Mission Scripting Tools (Mist) Version 3.5 Guide

Guide rev. 0

Authors: Grimes, Speed

Table of Contents

T oo [V Tt o] o W OO P PP PRSPPI
Online DocumMentation @nd LINKS..........eoiiiieiiiienieeiiie ettt ettt e st esbe e e sabeesbeeesareesneeesareens
(5 [0) VA ol Mo T- o I | T PP PPV PRTOUSTTOPSO
Function Definition Format in this GUIEc.coociiiiiiiiiiiiieeee e
UNIENGMETADIES ...ttt sttt et et b e s be e sae e sab e et e e b e e sbeesaeesasesabeebeens
MISTMAKEUNIETADIE ...ttt sttt ettt e s be e s bt e s st e e b e e beenes
Y= SV o Vot f o o Y- TP
mist.flagFunc.Mapobjs_dead_ZONES.........coooiiiiiiciiii e aaeeeean
mist.flagFunc.mapobjs_dead_POIYBON ... i
MISE.FlagFUNC.UNIES 1IN _ZONES...iiiiiiiiii ettt et e e st e e st ae e e ssatbeesssntaeeessnsaeeeennsreeenan
Mist.flagFuNC.UNITS_IN_MOVING ZONES.....ciiiiiiiieeeiiiie ettt ettt e e e e e e e sta e e e s satae e e eeataeeeennsaeeesnasaneaean
MIiSt.flagFUNC.UNITS IN_POIYEON c..eeiiiiceee et e et e e et e e e e tb e e e e abaee e e ataeeeeenseeaaan
MISE.FIAZFUNC.UNIES _LOS... .o ittt e e e e e et e e e et e e e e e ataeeesaataeeesasaeeeeansaeeesansseeeeanssneenan
T ET=d ST Lol - o YU T o I 11 VSRR
MIiSt.flagFUNC. BroUP_dEAdooiiiiiie e e e e e e sata e e e s ratb e e s e ntae e e esntaeeeenaaeeeean
mist.flagFunc.group_alive 1855 Thanccoiiiiieiee ettt eaae e e e aaeeeean
mist.flagFunc.group_alive_mMore_than.............oooiiii ettt rae e e e aaeeeean
Yol g o)L a V=4 =l VT ol o] o KT TP TR
GeNneral SCriPtiNG FUNCLIONS ..o..uviiieciiee ettt et e e et e e s s e e e e st e e e e e abeeeesnbeeeassseeeeenasenas
MIST.SCHEAUIEFUNCTION ...ttt et s b s e re e s
MIST.reMOVEFUNCLIONciiiiiiiiiiiiii e
MIiST.AdAEVENTHANAIEK ... e st sre e e
MiSt.reMOVEEVENTHANAIEE ...ttt s s e e

O o =L 1 T2] [7o Y =

MIST.EETUNITSINIMOVINGZONESueitiiiiiiiiiii e ssaessasssssssseasssnnes

Yy o To T 0} (0] 2] 1Yo o IS USSP 29

MISE.EELUNIESINPOIYEON ...eeiiiiiie et e e e st e e st e e e s sab e e e e e sabeeeeesnbeeesesareeas 30
Mist.getDeadMapPODSINZONESoeiiiiiiee ittt et e e e e e e et e e e e ebae e e e eabr e e e eenbaeeeesabaeeeenarenas 30
Mist.getDeadMapODbjSINPOIYEONZONEccociiiiiciee ettt e ere e et e e ebae e e e bae e e earaeas 31
0 o =0 O 1 11] 1 TN 31
VI B ==Y\ o g d 0o Yot o T TSRS 32
VI B == i L= T o T~ PR 32
0TI 8 == i ol o PSPPI 32
VI =4 i 2 o | PRSI 32
o == 1Y 32
0 o == X 7 VN 33
MISE.EELCIIMBDANGIE .. e e e e ee e e s st e e e e e st ae e e ssabeeesessbeeesenabeeeesnnreeas 33
Y A == N 1 o [SRR 33
Mist.g2etRANAOMPOINTINCIICIE ..ccceeeiieeeee et e e e e e bee e e e abee e e eeareeas 33
T o =L AN = = o LN 33
MIST.EOSTIINGIMIGRS ...t aa e aaas e aabaeasasaaasssssssnsnsnsnsnsasnnnnns 33
TR) o 1y d] o V=4 OO PP PP OTPUPPPPTN 34
MISTEOSTIINEBR. ...ttt e ettt e e e s s st b bt et e e e s essssbaaeeeeessensssrenaeeeessnnnns 34
MIST.BEEMGRSSIIING ..eeiiiiiiiiiieeee et ss et e e e s s st bt e e e e e s s s s ssbabeeeeesssnssssenaaeeessnnns 34
0T =L) o ¥ - 34
T o ==l 2T o V- 35
T ==L d Yo [T oY =d oo T3S URRN 35
MiSt.EetLEAINGMGRSSIIING ...eeiiiiiiee et e e e s see e e et e e e s eabe e e s esabaeeeesabeeeeenarenas 36
Y A Y d T L o F=d W Y d T Y= SRR 36
Y N W Eo Yo e T=d = 0] o 1oV SRR 36
MISTISTEITAINVAlI ..o s st e s b e e sae e e sar e e sneeesareeenees 37
MISt.terraiNHEIGNEDITToooie e et e et e e et e e e e e bae e e e e aa e e e eeareeas 37
00T T 8 =T oo (o o o TR TSRO PPP TR 37
MiSt.randomizeNUMTaDIE.......c.coiiiiii e s s 37
Y A o G (G e TUT o1 Lo SRS 38
MIST.EEENEXLUNTEI . ..cei i e e e et e e e s st ee e e e sabe e e s esabaee e esnbaeeeearenas 38

TR S AT g =d 1Y, =1 ol o U UUPRN 38

Y A g g F- ol o 1] A 1Y - PRSP 39
LG o 10T o O Lo =T PSR 39
Mist.ZroUPTORANAOMPOINT......ciiiiiiiie et et eere e e e rtre e e et ae e e e eabr e e e eenbaeeeesabaeeeennrenas 39
Mist.groUPRANAOMDISESEITooiiiiiee e e e e e et e e et ae e e e s beee e eeareeas 40
MiSt.ErOUPTORANUOMZONEvviiiiiiiee ettt et ste e e ee e e s st e e e s bee e e s sabea e e ensbeeesesaseeesenareeas 40
MIST.ErOUPTOPOINT ..ttt ettt e e e e e s s beb e et e e e e e s s aabebeeeeeessssnnsebaaaeeessnnns 41
TR Y=(e] {0] U] £ U TP PP PP OUPROPPPPTTIN 41
Group SPaWNING @Nd DAt ...ccccuuiiiiciiie et e e e et e e e be e e e s bt e e e e e ab e e e e e abeae e e nbreeeennreeas 41
VI o V7V Vo [S 41
Y o VYo [0 R - oSS 44
Y A Co TU] oL =] o] (=10l =T PP 45
MNIST.FESPAWNGIOUP eeiiiiiiiiiiiiiieeeeeeeeiiiitttteeeesssaettrteeeeeesssasstbeeeeeeesssasssseaaeesssssssnssaeeeesssnsassseseeeeessannns 45
0V ol [oT o 1T €T ¢ 1V T« RS 46
Y] =T oY) (G oYU o SRS 46
TR =] o VAV] [g 17 o TN 46
Y AR T =T oo] [o 14e Yo =TSRRI 46
ST CIONEINZONE ...ttt st st et e r e bt e s e e sanesen e st e reenes 47
Y AR T =T o o]l o] 2o 1o X PP 47
MiSt.SPAWNRANAOMIZEAGIOUP..cciiiiiiiiiiiiieee et e e e e e e e e s e e e e e e e s ennbeteeeeeeesesnnseneneeeeesanns 48
TR A =T aVe [T 0 1 F2=T G oYU o1] o L=T o URRRN 49
L R o =L (T o 10T o1 o N 49
MIST. ZETCUITENTGIOUPDATA . .uviiiiiiii ittt e e s e s s et e e e s s s ssbbereeeeeesssssarssaaeeesssnnns 49
Y A 4T Y] (o T T PP 50
MIST.EELUNIESKIll .. .eeeeee e e e st e e et ee e e s sabe e e e esabeee e esnbeeeeeareeas 50
O R o =L T o 10T o o 1 0 3N 50
TR o =L T o 18] o (T U L =N 50
T == d Vo o USRS 51
IMIESSAER .eveiiiiiiiiiiiieitieteeeeetet et eeteeeeeeteeeeeteteee e et e et et et e et et e e e s e s et e e e s et aeeeeseaeteaeteteteeeeeteteteteteteaeeeeeeeeeaeeteeeeaeeereeees 51
Y A g =TT (ST 1o [SRR 51
MiSt.MESSAZE.FEMOVEBYIUeiiiieiiiie e et e e e bre e e e st e e e s e sabae e e e s beeeeenareeas 52

NSt M ESSAEE.FEIMOVE .. uuuuuuuuueuuerueeeueuereurrereaenrararaaa—_—————————_—_—nrnrnnnnnnnsnsnsnsnsnsnsnsnsnsssnsnsnnnnnnnsnnnnnnnnnnnnnnnnnn 52

General PUrpose MeSSage FUNCLIONS.c.uuiiiiiiiiee ettt esiite e esiree e esite e e s stee e s sabee e s s abeeeesabeeessnbeeessnnsenas 53
TR 0 0 1Y o 1Y L 2 N 53
0 0T 0. 1 = N 53
0T o 0 0 1Y o = N 54
MISTIMSEBRA ..ttt et e ettt e e e e e e e bbbttt e e e e e e s babeeeeeeeessasasebeeeeeeesasannsabaeaeesssnnas 54
MISEMSEBUIISEYE ...t e e e e st e e e s st e e e e s sabeeeesanbeeeeensbeeesennseeessnnsenas 55
MiSt.MSELEATINGIMIGRSoiiiiiiiie ettt s e e e st e e e s s bee e e s sabeeeeessbeeeeesnbeeeeenareeas 55
VI g =4 =T L =4 I RS 56
Y g Y= W= To T T=d -1 SRR 56
LD e KT =P 57
MISt.FIXEAWING.DUIAWP .. e e e e s e e e e sabee e e e s bee e e esareeas 57
=] RPN 58
MISTNEILDUIAWWP ...ttt sttt e bt e sae e saee st e eaneebeenes 58
GIOUND .ttt ettt st ettt e bt e s bt e she e sat e e at e e bt e bt e ebeesaeesab e e abeeabe e bt e sbeeeaeeeateenteenbeesheesanenas 58
MIST.EOUNC.DUIIAWP ...t e e et e e e et e e e e et e e e e e e abaee e e s abeeeeenasenas 58
Y A = do 10 o I =1 o | PRSP 59
MIiSt.EroUNA. PALIOIROULE ..cceeeiiei e s e e et ee e e s et e e e e et ae e e e sabeeeeesareeas 59
U L1 PSPPSR TP PSP 60
MISTULIS.MAKEVECZ ...ttt ettt e bt e sae e saee st e e beeaes 60
MIST.ULIS.MAKEVEC3 ...ttt ettt e bt e bt e sae e sate st e ebeebeeaes 60
MIST.ULIS.MAKEVECGLo .ttt sbe ettt e et esbe e sae e satesbeebeebeenas 60
MIST.ULIIS.ZONETOVECS ...ttt st sttt et e sane s n e e ne e reennee 61
Y UL N o] D=y = YT SRR 61
MISTUTIIS.EORAAIAN .ttt e st nee 61
0T U 1 e [T=Y o1 o 1 S SUPRN 61
MIST.ULITS.FOUNG .. e s e e ae e e sar e snee e sareeennes 61
0T U 1 e [1y V=SS SRRN 62
MIST.ULIS.DASICSEIIAlIZE ... e e 62
MISTUTIIS.SEITAlIZE. ot s 62
MiSt.ULilS.SErIaliZEWItNCYCIES...cii e e e e sbae e e e e s e eareeas 62

(I O Ao Y =] Ml g TN = = [TR 62

MIST.ULITS.EADIESNOW. ... st 63
MIST.ULIS.METEISTONIM ..ttt sttt ettt e sb e sae e sate st e e be e beenns 63
MIST.ULIS.METEISTOFEET ...ttt ettt e b e st s bbb e ne 63
MIST.ULIIS.NIMTOIMETEIS ...ttt st ettt esb e sbe e satesbeebeebeennee 63
MIST.ULIlS.FEETTOIMEBLELS ..eeeieeee ettt et e st e s b e e s ene e e sareeesanes 63
IS ULIS. MPSTOKNOES. ..tiiii it e e s ee e s e e e s sb e e e e sabeeeeesabeeessnareeas 63
MISt.ULIS.MPSTOKMPN <. e e e e s st e e e e sbee e e e sbee e e esareeas 63
IS ULIS. KNOTSIVIPS ..ttt e e et e e e et e e e e s eba e e e e e abaee e eeabeeeeennbaeeeennseeeeennrenas 64
MIST.ULHS. KMPRTOMPS ...t et e e e e e e e et e e e e et e e e e eenbeeeeeeabaeeeesareeeeennsenas 64
Y UL =<1 02 DT 1) SR 64
Y UL == 0 T 1) PP 64

D T=] o T =S UPUPPN: 64
VI o [=Y oYU = [V T Y o T ISR 64
Y o L= oTU T T 1T D F Y - SRS 64
VI o 1= oYU = [U T Y] D= Ty SRS 65
LY=ot {0 3PP PP TOPPPT 65
a1 AT ol T [H TP P PP PRSP 65
MISTVEC.SUD Lttt sttt et et e bt e s re e seeesenesn e e reenes 65
Y AV ToRYor- 1 - | ol 1 0101 PRSI 65
0TI Yoo o U URPTN 65

0 0 V7= o o o R 65
TR Y Tol o o - - PP PP PPPPPRN 65
DBIMOS ittt e s s e s sara e e saae 66
Mist.demos. PrintFlIghTDAtaccocciiii e e e 66
D) =] o [PPSO TSRTORR 66
4 o] g T PO P ST RPOP 67
L6 1T TP O PP PO PPPR PPN 67
Gl OUPS e eieieeeeeeeeieeeeeeieeeeseseeeeeeeeeeaaesasaaasasasssssasasasssssssasasssssssasssssssssssssssssssssssssssssesssssssssssessssssesesesesesnsesenens 68
DA aF: T g Tor 1 | VAN o 1Yo E SRRSOt 69
1070 0151 2= | 3PP PPPPO 69

Clients

S R [[N D L= | o= 1L TR

LY Tt | =T T=To 10 LR

Introduction

Mission Scripting Tools (Mist) is a collection of Lua functions and databases that is intended to
be a supplement to the standard Lua functions included in the simulator scripting engine. Mist
functions and databases provide ready-made solutions to many common scripting tasks and
challenges, enabling easier scripting and saving mission scripters time. The table mist.flagFuncs
contains a set of Lua functions (that are similar to SImod functions) that do not require detailed
Lua knowledge to use. However, the majority of Mist does require knowledge of the Lua
language, and, if you are going to utilize these components of Mist, it is necessary that you read
the Simulator Scripting Engine guide on the official ED wiki.

Online Documentation and Links
The MIST online documentation can be found on the hoggit wiki. Both the wiki and this PDF will still be
updated with each mist release.

http://en.wiki.eagle.ru/wiki/DCS Mission Editor (ME) (currently out of date and unable to edit)

http://wiki.hoggit.us/view/Simulator Scripting Engine Documentation

http://wiki.hoggit.us/view/Mission Scripting Tools Documentation

Forum Links
http://forums.eagle.ru/showpost.php?p=1622305&postcount=3

https://github.com/mrSkortch/MissionScriptingTools

How to Load It
Mist is not a mod of the game files. You include it into your missions simply by using the DO

SCRIPT FILE trigger actions to load Mist at or near mission start. The screenshot below
illustrates trigger logic that loads Mist at mission time = 1 sec (using DO SCRIPT FILE).

http://en.wiki.eagle.ru/wiki/DCS_Mission_Editor_(ME)
http://wiki.hoggit.us/view/Simulator_Scripting_Engine_Documentation
http://wiki.hoggit.us/view/Mission_Scripting_Tools_Documentation

(Also note that in the above screenshot the trigger named "Mission Script". This trigger is
similar to the trigger activating mist, however the condition is "Time More (2)." The mission
script used in this example requires Mist to be loaded first, otherwise a LUA error will occur and
the mission will not function correctly.)

Once your mission trigger logic loads Mist, Mist exists within the global mission scripting Lua
environment, and its components are accessible in all subsequent scripts run with DO SCRIPT,
DO SCRIPT FILE, Al Lua stop conditions, etc. The 1.2.4 patch added the "initialization" script or
script file option in the triggers list.

NOTE #1:

Due to its size, mist must be loaded via a DO SCRIPT FILE trigger action. Mist is simply to large to
paste into a do script box.

NOTE #2:

It is best if Mist is loaded into your mission as early as possible. Unlike SImod, Mist should not
be vulnerable to being used too early, and it will be fine if you load it on a MISSION START type
trigger.

Function Definition Format in this Guide
Currently, this guide uses the following format for function definitions:

ReturnedValueType, ... functionName(RequiredVariableType RequiredVariableName, ...,
OptionalVariableType OptionalVariableName, ...)

So, for example:

table mist.getUnitsInZones (UnitNameTable unit_names, table zone_names, string
zone_type)

This function accepts a required variable/value of type UnitNameTable, followed by a second
required variable of type table, followed by an optional variable of type string. It returns a
single value of type table.

UnitNameTables

Many Mist functions require tables of unit names, which are known in Mist as UnitNameTables.
These follow a special set of shortcuts borrowed from SImod. These shortcuts alleviate the
problem of entering huge lists of unit names by hand, and in many cases, they remove the need
to even know the names of the units in the first place!

These are the unit table “short-cut” commands (there will be examples of how to use them in a
moment):

Character sequence + name commands:

"[-u]<unit name>" - subtract this unit from the table

"[gl<group name>" - add this group’s units to the table
"[-gl<group name>" - subtract this group’s units from the table
"[c]<country name>" - add this country's units to the table
"[-c]<country name>" - subtract this country's units from the table

Stand-alone identifiers

"[all]" — add all units to the table

"[-all]" — remove all units from the table

"[blue]" - add all blue coalition units to the table
"[-blue]" - subtract all blue coalition units from the table
"[red]" - add all red coalition units to the table

"[-red]" - subtract all red coalition units from the table

Compound identifiers:

"[c][helicopter]<country name>" - add all of this country's helicopters to the table
"[-c][helicopter]<country name>" - subtract all of this country's helicopters from the table
"[c][plane]l<country name>" - add all of this country's planes to the table
"[-c]l[plane]<country name>" - subtract all of this country's planes from the table
"[c][ship]<country name>" - add all of this country's ships to the table
"[-c][ship]<country name>" - subtract all of this country's ships from the table
"[c][vehicle]<country name>" - add all of this country's vehicles to the table
"[-c][vehicle]<country name>" - subtract all of this country's vehicles from the table

"[all][helicopter]" - add all helicopters to the table
"[-all][helicopter]" - subtract all helicopters from the table
"[all][plane]" - add all planes to the table

"[-all][plane]" - subtract all planes from the table
"[all][ship]" - add all ships to the table

"[-all][ship]" - subtract all ships from the table
"[all][vehicle]" - add all vehicles to the table
"[-all][vehicle]" - subtract all vehicles from the table

"[blue][helicopter]" - add all blue coalition helicopters to the table
"[-blue][helicopter]" - subtract all blue coalition helicopters from the table
"[blue][plane]” - add all blue coalition planes to the table

"[-blue][plane]” - subtract all blue coalition planes from the table
"[blue][ship]" - add all blue coalition ships to the table

"[-blue][ship]" - subtract all blue coalition ships from the table
"[blue][vehicle]" - add all blue coalition vehicles to the table
"[-blue][vehicle]" - subtract all blue coalition vehicles from the table

"[red][helicopter]" - add all red coalition helicopters to the table
"[-red][helicopter]" - subtract all red coalition helicopters from the table
"[red][plane]" - add all red coalition planes to the table

"[-red][plane]" - subtract all red coalition planes from the table
"[red][ship]" - add all red coalition ships to the table

"[-red][ship]" - subtract all red coalition ships from the table
"[red][vehicle]" - add all red coalition vehicles to the table
"[-red][vehicle]" - subtract all red coalition vehicles from the table

Country names for the "[c]<country name>" and "[-c]<country name>" short-cuts:

Turkey

Norway

The Netherlands
Spain

UK
Denmark
USA
Georgia
Germany
Belgium
Canada
France
Israel
Ukraine
Russia
South Osetia
Abkhazia
Italy

Do NOT use a '[u]' notation for single units. Single units are referenced the same way as before:
simply input their names as strings.

These unit tables are evaluated in order, and you cannot subtract a unit from a table before it is
added. For example,

{'[blue]', '"[-c]Georgia'}

will evaluate to all of blue coalition except those units owned by the country named “Georgia”;
however:

{'[-c]Georgia', '[blue]'}

will evaluate to all of the units in blue coalition, because the addition of all units owned by blue
coalition occurred AFTER the subtraction of all units owned by Georgia (which actually
subtracted nothing at all, since there were no units in the table when the subtraction occurred).

More examples:

{'[blue] [plane]', '[-c]Georgia', '[-glHawg 1'}
-Evaluates to all blue planes, except those blue units owned by the country named “Georgia”
and the units in the group named “Hawgl”.

{'[glartyl', '[glarty2', '[-ulartyl AD', '[-ularty2 AD', 'Shark 11' }
-Evaluates to the unit named “Shark 11”, plus all the units in groups named “artyl” and “arty2”
except those that are named “artyl_AD” and “arty2_AD”.

11

If you want to write your own scripts that make use of the Mist function that creates
UnitNameTables, then this is the function you use:

mist.makeUnitTable
table mist.makeUnitTable (table t)

This function accepts table t (which must be indexed sequentially starting at 1), applies the
UnitNameTable short-cut rules, and returns a new table of unit names. Also, this function adds

the table key and value
processed = true

to the returned table, indicating that the table has already been “run through” the
UnitNameTable processing/shortcuts (useful for self-rescheduling functions- obviously, you
only need to apply the UnitNameTable rules the first time a self-rescheduling function is run!).

Flag Functions

The mist “Flag functions” are functions that are similar to SImod functions that detect a game condition
and set a flag when that game condition is met. They are intended to be used by persons with little or
no experience in Lua programming, but with a good knowledge of the DCS mission editor.

mist.flagFunc.mapobjs_dead_zones
mist.flagFunc.mapobjs_dead_zones(table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

zones = table zones,

flag = number flag,

stopflag = number stopflag,
req_num = number req_num

}

Once this function is run, it will start a continuously evaluated process that will set flag flag true

if map objects (such as bridges, buildings in town, etc.) die (or have died) in a mission editor
zone (or set of zones). This will only happen once; once the flag flag is set true, the process
ends.

12

zones is a table of zone names (indexed numerically).

stopflag is an optional variable that allows you to specify a flag number that, if set true, will
stop the process.

req_num is an optional variable that allows you to specify the minimum number of map objects
that have die for flag to be set true. If req num is not specified, it defaults to 1.

As of right now, this function detects all map objects that have EVER died, even ones that died
before the function ran (unlike the similar simod.mapobjs_dead_in_zone function). This could
probably be improved upon in future releases of Mist.

Examples:

mist.flagFunc.mapobjs dead zones{ zones = {'bridgel'}, flag = }

--[[Once run, this function will set flag 51 is set true if/when a map object
has died/dies within the zone named "bridgel".]]

mist.flagFunc.mapobjs dead zones{

zones = {'townl', 'town2', 'town3'},
flag = ,
req num =

}

--[[Once run, this function will set flag 1050 true if/when 5 or more
map objects have died/die within the zones named "townl", "town2", and
"town3".]]

mist.flagFunc.mapobjs dead zones{

zones = {'Vaziani', 'Sogunlug', 'tbilisi-lochini'},
flag = ,

req num = ,

stopflag =

}

--[[Once run, this function will set flag 999 true if/when 10 or more

map objects have died/die within the zones named "Vaziani", "Sogunlug", and
"tbilisi-lochini"- UNLESS flag 10000 (the stopflag) becomes true first!]]

mist.flagFunc.mapobjs_dead_polygon
mist.flagFunc.mapobjs_dead_polygon(table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

zone = table zone,

13

flag = number flag,
stopflag = number stopflag,
req_num = number req_num

}

Once this function is run, it will start a continuously evaluated process that will set flag flag true

once map objects (such as bridges, buildings in town, etc.) die (or have died) within a polygon-
shaped zone. This will only happen once; once the flag flag is set true, the process ends.

zone is a table of map points that defines the polygon shape (indexed numerically). See
mist.pointInPolygon for a good explanation.

stopflag is an optional variable that allows you to specify a flag number that, if set true, will
stop the process.

req_num is an optional variable that allows you to specify the minimum number of map objects
that have die for flag to be set true. If req num is not specified, it defaults to 1.

As of right now, this function detects all map objects that have EVER died, even ones that died
before the function ran. This could probably be improved upon in future releases of Mist.

Examples:

mist.flagFunc.mapobjs dead polygon{
zone = mist.getGroupPoints('Russia group'),
flag = ,
req num = ,
}
--[[Once run, this function will set flag 90 true if/when 50 or more
map objects have died/die within the polygon shape defined by the waypoints
of
the group named "Russia group".]]

mist.flagFunc.mapobjs dead polygon{

zone = {
[1] = mist.DBs.unitsByName['NE corner'].point,
[2] = mist.DBs.unitsByName['SE corner'].point,
[3] = mist.DBs.unitsByName['SW corner'].point,
[4] = mist.DBs.unitsByName['NW corner'].point

},

flag = P

req num = ,

14

--[[Once run, this function will set flag 151 true if/when 15 or more

map objects have died/die within the polygon shape defined by the initial
starting positions of the units named "NE corner", "SE corner", "SW corner",
and "NW corner".]]

mist.flagFunc.units_in_zones
mist.flagFunc.units_in_zones(table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

units = UnitNameTable units,
zones = table zones,

flag = number flag,

stopflag = number stopflag,
zone_type = string zone_type,
req_num = number req_num,
interval = number interval,
toggle = boolean toggle,

}

Once this function is run, it will start a continuously evaluated process that will set flag flag true

once units from units are inside any one of a series of zones listed in zones. This process will
keep running, and flag will keep being set true as long as the unit(s)-in-zone(s) conditions
persist, unless the process is stopped with stopflag.

units is a UnitNameTable- a table of unit names that follow a special set of rules (see the entry
on UnitNameTables).

zones is a table of zone names (indexed numerically).

stopflag is an optional variable that allows you to specify a flag number that, if set true, will
stop the process.

req_num is an optional variable that allows you to specify the minimum number of units that
must be in one (or more) of the zones before flag is set true. If req num is not specified, it
defaults to 1.

15

zone_type is an optional variable that defines the shape of the zones. The following are the
allowed values for zone_type:

‘cylinder' - cylindrical shaped zone extending to +/- infinity in altitude.
"sphere' - spherical zone.

If not specified, it defaultsto 'cylinder'.

interval is an optional variable that allows you to specify how often (in seconds) the in-zone
condition is checked; for lots of units in lots of zones (like hundreds of units in hundreds of
different zones), it might be desirable to increase the interval to save computer processing
time. If not specified, interval defaults to 1.

toggle is an optional variable that if present will switch the flag value to false when the
required conditions are not met. If not specified toggle defaults to false.

Examples:

mist.flagFunc.units in zones{

units = {'Chevyll', 'Chevyl2', 'Chevyl3', 'Chevyl4d'},

zones = {'Mozdok', 'Krymsk', 'Anapa', 'Mineral'},

flag = ,

zone type = 'sphere'
}
--[[Once run, this function will start a process that will set flag 100
true when any of the units named "Chevyll", "Chevyl2", "Chevyl3", or
"Chevyld4" are in any of the spherical-shaped zones named "Mozdok",
"Krymsk", "Anapa", or "Mineral".]]

mist.flagFunc.units in zones{

units = {'[blue] [vehicle] '},
zones = {'Point Bastion'},
flag = p

req num = 8,

stopflag =

}

--[[Once run, this function will start a process that will set flag 99 true
8 or more blue vehicles are within the zone named "Point Bastion", UNLESS
flag 1000 becomes true first.]]

mist.flagFunc.units_in_moving zones
mist.flagFunc.units_in_moving_zones(table vars)

vars has the following recognized fields (required entries in blue, optional in green):

16

{

units = UnitNameTable units,

zone_units = UnitNameTable zone_units,
flag = number flag,

radius = number radius,

stopflag = number stopflag,

zone_type = string zone_type,

req_num = number req_num,

interval = number interval,

toggle = boolean toggle,

Once this function is run, it will start a continuously evaluated process that will set flag flag true

once units listed in units are inside any of the moving zones around the units listed in
zone_units. This process will keep running, and flag will keep being set true as long as the
unit(s)-in-zone(s) conditions persist, unless the process is stopped with stopflag.

units is a UnitNameTable- a table of unit names that follow a special set of rules (see the entry
on UnitNameTables).

zone_units is a UnitNameTable- a table of unit names that follow a special set of rules (see the
entry on UnitNameTables).

radius — the radius, in meters, of all the zones drawn around each unit in zone_units.

stopflag is an optional variable that allows you to specify a flag number that, if set true, will
stop the process.

req_num is an optional variable that allows you to specify the minimum number of units that
must be in one (or more) of the moving zones before flag is set true. If req num is not

specified, it defaults to 1.

zone_type is an optional variable that defines the shape of the moving zone drawn around each
zone unit. The following are the allowed values for zone_type:

"cylinder' - cylindrical shaped zone extending to +/- infinity in altitude.
"sphere' - spherical zone.

17

If not specified, it defaultsto 'cylinder'.

interval is an optional variable that allows you to specify how often (in seconds) the in-zone
condition is checked; for lots of units and zone units (like hundreds of units and hundreds of
zone units), it might be desirable to increase the interval to save computer processing time. If
not specified, interval defaults to 1.

toggle is an optional variable that if present will switch the flag value to false when the
required conditions are not met. If not specified toggle defaults to false.

Examples:

mist.flagFunc.units in moving zones({
units = {'[g]Ml PLT1', '[g]Ml1l PLT2', '[g]Ml PLT3', '[g]Ml PLT4' },

zone units = {'[red] [vehicle]'},
flag = P
radius = ,

}

--[[Once run, this function will start a process that will set flag 51
true when any of the units in the groups named "M1 PLT1", "Ml PLT2",
"M1 PLT3", or "Ml PLT4" is within 6500 meters of any red vehicle.]]

mist.flagFunc.units_in moving zones({

units = {'[blue]'},
zone units = {'[red]'},
flag = ’

radius = p
stopflag = ’

req num = 4,

zone type = 'sphere',
interval = ’

}

--[[Once run, this function will start a process that will set flag 500
true when at least 4 blue units are within 10000 meters of any blue
units. The process will run once every 10 seconds unless flag 9999
becomes true.]]

mist.flagFunc.units_in_polygon
mist.flagFunc.units_in_polygon(table vars)

vars has the following recognized fields (required entries in blue, optional in green):

18

units = UnitNameTable units,
zone = table zone,

flag = number flag,

stopflag = number stopflag,
maxalt = number maxalt,
req_num = number req_num,
interval = number interval,
toggle = boolean toggle,

Once this function is run, it will start a continuously evaluated process that will set flag flag true

once units listed in units are inside the polygon zone defined by the map points listed in zone.
This process will keep running, and flag will keep being set true as long as the unit(s)-in-zone
conditions persist, unless the process is stopped with stopflag.

units is a UnitNameTable- a table of unit names that follow a special set of rules (see the entry
on UnitNameTables).

zone is a table of map points that defines the polygon shape (indexed numerically). See
mist.pointinPolygon for a good explanation.

stopflag is an optional variable that allows you to specify a flag number that, if set true, will
stop the process.

req_num is an optional variable that allows you to specify the minimum number of units that
must be in the polygon zone before flag is set true. If req_num is not specified, it defaults to 1.

maxalt is an optional variable that allows you to a specify a maximum altitude (above sea level)
for the polygon zone. Altitude above ground level will likely be added in a future version of
Mist.

interval is an optional variable that allows you to specify how often (in seconds) the in-zone
condition is checked; perhaps if you are checking thousands of units it might be useful to use
this variable to reduce computation time. This could also be useful if you needed the flag flag
to be set true less often than once per second.

19

toggle is an optional variable that if present will switch the flag value to false when the
required conditions are not met. If not specified toggle defaults to false.

Examples:

mist.flagFunc.units _in polygon{

units = {'[blue] [vehicle] '},
zone = mist.getGroupPoints('forestl'"),
flag = 11

}

--[[Once run, this function will start a process that will set flag 11
true when any blue vehicles are within the polygon shape created by the
waypoints of the group named "forestl"]]

mist.flagFunc.units _in polygon{

units = {'[red][plane] '},

zone {
= mist.DBs.unitsByName['AO 1'].point,
= mist.DBs.unitsByName['AO 2'].point,
mist.DBs.unitsByName['AO 3'].point,
mist.DBs.unitsByName['AO 4'].point,
mist.DBs.unitsByName['AO 5'].point,
= mist.DBs.unitsByName['AO 6'].point,

|
et et e e et
nn

e e N W e W e W |

o U W N

b,

flag = 201,

maxalt = 6000,

interval = 30
}
--[[Once run, this function will start a process that will set flag 201
true when any red planes are within the polygon shape derived by the
intial starting positions of the units named "AO 1" through "AO 6" and
are less than 6000 meters above sea level. This process will run once
every 30 seconds.]]

mist.flagFunc.units_LOS
mist.flagFunc.units_LOS(table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

unitsetl = UnitNameTable unitset1,
altoffsetl = number altoffset1,
unitset2 = UnitNameTable unitset2,
altoffset2 = number altoffset2,

flag = number flag,

20

stopflag = number stopflag,
radius = number radius,
req_num = number req_num,
interval = number interval,
toggle = boolean toggle,

Once this function is run, it will start a continuously evaluated process that will set flag flag true

once units listed in unitset1 are line-of-sight (LOS) to units listed in unitset2. This process will
keep running, and flag will keep being set true as long as the line-of-sight conditions persist,
unless the process is stopped with stopflag.

unitsetl and unitset2 are UnitNameTables- a tables of unit names that follow a special set of
rules (see the entry on UnitNameTables).

altoffset1 and altoffset2 are the number of meters above the position of each unit in unitset1
and unitset2 (respectively) that the LOS sighting takes place from. So for example, for tanks,
you might want to use an altoffset value of 3. For airplanes, you would probably want to use an
altoffset value of 0 (unless it was like an AWACs and you wanted the sighting point to be above
it to simulate the AWACs radar dish); for a really tall search radar, perhaps you would want to
use an altoffset value of like 12.

stopflag is an optional variable that allows you to specify a flag number that, if set true, will
stop the process.

req_num is an optional variable that allows you to specify the minimum number of units that
must be LOS before flag is set true. If req_num is not specified, it defaults to 1.

radius is an optional variable that allows you to a specify a maximum radius out to which the
LOS check occurs; beyond this radius, units will not be considered LOS.

interval is an optional variable that allows you to specify how often (in seconds) the LOS
conditions are checked; this could be used for a variety of reasons including saving
computational time, or making flag be set true less often than once per second.

Examples:

21

mist.flagFunc.units LOS({
unitsetl = {'101"},
altoffsetl

- ’
unitset2 = {'AWACs'},
altoffset2 = ,
flag = ,
interval =

}

--[[Once run, this function will start a process that will set flag 101
true when the unit named "101" is line of sight to the unit named
"AWACs". This check will occur once every 7 seconds.]]

mist.flagFunc.units LOS({
unitsetl = {'[g]Ml PLT1', '[glMl PLT2', '[g]M2 PLT1'},

altoffsetl = 3,

unitset?2 = {'[red] [vehicle] '},
altoffset2 = 3,

flag = P

interval =

}

--[[Once run, this function will start a process that will set flag 10
true when any unit in the groups named "M1 PLT1", "M1 PLT2", or "M2 PLT1"
are line of sight to any red vehicles. This will occur once every 20
seconds.]]

mist.flagFunc.group_alive
mist.flagFunc.group_alive (table vars)
vars has the following recognized fields (required entries in blue, optional in green):

{

groupName = string groupName,

flag = number flag,

stopflag = number stopflag,
interval = number interval,
toggle = boolean toggle,

}

Once this function is run, it will start a continuously evaluated process that will set flag flag true

if the specified group is alive. If the toggle variable is present the flag will be set to false if the
group is dead. This process is stopped with stopflag.

groupName is the name of the group which the function checks if it is alive or not.

flag is a number corresponding to the flag that will set true if the group is alive

22

stopflag is an optional variable that allows you to specify a flag number that, if set true, will
stop the process.

interval is an optional variable that allows you to specify how often (in seconds) the group_alive
condition is checked. If not specified, interval defaults to 1.

toggle is an optional variable that if present will switch the flag value to false when the
required conditions are not met. If not specified toggle defaults to false.

Examples:

mist.flagFunc.group alive {
units = ,
flag = p
toggle = true,

}

Mission Editor Trigger: Switched Condition> Flag 100 is True> Message to All
(Dynamically Spawned group is alive)

mist.flagFunc. group_dead
mist.flagFunc.group_dead (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

groupName = string groupName,
flag = number flag,

stopflag = number stopflag,
interval = number interval,
toggle = boolean toggle,

}

Once this function is run, it will start a continuously evaluated process that will set flag flag true

if the specified group is dead. If the toggle variable is present the flag will be set to false if the
group is dead. This process is stopped with stopflag.

groupName is the name of the group which the function checks if it is dead or not.

23

flag is a number corresponding to the flag that will set true if the group is dead

stopflag is an optional variable that allows you to specify a flag number that, if set true, will
stop the process.

interval is an optional variable that allows you to specify how often (in seconds) the
group_dead condition is checked. If not specified, interval defaults to 1.

toggle is an optional variable that if present will switch the flag value to false when the
required conditions are not met. If not specified toggle defaults to false.

Examples:

mist.flagFunc.group dead ({
units = ,
flag = ’
toggle = true,

}

Mission Editor Trigger: Switched Condition> Flag 100 is True> Do
Script (mist.respawnGroup ())

mist.flagFunc.group_alive_less_than
mist.flagFunc.group_alive_less_than (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

groupName = string groupName,
flag = number flag,

percent = number percent,
stopflag = number stopflag,
interval = number interval,
toggle = boolean toggle,

}

Once this function is run, it will start a continuously evaluated process that will set flag flag true

if the specified group is alive less than the provided percent. If the toggle variable is present the
flag will be set to false if the group is alive more than the specified percent. This process is
stopped with stopflag.

24

groupName is the name of the group which the function checks if it is alive less than or not.

flag is a number corresponding to the flag that will set true if the group is alive less than the
percent value

percent is the required percentage of a groups units that must be dead in order to set the flag
true. Is evaluated x out of 100.

stopflag is an optional variable that allows you to specify a flag number that, if set true, will
stop the process.

interval is an optional variable that allows you to specify how often (in seconds) the
group_alive_less_than condition is checked. If not specified, interval defaults to 1.

toggle is an optional variable that if present will switch the flag value to false when the
required conditions are not met. If not specified toggle defaults to false.

Examples:

mist.flagFunc.group alive less than {
units = ,
flag = ,
percent = ,
toggle = true,
}

Mission Editor Trigger: Switched Condition> Flag 100 is True> Message To
All ('myGroup has less than 20 percent of its units remaining alive!')

mist.flagFunc.group_alive_more_than
mist.flagFunc.group_alive_more_than (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

groupName = string groupName,
flag = number flag,

percent = number percent,

25

stopflag = number stopflag,
interval = number interval,
toggle = boolean toggle,

}

Once this function is run, it will start a continuously evaluated process that will set flag flag true

if the specified group is alive more than the provided percent. If the toggle variable is present
the flag will be set to false if the group is alive more than the specified percent. This process is
stopped with stopflag.

groupName is the name of the group which the function checks if it is alive less than or not.

flag is a number corresponding to the flag that will set true if the group is alive less than the
percent value

percent is the required percentage of a groups units that must be alive in order to set the flag
true. Is evaluated x out of 100.

stopflag is an optional variable that allows you to specify a flag number that, if set true, will
stop the process.

interval is an optional variable that allows you to specify how often (in seconds) the
group_alive_more_than condition is checked. If not specified, interval defaults to 1.

toggle is an optional variable that if present will switch the flag value to false when the
required conditions are not met. If not specified toggle defaults to false.

Examples:

mist.flagFunc.group alive more_ than {
units = ,
flag = p
percent = ’
interval = ,
toggle = true,
}

Mission Editor Trigger: Switched Condition> Time Since Flag 100 is True, 5
seconds> Message To All ('myGroup is still combat effective!')

26

--[[Once run, this function will start a process will repeat the message
"myGroup is still combat effective" every 5 minutes if more than 60 percent
of the group is alive.

1]

Scripting Functions

Mist’s “scripting functions” are Lua functions that are designed for use by Lua programmers (as opposed
to “flag functions” which were designed to be used with very little knowledge of Lua). Functions at the
“mist” table level are Lua functions specifically designed for common DCS mission scripting tasks.
“mist.utils” provides common Lua utilities. “mist.vec” provides Vec3 vector operations. “mist.debug”
provides tools for viewing the global environment, outputting data to files, etc. “mist.demo” provides
scripting demonstration functions.

General Scripting Functions
A set of DCS-specific scripting functions useful to mission Lua logic.

mist.scheduleFunction

number mist.scheduleFunction (function f, table vars, number t,, number rep, number st)

An improvement over timer.scheduleFunction; this function can accept multiple variables, and
optionally, a repetition rate and stop time.

This function schedules function f to run with the table vars unpacked (see the Lua unpack
function in the Lua manual if you don’t know what “unpacked” means) and passed to it at the
specified time of t. It also returns a number (that can used for cancelling the scheduled
function call with mist.removeFunction). The optional value rep is the time between
repetitions of the function. st defines when the function will stop automatically. If no vars need
to be passed to the function, just set vars equal to an empty table ({}).

Examples:

mist.scheduleFunction(trigger.action.setUserFlag, { , true},
timer.getTime () +)

-Runs trigger.action.setUserFlag (101, true) one time, 40 seconds after the script is called.

local funcID = mist.scheduleFunction(main, {}, timer.getTime() + ,)

27

-Runs the function “main” once every 10 seconds for the next two minutes. If you might want
to intercede and stop this process, the integer ID of this process is returned into the variable
“funciD”. You could now stop the repetition of this function by using

mist.removeFunction (funcID).

mist.removeFunction

boolean mist.removeFunction (number id)

Removes the scheduled function with integer id id and returns true if a function was removed.

mist.addEventHandler

number mist.addEventHandler (function handler)

This is a simplified version of the simulator scripting engine’s wor1ld.addEventHandler function.
handler must a function that expects a single variable of a world simulator event. It also returns a
number id for this event handler (for use with mist.removeEventHandler). For more information on
world events, see the Simulator Scripting Engine documentation for world events.

Examples:
do
activeWeapons = {}
local function addWeapon (event)
if event.id == world.event.S EVENT SHOT and world.event.weapon then
activeWeapons[#activeWeapons + 1] = world.event.weapon
end
end

mist.addEventHandler (addWeapon)
end

-Adds an event handler that, every time a weapon is fired, it adds that weapon to a global table that
holds all weapon objects.

mist.removeEventHandler

boolean mist.removeEventHandler (number id)

Removes event handler with id id.

28

mist.getUnitsInZones

table mist.getUnitsInZones (UnitNameTable unit_names, table zone_names, string zone_type

)

This function detects if any of the units listed inside the table of unit names unit_names are
inside any of the zones listed in the table of zone names zone names. The Unit objects of any
in-zone units are returned in a (numerically indexed) table. The shape of the zone is
determined by the optional variable zone type. The following are allowed values for

zone_type:
‘cylinder' - cylindrical shaped zone extending to +/- infinity in altitude.
"sphere' - spherical zone.

See the code for mist.flagFunc.units_in_zones for a usage example.

mist.getUnitsInMovingZones

table mist.getUnitsinMovingZones (UnitNameTable unit_names, UnitNameTable
zone_unit_names, number radius, string zone_type)

This function detects if any of the units listed inside the table of unit names unit_names are
inside any moving zones drawn around the locations of the units listed in the table of unit
names zone_unit_names. The Unit objects of any in-zone units from unit_names are returned
in a (humerically indexed) table. The shape of the zone is determined by the optional variable
zone_type. The following are allowed values for zone_type:

"cylinder' - cylindrical shaped zone extending to +/- infinity in altitude.
"sphere' - spherical zone.

See the code for mist.flagFunc.units_in_moving_zones for a usage example.

mist.pointinPolygon

boolean mist.pointinPolygon(Vec3 point, table poly, number maxalt)

Returns true or false depending on if point is inside of a polygon defined by the points in the
table poly. If maxalt is not specified the check assumes +/- infinity in altitude. Each point must
be in either Vec2 or Vec3 format (see the simulator scripting engine pages on the ED wiki if you
don’t know what Vec2 or Vec3 means).The table poly needs to be in the following format:

[1]={
29

X = number,

y = number,

z = number or nil (nil if you’re using Vec2),
2
[2] ...

The polygon can be any convex shape. In the example image below note the points numbered
from 1 to 5. The polygon is defined by "connecting the dots" sequentially. Any point within the

red area is defined as inside of the polygon causing the function to return true.
4

True

@ False

3 2
Also note that the order and position of points will change the shape of the object.

1 2 1 3

HE > <

mist.getUnitsInPolygon

table mist.getUnitsInPolygon (UnitNameTable unit_names, table polyZone, number maxAlt)

This function detects if any of the units listed inside the table of unit names unit_names are
inside the polygon defined by polyZone. The Unit objects of any in-zone units are returned in a
(numerically indexed) table. If maxalt is not specified the check assumes +/- infinity in altitude.
Each point must be in either Vec2 or Vec3 format

mist.getDeadMapObjsinZones

table mist.getDeadMapObjsinZones(table zone_names)
30

Returns a table of map objects indexed numerically that are dead within the zones defined in
the table zone_names.

mist.getDeadMapObjsinPolygonZone
table mist.getDeadMapObijsinPolygonZone(table zone)

Returns a table of map objects index numerically that are dead within the polygon zone defined
by the points in the table zone.

mist.getUnitsLOS

table mist.getUnitsLOS(UnitNameTable unitset1, number altoffset1, UnitNameTable unitset2,
number altoffset2, number radius)

Returns a table with line of sight (LOS) data about which units in unitset2 are LOS to the units in
unitsetl. The “sighting” point of each unit in each unitset is determined by the corresponding
altoffset value. A maximum radius at which LOS is ignored can be optionally specified with
radius.

The LOS data returned has the following format:

LOSDhata = {

[11 = {
unit = <a unitsetl "Unit"-type object>,
vis = {
[1] = <a unitset2 "Unit"-type object>,
[2] = <a unitset2 "Unit"-type object>,
}
b
[2] = {

unit = <a unitsetl "Unit"-type object>,

i {

] = <a unitset2 "Unit"-type object>,
]

= <a unitset2 "Unit"-type object>,

}y

Basically, each entry (which are indexed numerically) in the LOS data is a table that contains, at
table key “unit”, the unitsetl spotter Unit object, and at table key “vis”, a table of all the
unitset2 Unit objects that are visible to this unitset1 spotter unit.

A “real” returned LOS data might serialize to something like:
31

LOSData = {
[11 = {
unit = {id = },
vis = {
[1] = {id_ = },
},
},
[21 = {
unit = {id = },
vis = {
[1] = {id_ = },
[2] = {id_ = },
[2] = {id_ = },
},
},
}

mist.getNorthCorrection

number mist.getNorthCorrection (Vec3 point)

The map x direction differs from true north except on one line of longitude (33 degrees). This function
returns the angle (in radians) between the map x axis and true north at point. This "correction" should
be added to any bearing computed from map Vec3/Vec2 coordinates to get the actual bearing (units are
radians).

mist.getHeading

number mist.getHeading (Unit unit)

Returns the value of the specified unit heading (in radians).

mist.getPitch

number mist.getPitch (Unit unit)

Returns the value of the specified unit pitch (in radians).

mist.getRoll

number mist.getRoll (Unit unit)

Returns the value of the specified unit roll (in radians).

mist.getYaw

number mist.getYaw (Unit unit)

32

Returns the value of the specified unit yaw (in radians).
mist.getAoA

number mist.getAoA (Unit unit)

Returns the value of the specified unit Angle of Attack (in radians).
mist.getClimbAngle

number mist.getClimbAngle(Unit unit)

Returns the value of the specified unit Climb angle (in radians).
mist.getAttitude

table mist.getAttitude (Unit unit)

Returns a table of Heading, Pitch, Roll, Yaw, Angle of Attack, and Climb Angle of the specified unit. (see
the code for mist.demos.printFlightData for a usage example).

mist.getRandomPointInCircle

table mist.getRandPointInCircle (table vec2/vec3, number radius, number innerRadius)

Returns a randomly generated vec2 coordinate within the specified radius around the center
vec3 or vec 2 point given. If the optional variable innerRadius is given a random point will be
generated that has a minimum distance of innerRadius and maximum distance of radius from
the point.

mist.getAvgPos
table mist.getAvgPos(table unitNames)

Returns a vec3 coordinate of the averaged position of defined between each unit passed by the table
unitNames.

mist.tostringMGRS
string mist.tostringMGRS(table MGRS, number n)

Returns a string of the MGRS coordinate specified in table MGRS to the accuracy of number n.
Acceptable values fornare 0,1, 2, 3, 4, or 5.

Example returned value:
mist.utils.tostringMGRS(table, 0) returns 38T AB

33

mist.utils.tostringMGRS(table, 3) returns 38T AB 123 123
mist.utils.tostringMGRS(table, 5) returns 38T AB 12345 12345

mist.tostringLL

string mist.tostringLL(number /at, number /ong, number n, string s)

Returns a string of the Latitude/Longitude coordinate specified in the numbers lat and long to
the accuracy of number n. String s is an optional variable to display in the format of Degrees
Minutes Seconds. If s is not present the default format will be degrees decimal minutes.

Example returned value:

mist.utils.tostringMGRS(table, 0) returns 38T AB
mist.utils.tostringMGRS(table, 3) returns 38T AB 123 123
mist.utils.tostringMGRS(table, 5) returns 38T AB 12345 12345

mist.tostringBR

string mist.tostringBR(number az, number dist, number alt, ??? metric)

Returns a string of the Bearing Range and Altitude (BRA) based on the inputed variables. The
number az defines the bearing in radians. Range is defined by dist. Altitude is defined by the alt.
If metric is not present the function will assume all values are in imperial units and will return
the Range and Altitude in Nautical Miles and Feet. If metric is present the metric system will be
used for these values.

mist.getMGRSString
string mist.getMGRSString(table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,
acc = number accuracy,

}

Returns a string of the average position of units defined by a UnitNameTable in the MGRS
format to the specified accuracy.

mist.getLLString

string mist.getLLString(table vars)

vars has the following recognized fields (required entries in blue, optional in green):

34

{

units = table UnitNameTable,

acc = number accuracy,

DMS = ??? DMS,

}

Returns a string of the average position of units defined by a UnitNameTable in the Latitude
and Longitude format to the specified accuracy. If the optional variable DMVS exists, the format
will be in Degrees Minutes Seconds. If DMS is not present the format will be in Degrees Minutes
Thousandths of Minutes.

mist.getBRString

string mist.getBRString(table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

ref = table vec3,

alt = number altitude,

metric = metric,

}

Returns a string in the Bearing Range Altitude (BRA) format of average position of units defined
by a UnitNameTable from the reference point defined by a vec3 table ref. If metricis not
present the function will assume all values are in imperial units and will return the Range and
Altitude in Nautical Miles and Feet. If metric is present the metric system will be used for these
values.

mist.getLeadingPos

Vec3 mist.getLeadingPos(table vars)
vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

radius = number radius,

heading = number heading OR headingDegrees = number headingDegrees

}

Returns the Vec3 coordinates of the average position of the concentration of units most in the
heading direction. The units are defined by the table UnitNameTable and the concentration is
within the specified radius.

35

mist.getLeadingMGRSString

string mist.getLeadingMGRSString(table vars)
vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

radius = number radius,

heading = number heading OR headingDegrees = number headingDegrees,

acc = number accuracy,

}

Returns a string of the coordinates in MGRS format of the average position of the concentration
of units most in the heading direction to the defined accuracy. The units are defined by the
table UnitNameTable and the concentration is within the specified radius.

mist.getLeadingLLString

string mist.getLeadingLLString(table vars)
vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

radius = number radius,

heading = number heading OR headingDegrees = number headingDegrees,

DMS = ??? DMS,

}

Returns a string of the coordinates in Latitude and Longitude format of the average position of
the concentration of units most in the heading direction to the defined accuracy. The units are
defined by the table UnitNameTable and the concentration is within the specified radius. If the
optional variable DMVIS exists, the format will be in Degrees Minutes Seconds. If DMS is not
present the format will be in Degrees Minutes Thousandths of Minutes.

mist.getLeadingBRString

string mist.getLeadingBRString(table vars)
vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

radius = number radius,
heading = number heading OR headingDegrees = number headingDegrees,
ref = table vec3,

36

alt = number altitude,

metric = metric,

}

Returns a string in the Bearing Range Altitude (BRA) format of the concentration of units most
in the heading direction. The units are defined by a UnitNameTable. The string is created based
on the reference point defined by a vec3 table ref. If metric is not present the function will
assume all values are in imperial units and will return the Range and Altitude in Nautical Miles
and Feet. If metric is present the metric system will be used for these values.

mist.isTerrainValid

boolean mist.isTerrainValid (table vec2/vec3, table terrainTypes)

Returns true if the specified vec2 or vec3 coordinate is the correct type of terrain. The terrain
types table accepts any of the following values:

LAND

SHALLOW WATER

WATER

ROAD
RUNWAY

mist.terrainHeightDiff

number mist.terrainHeightDiff (table vec2/vec3, number searchSize)

Returns the height difference in meters between the highest and lowest point in a given search
area. The search area is centered at the vec2/vec3 coordinate, and will search a max radius in
meters defined by searchSize. If searchSize is not present search radius defaults to 5 meters.
This functions is to be used to figured out if a point is to steep to spawn an object at.

mist.random

number mist.random (number/number low/high, number high)

Returns a random number between the low and high values passed. If a single value is passed
this value will act as the high number and a random number between 1 and high will be
returned. If two values are passed the first variable is the lowest number that can be returned
and the second variable is the highest number that can be returned.

mist.randomizeNumTable

table mist.randomizeNumTable (table vars)
37

vars has the following recognized fields (required entries in blue, optional in green):

{

size = number size,

lowerLimit = number lowerLimit,

upperlLimit = number upperLimit,

exclude = table numbers,

}

Returns a table of numbers (1 to size) in a randomized order of the specified size. The optional
variables define which numbers will not be randomized within the table. The lowerLimit and
upperlLimit variables respectively define the low and upper limits on which numbers can be
randomized. The exclude table is a table of numbers, in no particular order, that will not be
randomized.

Example:
mist.randomizeNumTable({size = 10, lowerLimit = 3, upperLimit = 8}) could return

{1,2,6,8,5,4,3,7,9, 10}

mist.getNextGroupld

number mist.getNextGroupld ()

Iterates and returns the next available groupld to be used with dynamically spawning Al. Note
that this function is intended for your own use in spawning Al with coalition.addGroup. If you
are going to use mist.dynAdd, this function is not needed. Additionally the value returned is
accessible by the global value mist.nextGroupld.

mist.getNextUnitld

number mist.getNextUnitld ()

Iterates and returns the next available unitld to be used with dynamically spawning Al. Note
that this function is intended for your own use in spawning Al with coalition.addGroup. If you
are going to use mist.dynAdd, this function is not needed. Additionally the value returned is
accessible by the global value mist.nextUnitld.

mist.stringMatch
boolean mist.stringMatch (string stringl, string string2, boolean caseSensitive)
Returns a boolean value of stringl and string2 hold the same data. Removes special lua

characters on both strings to more easily check if the values are the same. If the boolean value
38

caseSensitive is present the two strings much match the same case. If not present case
sensitivity will not matter.

mist.matchString

boolean mist.matchString (string string1, string string2, boolean caseSensitive)
Same function as mist.stringMatch(). Just another name to access it by.

Group Orders

mist.groupToRandomPoint

table mist.groupToRandomPoint (table vars)
vars has the following recognized fields (required entries in blue, optional in green):

{
group = table groupTable,

point = table Vec3,

radius = number radius,

form = string formationName,

heading = number heading,

headingDegrees = number headingDegrees,

speed = number speed,

disableRoads = boolean disableRoads

}

Creates a path for the specified groupTable from the groups current location to the Vec3
destination point.

Radius specifies the maximum distance from point for the last waypoint. If radius is greater
than 0 a random point will be generated within the radius. If no radius is given it will default to
0.

form specifies the formation used while off road enroute to the waypoint. Formations default
to the formation "cone" as defined in mist.ground.buildWP.

heading is the groups final orientation in radians. If no heading is given the final heading will be
random.

headingDegrees is the groups final orientation in degrees. If no heading is given the final
heading will be random.

39

Note: If both heading and headingDegrees are specified, headingDegrees will be used.

speed is the speed in meters per second the group is to travel at. If no speed is given the speed
used at each waypoint will vary between 20 and 60 kilometers per hour.

disableRoads will allow or deny the group use of roads to get to the destination. If roads are not
disabled and a radius

mist.groupRandombDistSelf

table mist.groupRandombDistSelf (??? group, number distance, string form, number heading,
number speed)

Function will set the task of the specified group to go a random distance and direction from its current
location. group can be either a group name or a group table. Distance is the max distance from the
current location. If not specified a random distance between 300 and 1000 meters will be defined. form
is the default formation name in as defined by the scripting engine. See mist.ground.buildWP or the
Scripting Engine wiki for details. heading is the final heading the group will be oriented in once it reaches
its destination. speed is the speed in kilometers per hour that the group will travel at to reach its
destination.

mist.groupToRandomZone

table mist.groupToRandomZone (??? group, ??? zone, string form, number heading, number
speed)

Function will set the task of the specified group to go a random zone as defined by zone. group can be
either a group name or a group table. zone accepts a zone name, zone table, or table of zone names. If
multiple zone names are given the function will randomly pick a zone to go to and pick at random a
point in that zone as the final destination. form is the default formation name in as defined by the
scripting engine. See mist.ground.buildWP or the Scripting Engine wiki for details. heading is the final
heading the group will be oriented in once it reaches its destination. speed is the speed in kilometers per
hour that the group will travel at to reach its destination.

Examples:

mist.groupToRandomZone(Group.getByName('groupl'), trigger.misc.getZone('zonel'))
mist.groupToRandomZone(Group.getByName('groupl'), 'zonel')
mist.groupToRandomZone('groupl’, {'zonel'})

--[[These three functions do the exact same thing]]

mist.groupToRandomZone('groupl’, {'zonel’, 'zone2', 'zone3'})
--[[Group 1 will travel to a random point in one of the 3 zones]]

40

mist.groupToPoint

table mist.groupToPoint (??? group, ??? point, string form, number heading, number speed,
boolean useRoads)

Function will set the task of the specified group to go a the point defined by a zones location. group can
be either a group name or a group table. point can be a zoneTable or zoneName. If not specified a
random distance between 300 and 1000 meters will be defined. form is the default formation name in
as defined by the scripting engine. See mist.ground.buildWP or the Scripting Engine wiki for details.
heading is the final heading the group will be oriented in once it reaches its destination. speed is the
speed in kilometers per hour that the group will travel at to reach its destination. useRoads defines if the
group will use a road to get to the point.

mist.goRoute
table mist.goRoute(table group, table path)

Function uses Controller.setTask using the table path to define the route and waypoint actions for the
specified group.

Group Spawning and Data
Formerly the "SpawnCloneTeleport" Script

mist.dynAdd
table mist.dynAdd (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

units = table unitsTable,

country = string/number countryName/countryindex,
category = string/number categoryName/categoryindex,
name or groupName = string groupsName,

groupld = number groupld,

clone = anything clone,

}

With valid data, this function will dynamically spawn a group consisting of unitsTable within the
categoryName for countryName using the built in scripting function coalition.addGroup. This
function does not current support adding static objects, it however is a planned feature for

the near future. The function will also add the new groups data to mist.DBs as needed. Much of

the data in this function matches the mission editor format of a groupTable. This function is
41

"overloaded" with variables so that multiple other functions and formats and can generate
some data as need to properly dynamically spawn a group. This function is used by all of the
other group spawning, cloning and teleporting functions. Be mindful of the data you pass it!

The scripting engine does not validate coordinates for you and you can spawn land objects on
water or ships on land if you tell it to. mist.isTerrainValid was included to help in this regard.

See unitsTable description below as it has its own table requirements and optional variables.

If groupld is not specified the function will generate a new groupld based on the number of
groups currently in the mission.

If a groupsName is not specified the function will generate a name based on the country the
group belongs to, its category, and its group Id. Example: "USA gnd 25"

If clone is specified it will override any groupName, groupld, unitName, and unitld passes.

vars.units must be indexed numerically and matches the mission editor format of a groups
contents.
vars.units = {

[1] = {unitVars},

[2] = {unitVars},

b

unitVars has the following recognized fields (required entries in blue, optional in green):

{

X = number vec2XCoord,

y = number vec2YCoord,

type = string objectTypeName,
unitld = number unitld,

name or unitName = string unitsName,
payload = table mePayloadTable,
speed = number speed,

alt = number altitude,

alt_type = string altitudeType,
skill = string skill,

route = table routeData,

42

callsign = table callsignTable,
livery_id = string liveryName,

}
A unit of objectTypeName will spawn at the vec2XCoord and vec2YCoord coordinates.

If unitld is not specified the function will generate a new unitld based on the number of units
current in the mission.

If a unitsName is not specified the function will generate a new unit name based on the group's
name indexed numerically. Example: "USA gnd 25 unit 1"

speed, altitude, altitudeType, and payload only matter for planes and helicopter aircraft types.

speed is measured in Meters Per Second. If speed is not specified and the group is a helicopter
or plane, it will default to 60 mps for helicopters and 150 mps for airplanes.

altitudeType is a string of the type of altitude measurement used. Valid entries are 'RADIO' for
Above Ground Level and 'BARO' for Above Sea level. If not specified, the function will default to
'RADIO" to avoid spawning underground.

altitude is measured in meters and is dependent on the altitudeType specified. If no altitude is
specified and the group is a helicopter or an airplane the altitude will default to 500 meters for
helicopters and 2000 meters for airplanes.

payload is a table matching the mission editor table for a payload. It is important to note that
the scripting engine cannot generate the values needed for this table unless the information is
provided beforehand. If the unit being spawned is an helicopter or airplane and no payload is
specified, then the aircraft WILL NOT HAVE FUEL and its engines will not run.

route is an optional table that if present, will embed the route data into the group as it spawns
so that it will start its route data immediately as it spawns. The route table should be in the
following format.
route.points = {

[1] = {pointTable},

[2] = {pointTable},

43

The function is overloaded to also accept a table in this format:
route = {

[1] = {pointTable},

[2] = {pointTable},

b

liveryName is a optional string variable that defines the texture livery the unit will spawn with.
If not specified it defaults to the default texture of the country for the aircraft type.

callsign is an optional table variable that will define the callsign used by an aircraft or helicopter
group. If not specified the scripting engine (not mist) picks one seemingly at random.

skill is an optional string variable that defines what skill level the unit will be. If not specified the
skill level is set to 'random’.

mist.dynAddStatic
table mist.dynAddStatic (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

country = string/number countryName/countryindex,
category = string/number categoryName/categoryindex,
X = number vec2XCoord,

y = number vec2YCoord,

type = string objectTypeName,

name or groupName = string groupsName,

groupld = number groupld,

clone = anything clone,

dead = boolean dead,

heading = number heading,

}

With valid data, this function will dynamically spawn a static object of the specified type within
the categoryName for countryName using the built in scripting function
coalition.addStaticGroup. The function will also add the new static objects data to mist.DBs as
needed. This function is "overloaded" with variables so that multiple other functions and

44

formats and can generate some data as need to properly dynamically spawn the static object.
This function is used by all of the other group spawning, cloning and teleporting functions if
those functions are passed a static object. Be mindful of the data you pass it! The scripting
engine does not validate coordinates for you and you can spawn land objects on water or ships

on land if you tell it to. mist.isTerrainValid was included to help in this regard.
A static object of objectTypeName will spawn at the vec2XCoord and vec2YCoord coordinates.

If groupld is not specified the function will generate a new groupld based on the number of
groups currently in the mission.

If a groupsName is not specified the function will generate a name based on the country the
group belongs to, its category, and its group Id. Example: "USA gnd 25"

If clone is specified it will override any groupName, groupld, unitName, and unitld passes.
If dead is specified the object will be rendered as already destroyed when spawned in.

If heading is passed this object be oriented in the specified heading in degrees. If not present
the heading will be random between 0 and 359.

mist.groupTableCheck
boolean mist.groupTableCheck (table groupTable)

Checks the passed groupTable to see if required variables are missing to spawn the group via
mist.dynAdd() If no variables are missing the function will return true.

mist.respawnGroup

table mist.respawnGroup (string groupName, boolean/number task)

Respawns a group of the name groupName at its initial location as set in the mission editor. If
the optional task variable is provided the group will automatically be given its default task. If
task is a number the new task will be spawned the value of the number in seconds after the
group spawns. If it is any other data type, the task will be embedded into the group to spawn.

45

If task is not provided group will remain stationary or RTB if an aircraft. Function returns a
mission editor formatted table of the group.

mist.cloneGroup

table mist.cloneGroup (string groupName, boolean/number task)

Clones a group of the name groupName at its initial location as set in the mission editor. If the
optional task variable is provided the group will automatically be given its default task. If task is
a number the new task will be spawned the value of the number in seconds after the group
spawns. If it is any other data type, the task will be embedded into the group to spawn. If task
is not provided group will remain stationary or RTB if an aircraft. Function returns a mission
editor formatted table of the group.

mist.teleportGroup

table mist.teleportGroup (string groupName, boolean/number task)

Teleports a group of the name groupName at its initial location as set in the mission editor. If
the optional task variable is provided the group will automatically be given its default task. If
task is a number the new task will be spawned the value of the number in seconds after the
group spawns. If it is any other data type, the task will be embedded into the group to spawn.
If task is not provided group will remain stationary or RTB if an aircraft. Function returns a
mission editor formatted table of the group.

mist.respawninZone

table mist.respawninZone (string groupName, string zoneName, Boolean disperse, number
radius)

Respawns a pre-existing group of the groupName at a random location inside of zoneName.
Function will completely respawn the given group. zoneName also accepts a table of zone
names which it will pick from at random to spawn the group. If the optional variable disperse is
provided each unit in the group will spawn at a random location within a given radius. If radius
is not provided a max distance of 250 meters will be used.

mist.teleportinZone

table mist.teleportinZone (string groupName, string zoneName, Boolean disperse, number
radius)

Teleports a currently spawned group of the groupName at a random location inside of
zoneName. Only alive units will be teleported. zoneName also accepts a table of zone names

46

which it will pick from at random to spawn the group. If the optional variable disperse is
provided each unit in the group will spawn at a random location within a given radius. If radius
is not provided a max distance of 250 meters will be used.

mist.clonelnZone

table mist.clonelnZone (string groupName, string zoneName, Boolean disperse, number
distance)

Clones a pre-existing group of the groupName at a random location inside of zoneName.
Function will clone a specified group. zoneName also accepts a table of zone names which it will
pick from at random to spawn the group. If the optional variable disperse is provided each unit
in the group will spawn at a random location within a given radius. If radius is not provided a
max distance of 250 meters will be used.

mist.teleportToPoint

table mist.teleportToPoint (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

point = vec3 point,

gpName = string groupName,

action = string action,

disperse = boolean anything,

maxDisp = number distance,

radius = number distance,

innerRadius = number distance,

}

Performs the specified action on an existing group of gpName to the specified point. If the
optional disperse variable is given each unit in the group will be spawned within the distance
specified by maxDisp. If disperse is not provided the group will spawn in the formation as
defined by the mission editor. When a radius is given the group will spawn at a random point
within the given distance. The variable innerRadius specifies a minimum distance from the
point.

Valid actions are the following:

String teleport

Teleports the group in its current state (dead units will not respawn)

String respawn

47

Respawns the group
String clone
Clones the group

Example:
local vars = {}
vars.gpName = ‘groupl’
vars.action = 'clone'
vars.point = vec3
vars.radius = 1000
vars.disperse = ‘disp’
vars.maxDisp = 500
mist.teleportToPoint(vars)

mist.spawnRandomizedGroup

boolean mist.spawnRandomizedGroup (string groupName, table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

lowerLimit = number lowerLimit,

upperlLimit = number upperlLimit,
excludeNum = table numbers,
excludeType= table unitTypes,

}

Respawns a group of the name groupName at its initial location as set in the mission editor but
randomizes the order of the units within the group. Group will spawn with the same task as
before. The optional variables define which units in the group will not be randomized. The
lowerLimit and upperLimit variables respectively define the low and upper limits on which unit
indexes can be randomized. The excludeNum table is a table of numbers, in no particular order,
of which unit indexes will be ignored. The excludeType table defines the unitType name of units
that will be ignored.

Example:

mist.spawnRandomizedGroup('tanks', {excludeType = {'T-80U', 'GAZ-66'}})

48

Each T-80U and GAZ-66 will be in the same position within the group as defined in the mission editor.
Every single other unit in the group could be in a randomized order.

Keep in mind unit properties such as unitld and unitName stay with the unit.
mist.randomizeGroupOrder

table mist.randomizeGroupOrder (table units, table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

lowerLimit = number lowerLimit,

upperLimit = number upperLimit,
excludeNum = table numbers,
excludeType= table unitTypes,

}

Returns the table of passed units in a randomized order within the group as defined by the
optional vars table. The optional variables define which units in the group will not be
randomized. The lowerLimit and upperLimit variables respectively define the low and upper
limits on which unit indexes can be randomized. The excludeNum table is a table of numbers, in
no particular order, of which unit indexes will be ignored. The excludeType table defines the
unitType name of units that will be ignored.

Example:
mist.spawnRandomizedGroup('tanks', {excludeType = {'T-80U"', 'GAZ-66'}})

Each T-80U and GAZ-66 will be in the same position within the group as defined in the mission editor.
Every single other unit in the group could be in a randomized order.

Keep in mind unit properties such as unitld and unitName stay with the unit.

mist.getGroupData

table mist.getGroupData (string groupName)

Returns a table in the format required to spawn the group. This function searches
mist.DBs.groupsByName for the specified groupName.

mist.getCurrentGroupData

table mist.getCurrentData (string groupName)

49

Returns a table in the format required to spawn the group with the specified groupName. Dead
units will be ignored. Skill level will be randomized.

mist.getPayload

table mist.getPayload (string unitName)

Returns a table of the payload set for unitName in the mission editor. "Live" payload is not
currently possible.

mist.getUnitSKkill
string mist.getUnitSkill (string unitName)

Returns a string of skill for the specified unitName as defined in the mission editor or
dynamically spawned groups. Returns false if no skill is found.

mist.getGroupPoints

table mist.getGroupPoints (string groupName)

Returns a table of Vec2 points that define the default route of the group named groupName as set
within the mission editor. This function is great when used in combination with mist.pointinPolygon;

you can “draw” your polygon with the waypoints of a unit (that never gets activated), and then feed the
mist.pointInPolygon with the returned values of mist.getGroupPoints.

Example returned value:

{[1] ={x=299435.224, y = -1146632.6773}, [2] = { x = 663324.6563, y = 322424.1112}}

Example (used in conjunction with mist.pointinPolygon):
inZone = mist.pointInPolygon(point, mist.getGroupPoints('Polygon Group 1"))

- assuming that “point” is a vec2 or vec3 map coordinate, inZone will now be a boolean that reflects
whether or not that point is inside the polygon created by the waypoints of the group named “Polygon
Group 1”

mist.getGroupRoute

table mist.getGroupRoute (string groupName, boolean task)

Returns a table of the necessary data that defines the default route of group named groupName as set
in the mission editor. Similar to mist.getGroupPoints but returns a table with additional values for group

formation, speed, altitude, and altitude type. If task is true the function will get all task actions assigned
to the route.

50

mist.getLeadPos
table mist.getLeadPos(table/string group)

Returns a vec3 coordinate of the first unit in a specified group. group can be either a group table or the
group name.

Message

Mission Scripting messaging system. Capable of displaying multiple messages via outText on screen at a
single time. Messages get sent to the specified groups and display for the specified time. The MiST code
locks the message display box refresh rate to 0.1 seconds.

Important Note: Due to how the message system operates it requires players to be an active member of
a coalition in order to receive and view messages. Additionally due to how the simulation handles
Combined Arms the message system sends each message twice. First to coalition so Combined Arms
players can see the message, and again to individual player aircraft. Unlike individual aircraft, Combined
Arms players cannot see personalized messages.

mist.message.add

number mist.message.add (table vars)

{

text = string text,

displayTime = number displayTime,

msgFor = table msgFor,

name = string name,

sound = string filename,

}

Adds text to the message queue for the duration of displayTime to the applicable groups designated by
msgFor. If the optional variable sound is used and the filename is a valid sound file embedded into the
mission, the message will play the sound file once for the receiving groups. The optional variable name
is used to name the message, if another message already exists with the same name it will automatically
replace the older message. This is useful in updating an existing message to output new data, for
example coordinates of a moving target. Function returns a number value of the message ID to be used
with mist.message.remove. Messages will automatically be removed once the message display time has
been reached.

table msgFor, accepts a string or a table of strings as keywords to define which groups will receive the
message. This table can be use a variety of values to send the message to a very specific group of
players. Acceptable values are in table format similar to the following:

{

units = {...}, -- unit names.
51

coa ={...}, -- coa names

countries = {...}, -- country names

CA ={...}, -- looks just like coa.

unitTypes = { red = {TYPENAME}, blue = {}, all = {}, Russia = {},}
}

Examples:

e msg.msgFor = {coa = {'all'}} will send the message to all players including CA players
e msg.msgFor = {countries = {'Russia’, "Georgia'}} will send the message to all players in Russian or
Georgian aircraft. (no CA player receives a message)
e msg.msgFor = {countries = {'Russia’, "Georgia'}, CA = 'red'} will send the message to all players in
Russian or Georgian aircraft and red CA roles.
e msg.msgFor = {unitTypes = {red = {'Su-25T'}}} will send to the message to all players on the red
team in Su-25Ts
e msg.msgFor = {unitTypes = {all = {'Su-25T'}}} will send to the message to all players in Su-25Ts
e msg.msgFor = {unitTypes = {Russia = {'Su-25T'}, Georgia = {'Su-25T'}}} will send to the message to
all players in Su-25Ts that belong to Georgia and Russia
e msg.msgFor = {unitTypes = {Russia = {'Su-25T'}, Georgia = {'Su-25T'}}, CA = {'red'}} will send to
the message to all players in Su-25Ts that belong to Georgia and Russia and to Combined Arms
players on red.
Script Example:
local msg = {}
msg.text = 'Hello World'
msg.displayTime = 25
msg.msgFor = {coa = {'all'}}
mist.message.add(msg)

mist.message.removeByld

boolean mist.message.removeByld (number id)

Removes the message with integer id from the list of messages. If the message was removed the
function will return true. NOTE: renamed from mist.message.remove in Mist v3.0! Change function
names as needed!

mist.message.remove

boolean mist.message.remove (table self)

Removes the message if passed the message table. If the message was removed the function will return
true. Function is for internal mist usage.

52

General Purpose Message Functions
The following functions will output assorted text via mist.message.add along with performing other mist
functions or useful functions.

mist.msgMGRS
string mist.msgMGRS (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

acc = number accuracy,
displayTime = number displayTime,
msgFor = table recipients,

text = string text,

}

Utilizes mist.getMGRSString and mist.message.add functions to display a coordinates at the
specified accuracy via the mist message system in the MGRS format to the specified recipients
for the given displayTime. If text is provided, the coordinates will be added to the end of the
text message.

mist.msgLL

string mist.msgLL (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

acc = number accuracy,

DMS = boolean DMS,

text = string text,

displayTime = number displayTime,
msgFor = table recipients,

}

Utilizes mist.getLLString and mist.message.add functions to display a coordinates at the
specified accuracy via the mist message system in the Longitude/Latitude format to the
specified recipients for the given displayTime. If text is provided, the coordinates will be added

53

to the end of the text message. If true DMS will set the coordinates in Degrees Minutes
Seconds. If False format will be Degrees Minutes Thousandths.

mist.msgBR

string mist.msgBR (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

ref = table vec2/vec3,

alt = boolean altitude,

metric = boolean metric,

text = string text,

displayTime = number displayTime,
msgFor = table recipients,

}

Utilizes mist.getBRString and mist.message.add functions to display a coordinates at the
specified accuracy via the mist message system in the Bearing Range format from the reference
vec2 or vec3 point to the units. The message will display to the specified recipients for the given
displayTime. If text is provided, the coordinates will be added to the end of the text message. If
altitude is true message will also contain the altitude in "Bearing Range Altitude" format. If
metric is true, the message will use the metric system.

mist.msgBRA
string mist.msgBRA (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

ref = string unitName,

metric = boolean metric,

text = string text,

displayTime = number displayTime,
msgFor = table recipients,

}
54

Utilizes mist.getBRString and mist.message.add functions to display a coordinates at the
specified accuracy via the mist message system in the Bearing Range Altitude format from the
unitName to the average position of units. The message will be displayed to the specified
recipients for the given displayTime. If text is provided, the coordinates will be added to the
end of the text message. If metric is true, the message will use the metric system.

mist.msgBullseye

string mist.msgBullseye (table vars)
vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

ref = string coalition,

metric = boolean metric,
displayTime = number displayTime,
msgFor = table recipients,

text = string text,

}

Utilizes mist.getBRString and mist.message.add functions to display a coordinates at the
specified accuracy via the mist message system in the Bearing Range Altitude format from the
coalition Bullseye point to the average position of units. The message will be displayed to the
specified recipients for the given displayTime. If text is provided, the coordinates will be added
to the end of the text message. If metric is true, the message will use the metric system.

Ref variable accepts 'red’ or 'blue'. Case does not matter.

mist.msglLeadingMGRS

string mist.msgLeadingMGRS(table vars)
vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

radius = number radius,
heading = number heading OR headingDegrees = number headingDegrees,

55

acc = number accuracy,

displayTime = number displayTime,

msgFor = table recipients,

text = string text,

}

Utilizes mist.getLeadingMGRS and mist.message.add functions to display a coordinate in MGRS
format of the average position of the concentration of units most in the heading direction to
the defined accuracy. The units are defined by the table UnitNameTable and the concentration
is within the specified radius. The message will be displayed to the specified recipients for the
given displayTime. If text is provided, the coordinates will be added to the end of the text
message.

mist.msglLeadingLL

string mist.msgLeadingLL(table vars)
vars has the following recognized fields (required entries in blue, optional in green):

{

units = table UnitNameTable,

radius = number radius,

heading = number heading OR headingDegrees = number headingDegrees,

DMS = ??? DMS,

displayTime = number displayTime,

msgFor = table recipients,

text = string text,

}

Utilizes mist.getLeadingLLString and mist.message.add functions to display the coordinates in
the Latitude and Longitude format of the average position of the concentration of units most in
the heading direction to the defined accuracy. The units are defined by the table
UnitNameTable and the concentration is within the specified radius. If the optional variable
DMS exists, the format will be in Degrees Minutes Seconds. If DVIS is not present the format
will be in Degrees Minutes Thousandths of Minutes. The message will be displayed to the
specified recipients for the given displayTime. If text is provided, the coordinates will be added
to the end of the text message.

mist.msgLeadingBR

string mist.msgLeadingBR(table vars)
vars has the following recognized fields (required entries in blue, optional in green):

56

{

units = table UnitNameTable,

radius = number radius,

heading = number heading OR headingDegrees = number headingDegrees,

ref = table vec3,

alt = number altitude,

metric =boolean metric,

}

Utilizes mist.getLeadingLLString and mist.message.add functions to display the coordinates in
the Bearing Range Altitude (BRA) format of the concentration of units most in the heading
direction. The units are defined by a UnitNameTable. The string is created based on the
reference point defined by a vec3 table ref. If metric is not present the function will assume all
values are in imperial units and will return the Range and Altitude in Nautical Miles and Feet. If
metric is present the metric system will be used for these values. The message will be
displayed to the specified recipients for the given displayTime. If text is provided, the
coordinates will be added to the end of the text message.

fixedWing

mist.fixedWing.buildWP

table mist.fixedWing.buildWP (table point, string type, number speed, number altitude, string
altitudeType)

Returns a table of a valid waypoint entry that is defined by the vec2 or vec3 coordinate of point. Type
defines the turn method used on the waypoint. If no turn method is specified the default "turning point"
will be used. The optional variable speed is a numerical value in meters per second for the current
waypoint. If no speed is specified the mission editor default of 500 kilometers per hour will be used. The
optional altitude variable will set the altitude which a waypoint will occur at. If no altitude is specified
the mission editor default of 2000 meters will be chosen. String altitudeType defines whether the
waypoint will measured Above Ground Level or Above Sea level. If no altitudeType is specified the
script will default to Above Ground Level. NOTE: This differs from the DCS Mission Editor which defaults
to Above Sea Level.

Acceptable values for type and altitudetype are described in the Simulator Scripting Engine wiki page.

Type:
flyOverPoint - Aircraft will fly over the WP before moving on to next WP

57

turningpoint - Aircraft perform a lead turn ahead of the WP before moving on to next WP
Altitude Type:

Baro (ASL) - The altitude will be measured Above Sea Level

Radio (AGL) - The altitude will be measured Above Ground Level

Heli

mist.heli.buildWP

table mist.heli.buildWP (table point, string type, number speed, number altitude, string
altitudeType)

Returns a table of a valid waypoint entry that is defined by the vec2 or vec3 coordinate of point. Type
defines the turn method used on the waypoint. If no turn method is specified the default "fin point" will
be used. The optional variable speed is a numerical value in meters per second for the current
waypoint. If no speed is specified the mission editor default of 200 kilometers per hour will be used. The
optional altitude variable will set the altitude which a waypoint will occur at. If no altitude is specified
the mission editor default of 500 meters will be chosen. String altitudeType defines whether the
waypoint will measured Above Ground Level or Above Sea level. If no altitudeType is specified the
script will default to Above Ground Level. NOTE: This differs from the DCS Mission Editor which defaults
to Above Sea Level.

Ground
Mission Scripting messaging system. Capable of displaying multiple messages via outText on screen at a
single time. Messages get sent to the specified groups and display for the specified time.

mist.ground.buildWP

table mist.ground.buildWP (table point, string formation, number speed)

Returns a table of a valid waypoint entry that is defined by the vec2 or vec3 coordinate of point. The
optional varibale string formation defines the type of formation used with the waypoint, if no
formation is given the formation will default to "cone". The optional variable speed takes a numerical
value in meters per second and assigns it to the waypoint. If speed is not defined the mission editor
default of 20 kilometers per hour will be used.

Acceptable formations as described in the Simulator Scripting Engine Wiki page.

"Off Road" - moving off-road in Column formation
"On Road" - moving on road in Column formation

"Rank" - moving off road in Row formation
58

"Cone" - moving in Wedge formation

"Vee" - moving in Vee formation

"Diamond" - moving in Diamond formation

"EchelonL" - moving in Echelon Left formation

"EchelonR" - moving in Echelon Right formation
Code Example:

local path = {}
path[#path + 1] = mist.ground.buildWP(startPoint, 'Diamond’, 5)
path[#path + 1] = mist.ground.buildWP(endPoint, 'Diamond’, 5)

mist.ground.patrol

nothing mist.ground.patrol (table/string groupTable/groupName, , string patrolType, string
formation, number speed)

This function will re-assign the route of the specified groupName as defined in the mission editor when
the group reaches the end of their route effectively creating a patrol. If the optional variable patrolType
is specified as 'doubleBack’ the group will double back from the last waypoint to the first before starting
the patrol again. Optional variable formation is a string of valid formations that the group will use for all
waypoints that are not "on road". The optional variable of speed is the speed the group will travel at in
meters per second.

Code Example:

mist.ground.patrol('myGroup', nil, 'diamond’, 10)

mist.ground.patrolRoute

nothing mist.ground.patrolRoute (table vars)

vars has the following recognized fields (required entries in blue, optional in green):

{
gpData = string/table groupName/groupTable,

useGroupRoute = string groupName,
speed = number speed,
offRoadForm = string offRoadForm,
onRoadForm = string onRoadForm,
pType = string patrolType,

route = table routeTable,

}

59

This function will re-assign a route for groupName once the group reaches the end if its route. If the
optonal variable useGroupRoute is specified, the groups route as defined in the mission editor will be
assigned to group corresponding with groupName. If the optional variable pType is specified as
'doubleBack’ the group will double back from the last waypoint to the first before starting the patrol
again. Optional variable offRoadForm is a string of valid formations that the group will use for all
waypoints that are not "on road". Optional variable onRoadForm is a string of valid formations that the
group will use for all on road waypoints. The optional variable of speed is the speed the group will travel
at in meters per second.

If the optional entry route is specified, this function will use the passed route and will ignore all other
optional variables.

Important Note concerning mist.ground.patrol and mist.ground.patrolRoute

These functions are susceptible to strange Al movement bugs. Specifically if you place the first and
second waypoint to close to each other or simply have a single "on road" waypoint the Al might stop
moving . Also certain types of turns with certain types of formations can cause two Al units to get stuck
in avoidance logic and appear to "drag race" each other.

Utils
Contains general Scripting utilities. May be DCS specific, or code that could be ported into any
application that uses Lua.

mist.utils.makeVec2
table mist.utils.makeVec2 (table Vec3)

This function takes a Vec3 table and returns it as a Vec2 table.

mist.utils.makeVec3

table mist.utils.makeVec3 (table vec2, number y)

This function takes a vec2 table and converts it into the Vec3 format. The y variable is optional
and it specifies the altitude to be used in the vec3 table. If y is not set the value defaults to 0.

mist.utils.makeVec3GL
table mist.utils.makeVec3GL (table vec2/vec3, number offset)

60

This function takes a vec2 or a vec3 table and converts it into the Vec3 format with vec3.y
(altitude) at the ground level of the point. The offset variable is optional and it specifies the
altitude above ground level to offset from the point. If offset is not set the value defaults to 0.

mist.utils.zoneToVec3

table mist.utils.makeVec3 (table zone or string zonename')

This function takes a zone table or a string zonename and converts it into the Vec3 format. This
is useful in using the position of a zone to define waypoints locations.

mist.utils.toDegree

number mist.utils.toDegree(number angle)

This function takes an angle in radians and converts it to degrees.

mist.utils.toRadian

number mist.utils.toRadian(number angle)

This function takes an angle in degrees and converts it to radians.

mist.utils.deepCopy
table mist.utils.deepCopy(table table)

This code is from http://lua-users.org/wiki/CopyTable.

This function returns a "deep copy" of table, "deep" in that the copy recursively progresses
down all "levels" of the table, and the copy shares the same metatables as the passed-in table.
This function also correctly handles tables with cycles. This function is quite often useful
because tables are passed by reference in Lua, not by value.

English: If a variable is declared to equal a table, Lua does not create a new table, it instead
creates a new reference for the table. So now you have two references to the same table and
of course, any change made to one reference will apply to the other reference.
mist.utils.deepCopy gets around this by creating an entirely new table that is effectively a
"clone" of the other table.

mist.utils.round

number mist.utils.round(number number, number idp)

61

This function takes a number and returns a rounded version of it. Optional idp defines how
many places after the decimal to round the number to; for example, an idp of 2 means the
number will be rounded to the nearest hundredth. idp can be negative too, for example, -3
would round to the nearest thousand. If not specified, idp defaults to 0 (rounds to the nearest
whole number).

mist.utils.dostring
boolean, ??? mist.utils.dostring(string code)
Executes the string code as Lua code. The first variable returned is a boolean value indicating

whether the code successfully compiled. If false, then this value will be the compilation error.
If true, then any further variables returned will be whatever the code you executed returned.

mist.utils.basicSerialize
string mist.utils.basicSerialize(value val)
Returns tostring(val), unless val is nil or a string. In the case of nil, it returns an empty string

(this will PROBABLY be changed to return ‘nil’ in future versions). In the case valis a string, it
returns string.format('%q', s).

mist.utils.serialize

string mist.utils.serialize(string name, value t)

Returns the string name = <serialized value> where <serialized value> isthe valuet
serialized to a string. Typically, t will be a table. The resulting string has a very pleasing,

readable look if displayed or output to a file. However, the function goes into an infinite loop if
t contains cycles (cycles are tables that contain, somewhere within them, references to
themselves), so be warned!

mist.utils.serializeWithCycles

string mist.utils.serializeWithCycles(string name, value t)

Returns the string name = <serialized value> where <serialized value> isthe valuet
serialized to a string. Typically, t will be a table. Unlike mist.utils.serialize, t can contain cycles,

however, the resulting serialized table is a little less readable (to human eyes).

mist.utils.oneLineSerialize

string mist.utils.onelLineSerialize(table t)

62

Returns a serialization of table t on a single line of text; t cannot contain cycles. If the table t is
small, then the resulting string will be more readable than any other serialization method. It’s
great for outputting really small tables to dcs.log with print just to see what’s in them.

mist.utils.tableShow

string mist.utils.tableShow(table t)

Returns a string that shows the contents of table t. THIS IS NOT A SERIALIZATION FUNCTION;
unlike all the serialization functions, you CANNOT run the returned string with loadstring or
dostring. This function is solely made for exploring the contents of a table.

mist.utils.metersToNM

number mist.utils.metersToNM(number n)

Returns the conversion of meters defined as number n to Nautical Miles.

mist.utils.metersToFeet

number mist.utils.metersToFeet(number n)

Returns the conversion of meters defined as number n to Feet.

mist.utils.NMToMeters

number mist.utils.NMToMeters(number n)

Returns the conversion of nautical miles defined as number n to meters.

mist.utils.feetToMeters

number mist.utils.feetToMeters(number n)

Returns the conversion of feet defined as number n to meters

mist.utils. mpsToKnots

number mist.utils.mpsToKnots(number n)

Returns the conversion of meters per second defined as number n to Knots.

mist.utils. npsToKmph

number mist.utils.mpsToKmph(number n)

Returns the conversion of meters per second defined as number n to Kilometer per hour.

63

mist.utils.knotsMps

number mist.utils.knotsToMps(number n)

Returns the conversion of knots defined as number n to Meters per second.

mist.utils. kmphToMps

number mist.utils.kmphToMps(number n)

Returns the conversion of kilometers per hour defined as number n to meters per second.

mist.utils.get2DDist
number mist.utils.get2DDist(table point1, table point2)

Returns the distance between two point1 and point2 in 2D space.

mist.utils.get3DDist
number mist.utils.get3DDist(table point1, table point2)

Returns the distance between two point1 and point2 in 3D space.

Debug

For functions mist.debug.dump_G, mist.debug.writeData, and mist.debug.dumpDBs, you must
(temporarily!) unprotect the Lua environment and enable the io and Ifs libraries. You do this by
commenting out the sanitizeModule calls in <DCS main directory>/Scripts/MissionScripting.lua. Just be
sure to re-protect yourself later when you run missions from untrusted sources.

mist.debug.dump_G
mist.debug.dump_G (string fileName)

Dumps the global environment (using mist.utils.tableShow) to Saved Games/DCS/Logs/
fileName.

mist.debug.writeData

mist.debug.writeData (function fcn, table fcnVars, string fileName)

64

Writes to the file Saved Games/DCS/Logs/ fileName the results of function fcn called with the
variables unpacked from the table fcnVars.

mist.debug.dumpDBs
mist.debug.dumpDBs()

Serializes all the tables in mist.DBs and outputs them to files in Saved Games/DCS/Logs/.

Vectors
Vector operations for Vec3.

mist.vec.add

Vec3 mist.vec.add(Vec3 vecl, Vec3 vec2)

Returns the vectorial addition of vecl + vec2

mist.vec.sub

Vec3 mist.vec.sub(Vec3 vecl, Vec3 vec2)

Returns the vectorial subtraction of vecl and vec2 (i.e., vecl - vec2)

mist.vec.scalar mult

Vec3 mist.vec.scalar_mult(Vec3 vec, number mult)

Returns vec multiplied by scalar mult.

mist.vec.dp

number mist.vec.dp(Vec3 vecl, Vec3 vec2)

Returns the dot product of vecl and vec2.

mist.vec.cp

Vec3 mist.vec.cp(Vec3 vecl, Vec3 vec2)

Returns the cross product of vecl and vec?2 (i.e., vecl X vec2)

mist.vec.mag

number mist.vec.mag(Vec3 vec)

Returns the magnitude of vec.

65

Demos
Demonstration scripts.

mist.demos.printFlightData

number mist.demos.printFlightData(Unit unit)

This function outputs to screen significant flight parameters of the Unit-type object unit. These
parameters are:

-Heading

-Pitch

-Roll

-Climb Angle

-Angle of Attack

-Yaw

-Angle of Attack + Yaw (they are at right angles so AoA + Yaw = (Yaw”2 + AoA*2)"0.5).
-Speed

-Absolute Acceleration
-Axial G loading
-Transverse G loading
-Absolute G loading
-Specific energy
-Specific dE/dt

This script can even be applied to weapons, so you can use it to view in real time the flight
characters of something like an AMRAAM!

Databases

Mist databases are a collection of global tables consisting of a wide variety of data. Most DBs are
created once at the start of the mission and are all based off of information found within the mission
editor.

As of Mist v3.0 several databases will be updated if groups are dynamically added either via the built in
mist functions or other scripts. If using DCS 1.2.5.xxxxx Mist will only recognize aircraft and helicopter
objects spawned by other scripts. This may be resolved in 1.2.6.

66

Several of the databases have overlapping information that is found in another database, this is done for
convenience. New databases have been added to fill that are solely based on mission editor
information, these databases will not be adjusted as groups are added. If a group new group with an
already pre-existing name, it will overwrite the old group.

For specifics of how the data is organized for each DB, please see the "Example DBs" folder from the
Mist download file.

Zones
mist.DBs.zonesByName
Filtered by name of trigger zone
mist.DBs.zonesByNum
List of zones numerically indexed
Both are a database of triggerzones as defined within the mission editor.

® name
e zoneld
e X
°* Yy
e radius

e pointinVec3
e hiddenin ME
e colorin ME

mist.DBs.navPoints
Table of navigation points indexed by coalition.
® name

e callsignStr (callsign String)

e groupld
°* X
vy

e pointinVec3
e properties

Units
Each entry in the unit DBs contains the following information:
e unitName
e groupName
67

e coalition

e country
e category
* type

o skill

e unitld

e groupld

e countryld

e starting point in Vec2

e speed (applies only to aircraft)

e livery_id (applies only to aircraft)

Tables with "ME" in the name are static and will not be modified if groups are dynamically
added to the mission.

mist.DBs.units
mist.DBs.MEunits

Table of all units within the mission indexed by coalition, country, type, and groups.
mist.DBs.unitsByName
mist.DBs.MEunitsByName

Table of all units indexed by unit name
mist.DBs.unitsByld
mist.DBs.MEunitsByld

Table of all units indexed by unit Id
mist.DBs.unitsByCat
mist.DBs.MEunitsByCat

Table of all units indexed by category.
mist.DBs.unitsByNum
mist.DBs.MEunitsByNum

Table of all units indexed numerically starting at 1.

Groups

Each group table contains the following information
e groupName
e coalition
e country

e category

e groupld

e countryld

e unit table for each unit in group

Tables with "ME" in the name are static and will not be modified if groups are dynamically
added to the mission.

mist.DBs.groupsByName
mist.DBs.MEgroupsByName
Table of all groups indexed by groupName.

mist.DBs.groupsByld
mist.DBs.MEgroupsByld
The same as mist.DBs.groupsByName, but indexed by groupld instead.

Dynamically Added

Tables of all objects added dynamically via the scripting engine. Indexed numerically.
mist.DBs.dynGroupsAdded

Same format as Groups tables, however it contains the simulator time of when the
group was spawned in addition to the mission time.

Constants

The constants table is a collection assorted data that is not directly accessible to the scripting
engine but still applies to it.

mist.DBs.const.callsigns
Table of available NATO callsigns and scripting engine enumerators related to each
callsign.

Clients

mist.DBs.humansByName

DB of humanable aircraft indexed by unitName, contains all the standard unit info:
e unitName
e groupName

69

e coalition

e country
e category
* type

o skill

e unitld

e groupld

e countryld
e starting point in Vec2
e task

mist.DBs.humansByld
The same as mist.DBs.humansByName, but indexed by groupld instead.

Real time Databases

The following databases are updated automatically as the mission progresses. Both databases can share
the similar sets of information. The dead objects database will also contain information for world
objects which become destroyed over the course of a mission. In deadObjects, the “same” units (client
aircraft) will have multiple entries if the same aircraft was spawned into the world and died more than
once.

mist.DBs.aliveUnits

A list of all units (helicopter, plane, ship, vehicle) that are currently alive, indexed by the
unit's runtime id_ value. Each entry contains a copy of the data from that unit's entry in the
units DBs, and also contains the unit's current position (in Vec3) at table key "pos". This DB is
not instantaneous- it is refreshed between 1 and 20 times per second (the "refresh" rate will
vary depending on the number of units in the mission- the more units, the slower it refreshes).
Inactive units (units that are not yet activated) will be listed in aliveUnits too (because they ARE
alive units).

mist.DBs.deadObjects
A list of dead objects indexed by the dead object's former runtime id_ (However, in the case of

duplicate runtime ids, the index can be a string, like “11565326 #1”).

There are several types of dead objects, at the table key “objectType” for each object:

70

"helicopter"

"plane"

"ship"

"static" — a dead static object

"vehicle"

"building" — a dead map object.

"unknown" — type of dead object could not be determined.
For "helicopter", "plane", "ship", "static", and "vehicle", mist.DBs.deadObjects will copy in the
data from that dead object's entry in the units DBs at table key "objectData".

For all objectTypes except "unknown", the last known/current position of the dead object is
listed at table key "objectPos" (in Vec3 format).

The object itself is listed at table key "object"” (though, it might not be casted into an Object
class object).

Miscellaneous
mist.DBs.missionData

Table of basic mission information containing:

e Mission editor version number

e Files within the .miz

e mission start time

e Name of theatre of war used

e red/blue bullseye location in Vec2

71

