
embarker.board_transport()
else:
#no doors so do nothing
pass
def generate_transport_units():
units = api.get_units()
for unit in units.values():
if unit.alive and unit.name in transport_types and not hasattr(unit, 'is_transport'):
new_transport = Transporter(unit)
new_transport.set_as_transport()
elif unit.alive and unit.name in embarker_types and not hasattr(unit, 'is_embarker'):
new_emabarquee = Embarker(unit)
new_emabarquee.set_as_embarker()
async def set_as_disembarking(transport):
transport.will_disembark = True
transport.en_boarding_queue = []
async def set_as_not_disembarking(transport):
transport.will_disembark = False
transport.current_max_capacity = transport.current_capacity
unload_semaphore = Semaphore(1)
async def check_for_unloadable_units():
# Use the semaphore to ensure only one instance runs at a time
async with unload_semaphore:
units = api.get_units()
try:
for transporter in units.values():
if transporter.alive and hasattr(transporter, 'is_transport') and transporter.will_disembark:
# Check if the transporter is in a position to disembark units
if transporter.speed < 2 and check_for_door_status(transporter) and not transporter.airborne and transporter.current_capacity > 0: # check speed is less than 2 m/s and doors are open
# Transport is ready to disembark
to_remove = [] # Sets up variable to hold units to remove from queue
for disembarker in transporter.unit_array:
# Get the open doors
open_doors = []
open_doors_headings = []
for i in range(transporter.doors):
if transporter.draw_arguments[i].value >= transporter.door_open_thresholds[i]:
door_position = transporter.position.project_with_bearing_and_distance(
transporter.door_positions[i * 2][0],
transporter.heading + transporter.door_positions[i * 2][1]
).project_with_bearing_and_distance(
transporter.door_positions[i * 2 + 1][0],
transporter.heading + transporter.door_positions[i * 2 + 1][1]
)
door_heading = transporter.heading + transporter.door_positions[i * 2][1]
open_doors.append(door_position)
open_doors_headings.append(door_heading)
# Round-robin spawn mechanism
if not hasattr(transporter, 'last_door_index'):
transporter.last_door_index = 0 # Initialize the last used door index
# Get the next door in the round-robin sequence
async def execution_callback(new_group_ID: int):
logger.info(f"New units spawned, groupID: {new_group_ID}")
units = api.get_units()
for new_unit in units.values():
if new_unit.group_id == new_group_ID:
logger.info(f"New unit spawned: {new_unit}")
new_unit.__class__ = DisembarkedInfantry
new_unit.transport_spawn_heading = transporter.heading
new_unit.og_transport = transporter
new_unit.disembark_from_transport()
new_unit.original_position = new_unit.position
# The delay is a function of how many units are left to disembark and how long it takes to get to the disembark spot
async def delayed_spawn(delay,transporter,open_doors,open_doors_headings,disembarker):
door_index = transporter.last_door_index % len(open_doors)
transporter.last_door_index += 1
# Increment the door index for the next spawn
# Spawn the unit at the selected door
door_position = open_doors[door_index]
door_heading = open_doors_headings[door_index]
spawn_table: UnitSpawnTable = UnitSpawnTable(
unit_type=disembarker.name,
location=door_position,
heading=door_heading,
skill="High",
livery_id=""
)
# Add a delay before spawning the unit
await asyncio.sleep(delay) # Delay of 2 seconds (adjust as needed)
api.spawn_ground_units([spawn_table], transporter.coalition, "", True, 0, execution_callback)
transporter.set_cargo_weight(transporter.current_cargo_weight - 100) # Assume 100kg per infantry with kit
transporter.current_cargo_weight -= 100
logger.info(f"Spawned unit '{disembarker.name}' from open door of transport '{transporter.name}'.")
if len(open_doors) > 1:
if (transporter.current_max_capacity - transporter.current_capacity) < len(open_doors):
delay = 0.1
else:
delay = (transporter.current_max_capacity - transporter.current_capacity) * 1.25 - ((len(open_doors)-1) * 2.5) + 2.5
else:
delay = (transporter.current_max_capacity - transporter.current_capacity) * 2.5
asyncio.create_task(delayed_spawn(delay,transporter,open_doors,open_doors_headings,disembarker))
transporter.en_boarding_queue = []
transporter.current_capacity -= 1
to_remove.append(disembarker)
for disembarker in to_remove:
transporter.unit_array.remove(disembarker)
except Exception as e:
#logging.warning(e, exc_info=True)
logger.info(f"Error in check_for_unloadable_units: {e}")
async def check_for_loadable_units():
units = api.get_units()
try:
for transporter in units.values():
if transporter.alive and hasattr(transporter, 'is_transport') and not transporter.will_disembark:
if len(transporter.unit_array) < transporter.max_capacity:
if transporter.speed < 2 and check_for_door_status(transporter): #check speed is less than 2 m/s and doors are open
# print("Speed is okay")
embarker_units = [
(embarker, embarker.position.distance_to(transporter.position))
for embarker in units.values()
if embarker.alive
and hasattr(embarker, 'is_embarker')
and getattr(embarker, 'is_loadable', True) # Check if is_loadable is True
and embarker.position.distance_to(transporter.position) < transporter.max_embark_range
]
if embarker_units is None or len(embarker_units) == 0:
continue
else:
for embarker in embarker_units:
if hasattr(embarker, 'in_embark_queue') and embarker.in_embark_queue:
if embarker.in_embark_queue:
embarker_units.remove(embarker)
embarkers_sorted = sorted(embarker_units, key=lambda x: x[1])
closest_embarkers = embarkers_sorted[:transporter.max_capacity-len(transporter.en_boarding_queue)]
for embarker, distance in closest_embarkers:
if embarker not in transporter.en_boarding_queue and distance < transporter.max_embark_range and not hasattr(embarker, 'is_in_queue'):
transporter.en_boarding_queue.append(embarker)
embarker.in_embark_queue = True
embarker.is_in_queue = True
embarker.transport_unit = transporter
logger.info(f"Added embarker '{embarker.name}' to '{transporter.name}' s boarding queue.")
elif embarker not in transporter.en_boarding_queue and distance < transporter.max_embark_range and hasattr(embarker, 'is_in_queue'):
if embarker.is_in_queue:
await asyncio.sleep(60) #wait a bit and try again next time
embarker.is_in_queue = False
else:
transporter.en_boarding_queue.append(embarker)
embarker.in_embark_queue = True
embarker.is_in_queue = True
embarker.transport_unit = transporter
logger.info(f"Added embarker '{embarker.name}' to '{transporter.name}' s boarding queue.")
elif embarker in transporter.en_boarding_queue:
pass
else:
pass #we pass as the transport is full
except Exception as e:
logger.error(f"Error in check_for_loadable_units: {e}")
async def check_for_transport_embarker_or_disembark():
units = api.get_units()
try:
for transporter in units.values():
if transporter.alive and hasattr(transporter, 'is_transport'):
# Ensure the transporter has a `last_toggle_time` attribute
if not hasattr(transporter, 'last_toggle_time'):
transporter.last_toggle_time = 0 # Initialize it to 0
# Get the current time
current_time = time.time()
# Check if the toggle is allowed (min_toggle_time_period seconds since the last toggle)
if current_time - transporter.last_toggle_time < min_toggle_time_period:
continue # Skip toggling if the cooldown hasn't passed
# Check the loading toggle argument and toggle the state
if transporter.loading_toggle_argument is None or not hasattr(transporter, 'draw_arguments') or len(transporter.draw_arguments) <= transporter.loading_toggle_argument:
pass
else:
if transporter.will_disembark:
if transporter.draw_arguments[transporter.loading_toggle_argument].value <= transporter.disembark_embark_argument_toggle_argument_threshold:
continue
elif transporter.draw_arguments[transporter.loading_toggle_argument].value > transporter.disembark_embark_argument_toggle_argument_threshold:
# Set to embark
await set_as_not_disembarking(transporter)
transporter.last_toggle_time = current_time # Update the last toggle time
logger.info(f"Transporter '{transporter.name}' set to embark.")
else:
if transporter.draw_arguments[transporter.loading_toggle_argument].value <= transporter.disembark_embark_argument_toggle_argument_threshold:
# Set to disembark
await set_as_disembarking(transporter)
transporter.last_toggle_time = current_time # Update the last toggle time
logger.info(f"Transporter '{transporter.name}' set to disembark.")
elif transporter.draw_arguments[transporter.loading_toggle_argument].value > transporter.disembark_embark_argument_toggle_argument_threshold:
continue
except Exception as e:
logger.error(f"Error in check_for_transport_embarker_or_disembark: {e}")
#############
#API SECTION#
#############
def on_api_startup(api: API):
global units_to_delete
logger.info("API started")
# Get all the units from the API. Force an update to get the latest units.
units = api.update_units()
# Initialize the list to hold units to delete
units_to_delete = []
generate_transport_units() #comment this if doing draw Args testing
#new_test_unit() # comment this if running normally, this is used only for getting draw args
def on_unit_alive_change(unit: Unit, value: bool):
global units_to_delete
if units_to_delete is None:
logger.error("units_to_delete is not initialized.")
return
# Check if the unit has been deleted
if value is False:
if unit in units_to_delete:
units_to_delete.remove(unit)
else:
pass
# unit_args = []
# exclusions_array = [1,102,103,11,12,17,278,279,280,281,282,283,284,286,287,288,289,290,337,37,39,393,399,4,40,41,42,448,487,488,6,77,99]
# async def check_args_changed():
# global unit_args
# units = api.get_units()
# for unit in units.values():
# for argument in unit.draw_arguments:
# if argument in unit_args:
# pass
# else:
# if argument.argument in exclusions_array:
# pass
# else:
# print(argument.argument, end=",")
# unit_args = unit.draw_arguments
# print("New loop")
# def new_test_unit():
# units = api.get_units()
# for unit in units.values():
# if unit.alive and unit.name in transport_types and not hasattr(unit, 'is_transport'):
# for i in range(500): #191
# unit.register_draw_argument(i)
# def check_arg_value():
# units = api.get_units()
# for unit in units.values():
# if unit.alive and unit.name in transport_types:
# unit.register_draw_argument(47) #191
# print(f"{unit.draw_arguments[0].argument} value is {unit.draw_arguments[0].value}")
async def on_api_update(api: API):
asyncio.create_task(check_for_loadable_units())
asyncio.create_task(load_loadable_units())
asyncio.create_task(check_for_unloadable_units())
asyncio.create_task(check_for_transport_embarker_or_disembark())
generate_transport_units()
#asyncio.create_task(check_args_changed())
#check_arg_value()
if __name__ == "__main__":
api = API()
api.register_on_startup_callback(on_api_startup)
api.register_on_update_callback(on_api_update)
api.run()