Thomas 946a1de931
Merge docu changes (#1818)
* Documentation fixes. (#1810)

Fix documentation references.
Correct spelling errors.
Remove empty whitespaces.
Correct a single mis-spelled ZONE_BASE variable, see 'Core/Zone.lua' (variable "Sureface" -> "Surface", no references to mis-spelled "Sureface" throughout the codebase).
Correct mis-spelling of "coaltion" in 'Functional/Mantis.lua', corrected to "coalition".

* Documentation fixes. (#1811)

Update documentation text and links.
Fix spelling errors.
Other minor adjustments where appropriate, such as remove whitespaces and format code.

* Documentation fixes. (#1815)

Minor documentation and code formatting fixes.
This is mostly intended to have something re-trigger the documentation generation to see if the filename capitalization is resolved.

* Code formatting preparation. (#1817)

Use EmmyLuaCodeStyle that comes with "Lua" VS Code extension (https://marketplace.visualstudio.com/items?itemName=sumneko.lua). More features and configurability than LuaFormatter, and no need for additional extension (beyond "Lua").
Formatting file set up from default template with some tweaks to correspond to most common coding style observed in the code base. Further tweaks are likely required.

* Documentation fixes. (#1816)

Co-authored-by: TommyC81 <tommyc81@gmail.com>
2022-10-29 10:49:18 +02:00

1439 lines
54 KiB
Lua

--- **Core** - FSM (Finite State Machine) are objects that model and control long lasting business processes and workflow.
--
-- ===
--
-- ## Features:
--
-- * Provide a base class to model your own state machines.
-- * Trigger events synchronously.
-- * Trigger events asynchronously.
-- * Handle events before or after the event was triggered.
-- * Handle state transitions as a result of event before and after the state change.
-- * For internal moose purposes, further state machines have been designed:
-- - to handle controllables (groups and units).
-- - to handle tasks.
-- - to handle processes.
--
-- ===
--
-- A Finite State Machine (FSM) models a process flow that transitions between various **States** through triggered **Events**.
--
-- A FSM can only be in one of a finite number of states.
-- The machine is in only one state at a time; the state it is in at any given time is called the **current state**.
-- It can change from one state to another when initiated by an **__internal__ or __external__ triggering event**, which is called a **transition**.
-- A **FSM implementation** is defined by **a list of its states**, **its initial state**, and **the triggering events** for **each possible transition**.
-- A FSM implementation is composed out of **two parts**, a set of **state transition rules**, and an implementation set of **state transition handlers**, implementing those transitions.
--
-- The FSM class supports a **hierarchical implementation of a Finite State Machine**,
-- that is, it allows to **embed existing FSM implementations in a master FSM**.
-- FSM hierarchies allow for efficient FSM re-use, **not having to re-invent the wheel every time again** when designing complex processes.
--
-- ![Workflow Example](..\Presentations\FSM\Dia2.JPG)
--
-- The above diagram shows a graphical representation of a FSM implementation for a **Task**, which guides a Human towards a Zone,
-- orders him to destroy x targets and account the results.
-- Other examples of ready made FSM could be:
--
-- * Route a plane to a zone flown by a human.
-- * Detect targets by an AI and report to humans.
-- * Account for destroyed targets by human players.
-- * Handle AI infantry to deploy from or embark to a helicopter or airplane or vehicle.
-- * Let an AI patrol a zone.
--
-- The **MOOSE framework** extensively uses the FSM class and derived FSM\_ classes,
-- because **the goal of MOOSE is to simplify mission design complexity for mission building**.
-- By efficiently utilizing the FSM class and derived classes, MOOSE allows mission designers to quickly build processes.
-- **Ready made FSM-based implementations classes** exist within the MOOSE framework that **can easily be re-used,
-- and tailored** by mission designers through **the implementation of Transition Handlers**.
-- Each of these FSM implementation classes start either with:
--
-- * an acronym **AI\_**, which indicates a FSM implementation directing **AI controlled** @{Wrapper.Group#GROUP} and/or @{Wrapper.Unit#UNIT}. These AI\_ classes derive the @{#FSM_CONTROLLABLE} class.
-- * an acronym **TASK\_**, which indicates a FSM implementation executing a @{Tasking.Task#TASK} executed by Groups of players. These TASK\_ classes derive the @{#FSM_TASK} class.
-- * an acronym **ACT\_**, which indicates an Sub-FSM implementation, directing **Humans actions** that need to be done in a @{Tasking.Task#TASK}, seated in a @{Wrapper.Client#CLIENT} (slot) or a @{Wrapper.Unit#UNIT} (CA join). These ACT\_ classes derive the @{#FSM_PROCESS} class.
--
-- Detailed explanations and API specifics are further below clarified and FSM derived class specifics are described in those class documentation sections.
--
-- ##__Disclaimer:__
-- The FSM class development is based on a finite state machine implementation made by Conroy Kyle.
-- The state machine can be found on [github](https://github.com/kyleconroy/lua-state-machine)
-- I've reworked this development (taken the concept), and created a **hierarchical state machine** out of it, embedded within the DCS simulator.
-- Additionally, I've added extendability and created an API that allows seamless FSM implementation.
--
-- The following derived classes are available in the MOOSE framework, that implement a specialized form of a FSM:
--
-- * @{#FSM_TASK}: Models Finite State Machines for @{Tasking.Task}s.
-- * @{#FSM_PROCESS}: Models Finite State Machines for @{Tasking.Task} actions, which control @{Wrapper.Client}s.
-- * @{#FSM_CONTROLLABLE}: Models Finite State Machines for @{Wrapper.Controllable}s, which are @{Wrapper.Group}s, @{Wrapper.Unit}s, @{Wrapper.Client}s.
-- * @{#FSM_SET}: Models Finite State Machines for @{Core.Set}s. Note that these FSMs control multiple objects!!! So State concerns here
-- for multiple objects or the position of the state machine in the process.
--
-- ===
--
-- ### Author: **FlightControl**
-- ### Contributions: **funkyfranky**
--
-- ===
--
-- @module Core.Fsm
-- @image Core_Finite_State_Machine.JPG
do -- FSM
--- @type FSM
-- @field #string ClassName Name of the class.
-- @field Core.Scheduler#SCHEDULER CallScheduler Call scheduler.
-- @field #table options Options.
-- @field #table subs Subs.
-- @field #table Scores Scores.
-- @field #string current Current state name.
-- @extends Core.Base#BASE
--- A Finite State Machine (FSM) models a process flow that transitions between various **States** through triggered **Events**.
--
-- A FSM can only be in one of a finite number of states.
-- The machine is in only one state at a time; the state it is in at any given time is called the **current state**.
-- It can change from one state to another when initiated by an **__internal__ or __external__ triggering event**, which is called a **transition**.
-- An **FSM implementation** is defined by **a list of its states**, **its initial state**, and **the triggering events** for **each possible transition**.
-- An FSM implementation is composed out of **two parts**, a set of **state transition rules**, and an implementation set of **state transition handlers**, implementing those transitions.
--
-- The FSM class supports a **hierarchical implementation of a Finite State Machine**,
-- that is, it allows to **embed existing FSM implementations in a master FSM**.
-- FSM hierarchies allow for efficient FSM re-use, **not having to re-invent the wheel every time again** when designing complex processes.
--
-- ![Workflow Example](..\Presentations\FSM\Dia2.JPG)
--
-- The above diagram shows a graphical representation of a FSM implementation for a **Task**, which guides a Human towards a Zone,
-- orders him to destroy x targets and account the results.
-- Other examples of ready made FSM could be:
--
-- * route a plane to a zone flown by a human
-- * detect targets by an AI and report to humans
-- * account for destroyed targets by human players
-- * handle AI infantry to deploy from or embark to a helicopter or airplane or vehicle
-- * let an AI patrol a zone
--
-- The **MOOSE framework** uses extensively the FSM class and derived FSM\_ classes,
-- because **the goal of MOOSE is to simplify mission design complexity for mission building**.
-- By efficiently utilizing the FSM class and derived classes, MOOSE allows mission designers to quickly build processes.
-- **Ready made FSM-based implementations classes** exist within the MOOSE framework that **can easily be re-used,
-- and tailored** by mission designers through **the implementation of Transition Handlers**.
-- Each of these FSM implementation classes start either with:
--
-- * an acronym **AI\_**, which indicates an FSM implementation directing **AI controlled** @{Wrapper.Group#GROUP} and/or @{Wrapper.Unit#UNIT}. These AI\_ classes derive the @{#FSM_CONTROLLABLE} class.
-- * an acronym **TASK\_**, which indicates an FSM implementation executing a @{Tasking.Task#TASK} executed by Groups of players. These TASK\_ classes derive the @{#FSM_TASK} class.
-- * an acronym **ACT\_**, which indicates an Sub-FSM implementation, directing **Humans actions** that need to be done in a @{Tasking.Task#TASK}, seated in a @{Wrapper.Client#CLIENT} (slot) or a @{Wrapper.Unit#UNIT} (CA join). These ACT\_ classes derive the @{#FSM_PROCESS} class.
--
-- ![Transition Rules and Transition Handlers and Event Triggers](..\Presentations\FSM\Dia3.JPG)
--
-- The FSM class is the base class of all FSM\_ derived classes. It implements the main functionality to define and execute Finite State Machines.
-- The derived FSM\_ classes extend the Finite State Machine functionality to run a workflow process for a specific purpose or component.
--
-- Finite State Machines have **Transition Rules**, **Transition Handlers** and **Event Triggers**.
--
-- The **Transition Rules** define the "Process Flow Boundaries", that is,
-- the path that can be followed hopping from state to state upon triggered events.
-- If an event is triggered, and there is no valid path found for that event,
-- an error will be raised and the FSM will stop functioning.
--
-- The **Transition Handlers** are special methods that can be defined by the mission designer, following a defined syntax.
-- If the FSM object finds a method of such a handler, then the method will be called by the FSM, passing specific parameters.
-- The method can then define its own custom logic to implement the FSM workflow, and to conduct other actions.
--
-- The **Event Triggers** are methods that are defined by the FSM, which the mission designer can use to implement the workflow.
-- Most of the time, these Event Triggers are used within the Transition Handler methods, so that a workflow is created running through the state machine.
--
-- As explained above, a FSM supports **Linear State Transitions** and **Hierarchical State Transitions**, and both can be mixed to make a comprehensive FSM implementation.
-- The below documentation has a separate chapter explaining both transition modes, taking into account the **Transition Rules**, **Transition Handlers** and **Event Triggers**.
--
-- ## FSM Linear Transitions
--
-- Linear Transitions are Transition Rules allowing an FSM to transition from one or multiple possible **From** state(s) towards a **To** state upon a Triggered **Event**.
-- The Linear transition rule evaluation will always be done from the **current state** of the FSM.
-- If no valid Transition Rule can be found in the FSM, the FSM will log an error and stop.
--
-- ### FSM Transition Rules
--
-- The FSM has transition rules that it follows and validates, as it walks the process.
-- These rules define when an FSM can transition from a specific state towards an other specific state upon a triggered event.
--
-- The method @{#FSM.AddTransition}() specifies a new possible Transition Rule for the FSM.
--
-- The initial state can be defined using the method @{#FSM.SetStartState}(). The default start state of an FSM is "None".
--
-- Find below an example of a Linear Transition Rule definition for an FSM.
--
-- local Fsm3Switch = FSM:New() -- #FsmDemo
-- FsmSwitch:SetStartState( "Off" )
-- FsmSwitch:AddTransition( "Off", "SwitchOn", "On" )
-- FsmSwitch:AddTransition( "Off", "SwitchMiddle", "Middle" )
-- FsmSwitch:AddTransition( "On", "SwitchOff", "Off" )
-- FsmSwitch:AddTransition( "Middle", "SwitchOff", "Off" )
--
-- The above code snippet models a 3-way switch Linear Transition:
--
-- * It can be switched **On** by triggering event **SwitchOn**.
-- * It can be switched to the **Middle** position, by triggering event **SwitchMiddle**.
-- * It can be switched **Off** by triggering event **SwitchOff**.
-- * Note that once the Switch is **On** or **Middle**, it can only be switched **Off**.
--
-- #### Some additional comments:
--
-- Note that Linear Transition Rules **can be declared in a few variations**:
--
-- * The From states can be **a table of strings**, indicating that the transition rule will be valid **if the current state** of the FSM will be **one of the given From states**.
-- * The From state can be a **"*"**, indicating that **the transition rule will always be valid**, regardless of the current state of the FSM.
--
-- The below code snippet shows how the two last lines can be rewritten and condensed.
--
-- FsmSwitch:AddTransition( { "On", "Middle" }, "SwitchOff", "Off" )
--
-- ### Transition Handling
--
-- ![Transition Handlers](..\Presentations\FSM\Dia4.JPG)
--
-- An FSM transitions in **4 moments** when an Event is being triggered and processed.
-- The mission designer can define for each moment specific logic within methods implementations following a defined API syntax.
-- These methods define the flow of the FSM process; because in those methods the FSM Internal Events will be triggered.
--
-- * To handle **State** transition moments, create methods starting with OnLeave or OnEnter concatenated with the State name.
-- * To handle **Event** transition moments, create methods starting with OnBefore or OnAfter concatenated with the Event name.
--
-- **The OnLeave and OnBefore transition methods may return false, which will cancel the transition!**
--
-- Transition Handler methods need to follow the above specified naming convention, but are also passed parameters from the FSM.
-- These parameters are on the correct order: From, Event, To:
--
-- * From = A string containing the From state.
-- * Event = A string containing the Event name that was triggered.
-- * To = A string containing the To state.
--
-- On top, each of these methods can have a variable amount of parameters passed. See the example in section [1.1.3](#1.1.3\)-event-triggers).
--
-- ### Event Triggers
--
-- ![Event Triggers](..\Presentations\FSM\Dia5.JPG)
--
-- The FSM creates for each Event two **Event Trigger methods**.
-- There are two modes how Events can be triggered, which is **synchronous** and **asynchronous**:
--
-- * The method **FSM:Event()** triggers an Event that will be processed **synchronously** or **immediately**.
-- * The method **FSM:__Event( __seconds__ )** triggers an Event that will be processed **asynchronously** over time, waiting __x seconds__.
--
-- The distinction between these 2 Event Trigger methods are important to understand. An asynchronous call will "log" the Event Trigger to be executed at a later time.
-- Processing will just continue. Synchronous Event Trigger methods are useful to change states of the FSM immediately, but may have a larger processing impact.
--
-- The following example provides a little demonstration on the difference between synchronous and asynchronous Event Triggering.
--
-- function FSM:OnAfterEvent( From, Event, To, Amount )
-- self:T( { Amount = Amount } )
-- end
--
-- local Amount = 1
-- FSM:__Event( 5, Amount )
--
-- Amount = Amount + 1
-- FSM:Event( Text, Amount )
--
-- In this example, the **:OnAfterEvent**() Transition Handler implementation will get called when **Event** is being triggered.
-- Before we go into more detail, let's look at the last 4 lines of the example.
-- The last line triggers synchronously the **Event**, and passes Amount as a parameter.
-- The 3rd last line of the example triggers asynchronously **Event**.
-- Event will be processed after 5 seconds, and Amount is given as a parameter.
--
-- The output of this little code fragment will be:
--
-- * Amount = 2
-- * Amount = 2
--
-- Because ... When Event was asynchronously processed after 5 seconds, Amount was set to 2. So be careful when processing and passing values and objects in asynchronous processing!
--
-- ### Linear Transition Example
--
-- This example is fully implemented in the MOOSE test mission on GITHUB: [FSM-100 - Transition Explanation](https://github.com/FlightControl-Master/MOOSE/blob/master/Moose%20Test%20Missions/FSM%20-%20Finite%20State%20Machine/FSM-100%20-%20Transition%20Explanation/FSM-100%20-%20Transition%20Explanation.lua)
--
-- It models a unit standing still near Batumi, and flaring every 5 seconds while switching between a Green flare and a Red flare.
-- The purpose of this example is not to show how exciting flaring is, but it demonstrates how a Linear Transition FSM can be build.
-- Have a look at the source code. The source code is also further explained below in this section.
--
-- The example creates a new FsmDemo object from class FSM.
-- It will set the start state of FsmDemo to state **Green**.
-- Two Linear Transition Rules are created, where upon the event **Switch**,
-- the FsmDemo will transition from state **Green** to **Red** and from **Red** back to **Green**.
--
-- ![Transition Example](..\Presentations\FSM\Dia6.JPG)
--
-- local FsmDemo = FSM:New() -- #FsmDemo
-- FsmDemo:SetStartState( "Green" )
-- FsmDemo:AddTransition( "Green", "Switch", "Red" )
-- FsmDemo:AddTransition( "Red", "Switch", "Green" )
--
-- In the above example, the FsmDemo could flare every 5 seconds a Green or a Red flare into the air.
-- The next code implements this through the event handling method **OnAfterSwitch**.
--
-- ![Transition Flow](..\Presentations\FSM\Dia7.JPG)
--
-- function FsmDemo:OnAfterSwitch( From, Event, To, FsmUnit )
-- self:T( { From, Event, To, FsmUnit } )
--
-- if From == "Green" then
-- FsmUnit:Flare(FLARECOLOR.Green)
-- else
-- if From == "Red" then
-- FsmUnit:Flare(FLARECOLOR.Red)
-- end
-- end
-- self:__Switch( 5, FsmUnit ) -- Trigger the next Switch event to happen in 5 seconds.
-- end
--
-- FsmDemo:__Switch( 5, FsmUnit ) -- Trigger the first Switch event to happen in 5 seconds.
--
-- The OnAfterSwitch implements a loop. The last line of the code fragment triggers the Switch Event within 5 seconds.
-- Upon the event execution (after 5 seconds), the OnAfterSwitch method is called of FsmDemo (cfr. the double point notation!!! ":").
-- The OnAfterSwitch method receives from the FSM the 3 transition parameter details ( From, Event, To ),
-- and one additional parameter that was given when the event was triggered, which is in this case the Unit that is used within OnSwitchAfter.
--
-- function FsmDemo:OnAfterSwitch( From, Event, To, FsmUnit )
--
-- For debugging reasons the received parameters are traced within the DCS.log.
--
-- self:T( { From, Event, To, FsmUnit } )
--
-- The method will check if the From state received is either "Green" or "Red" and will flare the respective color from the FsmUnit.
--
-- if From == "Green" then
-- FsmUnit:Flare(FLARECOLOR.Green)
-- else
-- if From == "Red" then
-- FsmUnit:Flare(FLARECOLOR.Red)
-- end
-- end
--
-- It is important that the Switch event is again triggered, otherwise, the FsmDemo would stop working after having the first Event being handled.
--
-- FsmDemo:__Switch( 5, FsmUnit ) -- Trigger the next Switch event to happen in 5 seconds.
--
-- The below code fragment extends the FsmDemo, demonstrating multiple **From states declared as a table**, adding a **Linear Transition Rule**.
-- The new event **Stop** will cancel the Switching process.
-- The transition for event Stop can be executed if the current state of the FSM is either "Red" or "Green".
--
-- local FsmDemo = FSM:New() -- #FsmDemo
-- FsmDemo:SetStartState( "Green" )
-- FsmDemo:AddTransition( "Green", "Switch", "Red" )
-- FsmDemo:AddTransition( "Red", "Switch", "Green" )
-- FsmDemo:AddTransition( { "Red", "Green" }, "Stop", "Stopped" )
--
-- The transition for event Stop can also be simplified, as any current state of the FSM is valid.
--
-- FsmDemo:AddTransition( "*", "Stop", "Stopped" )
--
-- So... When FsmDemo:Stop() is being triggered, the state of FsmDemo will transition from Red or Green to Stopped.
-- And there is no transition handling method defined for that transition, thus, no new event is being triggered causing the FsmDemo process flow to halt.
--
-- ## FSM Hierarchical Transitions
--
-- Hierarchical Transitions allow to re-use readily available and implemented FSMs.
-- This becomes in very useful for mission building, where mission designers build complex processes and workflows,
-- combining smaller FSMs to one single FSM.
--
-- The FSM can embed **Sub-FSMs** that will execute and return **multiple possible Return (End) States**.
-- Depending upon **which state is returned**, the main FSM can continue the flow **triggering specific events**.
--
-- The method @{#FSM.AddProcess}() adds a new Sub-FSM to the FSM.
--
-- ===
--
-- @field #FSM
FSM = {
ClassName = "FSM",
}
--- Creates a new FSM object.
-- @param #FSM self
-- @return #FSM
function FSM:New()
-- Inherits from BASE
self = BASE:Inherit( self, BASE:New() )
self.options = options or {}
self.options.subs = self.options.subs or {}
self.current = self.options.initial or 'none'
self.Events = {}
self.subs = {}
self.endstates = {}
self.Scores = {}
self._StartState = "none"
self._Transitions = {}
self._Processes = {}
self._EndStates = {}
self._Scores = {}
self._EventSchedules = {}
self.CallScheduler = SCHEDULER:New( self )
return self
end
--- Sets the start state of the FSM.
-- @param #FSM self
-- @param #string State A string defining the start state.
function FSM:SetStartState( State )
self._StartState = State
self.current = State
end
--- Returns the start state of the FSM.
-- @param #FSM self
-- @return #string A string containing the start state.
function FSM:GetStartState()
return self._StartState or {}
end
--- Add a new transition rule to the FSM.
-- A transition rule defines when and if the FSM can transition from a state towards another state upon a triggered event.
-- @param #FSM self
-- @param #table From Can contain a string indicating the From state or a table of strings containing multiple From states.
-- @param #string Event The Event name.
-- @param #string To The To state.
function FSM:AddTransition( From, Event, To )
local Transition = {}
Transition.From = From
Transition.Event = Event
Transition.To = To
-- Debug message.
--self:T3( Transition )
self._Transitions[Transition] = Transition
self:_eventmap( self.Events, Transition )
end
--- Returns a table of the transition rules defined within the FSM.
-- @param #FSM self
-- @return #table Transitions.
function FSM:GetTransitions()
return self._Transitions or {}
end
--- Set the default @{#FSM_PROCESS} template with key ProcessName providing the ProcessClass and the process object when it is assigned to a @{Wrapper.Controllable} by the task.
-- @param #FSM self
-- @param #table From Can contain a string indicating the From state or a table of strings containing multiple From states.
-- @param #string Event The Event name.
-- @param Core.Fsm#FSM_PROCESS Process An sub-process FSM.
-- @param #table ReturnEvents A table indicating for which returned events of the SubFSM which Event must be triggered in the FSM.
-- @return Core.Fsm#FSM_PROCESS The SubFSM.
function FSM:AddProcess( From, Event, Process, ReturnEvents )
--self:T3( { From, Event } )
local Sub = {}
Sub.From = From
Sub.Event = Event
Sub.fsm = Process
Sub.StartEvent = "Start"
Sub.ReturnEvents = ReturnEvents
self._Processes[Sub] = Sub
self:_submap( self.subs, Sub, nil )
self:AddTransition( From, Event, From )
return Process
end
--- Returns a table of the SubFSM rules defined within the FSM.
-- @param #FSM self
-- @return #table Sub processes.
function FSM:GetProcesses()
self:F( { Processes = self._Processes } )
return self._Processes or {}
end
function FSM:GetProcess( From, Event )
for ProcessID, Process in pairs( self:GetProcesses() ) do
if Process.From == From and Process.Event == Event then
return Process.fsm
end
end
error( "Sub-Process from state " .. From .. " with event " .. Event .. " not found!" )
end
function FSM:SetProcess( From, Event, Fsm )
for ProcessID, Process in pairs( self:GetProcesses() ) do
if Process.From == From and Process.Event == Event then
Process.fsm = Fsm
return true
end
end
error( "Sub-Process from state " .. From .. " with event " .. Event .. " not found!" )
end
--- Adds an End state.
-- @param #FSM self
-- @param #string State The FSM state.
function FSM:AddEndState( State )
self._EndStates[State] = State
self.endstates[State] = State
end
--- Returns the End states.
-- @param #FSM self
-- @return #table End states.
function FSM:GetEndStates()
return self._EndStates or {}
end
--- Adds a score for the FSM to be achieved.
-- @param #FSM self
-- @param #string State is the state of the process when the score needs to be given. (See the relevant state descriptions of the process).
-- @param #string ScoreText is a text describing the score that is given according the status.
-- @param #number Score is a number providing the score of the status.
-- @return #FSM self
function FSM:AddScore( State, ScoreText, Score )
self:F( { State, ScoreText, Score } )
self._Scores[State] = self._Scores[State] or {}
self._Scores[State].ScoreText = ScoreText
self._Scores[State].Score = Score
return self
end
--- Adds a score for the FSM_PROCESS to be achieved.
-- @param #FSM self
-- @param #string From is the From State of the main process.
-- @param #string Event is the Event of the main process.
-- @param #string State is the state of the process when the score needs to be given. (See the relevant state descriptions of the process).
-- @param #string ScoreText is a text describing the score that is given according the status.
-- @param #number Score is a number providing the score of the status.
-- @return #FSM self
function FSM:AddScoreProcess( From, Event, State, ScoreText, Score )
self:F( { From, Event, State, ScoreText, Score } )
local Process = self:GetProcess( From, Event )
Process._Scores[State] = Process._Scores[State] or {}
Process._Scores[State].ScoreText = ScoreText
Process._Scores[State].Score = Score
--self:T3( Process._Scores )
return Process
end
--- Returns a table with the scores defined.
-- @param #FSM self
-- @return #table Scores.
function FSM:GetScores()
return self._Scores or {}
end
--- Returns a table with the Subs defined.
-- @param #FSM self
-- @return #table Sub processes.
function FSM:GetSubs()
return self.options.subs
end
--- Load call backs.
-- @param #FSM self
-- @param #table CallBackTable Table of call backs.
function FSM:LoadCallBacks( CallBackTable )
for name, callback in pairs( CallBackTable or {} ) do
self[name] = callback
end
end
--- Event map.
-- @param #FSM self
-- @param #table Events Events.
-- @param #table EventStructure Event structure.
function FSM:_eventmap( Events, EventStructure )
local Event = EventStructure.Event
local __Event = "__" .. EventStructure.Event
self[Event] = self[Event] or self:_create_transition(Event)
self[__Event] = self[__Event] or self:_delayed_transition(Event)
-- Debug message.
--self:T3( "Added methods: " .. Event .. ", " .. __Event )
Events[Event] = self.Events[Event] or { map = {} }
self:_add_to_map( Events[Event].map, EventStructure )
end
--- Sub maps.
-- @param #FSM self
-- @param #table subs Subs.
-- @param #table sub Sub.
-- @param #string name Name.
function FSM:_submap( subs, sub, name )
subs[sub.From] = subs[sub.From] or {}
subs[sub.From][sub.Event] = subs[sub.From][sub.Event] or {}
-- Make the reference table weak.
-- setmetatable( subs[sub.From][sub.Event], { __mode = "k" } )
subs[sub.From][sub.Event][sub] = {}
subs[sub.From][sub.Event][sub].fsm = sub.fsm
subs[sub.From][sub.Event][sub].StartEvent = sub.StartEvent
subs[sub.From][sub.Event][sub].ReturnEvents = sub.ReturnEvents or {} -- these events need to be given to find the correct continue event ... if none given, the processing will stop.
subs[sub.From][sub.Event][sub].name = name
subs[sub.From][sub.Event][sub].fsmparent = self
end
--- Call handler.
-- @param #FSM self
-- @param #string step Step "onafter", "onbefore", "onenter", "onleave".
-- @param #string trigger Trigger.
-- @param #table params Parameters.
-- @param #string EventName Event name.
-- @return Value.
function FSM:_call_handler( step, trigger, params, EventName )
-- env.info(string.format("FF T=%.3f _call_handler step=%s, trigger=%s, event=%s", timer.getTime(), step, trigger, EventName))
local handler = step .. trigger
if self[handler] then
--[[
if step == "onafter" or step == "OnAfter" then
self:T( ":::>" .. step .. params[2] .. " : " .. params[1] .. " >> " .. params[2] .. ">" .. step .. params[2] .. "()" .. " >> " .. params[3] )
elseif step == "onbefore" or step == "OnBefore" then
self:T( ":::>" .. step .. params[2] .. " : " .. params[1] .. " >> " .. step .. params[2] .. "()" .. ">" .. params[2] .. " >> " .. params[3] )
elseif step == "onenter" or step == "OnEnter" then
self:T( ":::>" .. step .. params[3] .. " : " .. params[1] .. " >> " .. params[2] .. " >> " .. step .. params[3] .. "()" .. ">" .. params[3] )
elseif step == "onleave" or step == "OnLeave" then
self:T( ":::>" .. step .. params[1] .. " : " .. params[1] .. ">" .. step .. params[1] .. "()" .. " >> " .. params[2] .. " >> " .. params[3] )
else
self:T( ":::>" .. step .. " : " .. params[1] .. " >> " .. params[2] .. " >> " .. params[3] )
end
]]
self._EventSchedules[EventName] = nil
-- Error handler.
local ErrorHandler = function( errmsg )
env.info( "Error in SCHEDULER function:" .. errmsg )
if BASE.Debug ~= nil then
env.info( BASE.Debug.traceback() )
end
return errmsg
end
-- return self[handler](self, unpack( params ))
-- Protected call.
local Result, Value = xpcall( function()
return self[handler]( self, unpack( params ) )
end, ErrorHandler )
return Value
end
end
--- Handler.
-- @param #FSM self
-- @param #string EventName Event name.
-- @param ... Arguments.
function FSM._handler( self, EventName, ... )
local Can, To = self:can( EventName )
if To == "*" then
To = self.current
end
if Can then
-- From state.
local From = self.current
-- Parameters.
local Params = { From, EventName, To, ... }
if self["onleave" .. From] or
self["OnLeave" .. From] or
self["onbefore" .. EventName] or
self["OnBefore" .. EventName] or
self["onafter" .. EventName] or
self["OnAfter" .. EventName] or
self["onenter" .. To] or
self["OnEnter" .. To] then
if self:_call_handler( "onbefore", EventName, Params, EventName ) == false then
self:T( "*** FSM *** Cancel" .. " *** " .. self.current .. " --> " .. EventName .. " --> " .. To .. " *** onbefore" .. EventName )
return false
else
if self:_call_handler( "OnBefore", EventName, Params, EventName ) == false then
self:T( "*** FSM *** Cancel" .. " *** " .. self.current .. " --> " .. EventName .. " --> " .. To .. " *** OnBefore" .. EventName )
return false
else
if self:_call_handler( "onleave", From, Params, EventName ) == false then
self:T( "*** FSM *** Cancel" .. " *** " .. self.current .. " --> " .. EventName .. " --> " .. To .. " *** onleave" .. From )
return false
else
if self:_call_handler( "OnLeave", From, Params, EventName ) == false then
self:T( "*** FSM *** Cancel" .. " *** " .. self.current .. " --> " .. EventName .. " --> " .. To .. " *** OnLeave" .. From )
return false
end
end
end
end
else
local ClassName = self:GetClassName()
if ClassName == "FSM" then
self:T( "*** FSM *** Transit *** " .. self.current .. " --> " .. EventName .. " --> " .. To )
end
if ClassName == "FSM_TASK" then
self:T( "*** FSM *** Transit *** " .. self.current .. " --> " .. EventName .. " --> " .. To .. " *** Task: " .. self.TaskName )
end
if ClassName == "FSM_CONTROLLABLE" then
self:T( "*** FSM *** Transit *** " .. self.current .. " --> " .. EventName .. " --> " .. To .. " *** TaskUnit: " .. self.Controllable.ControllableName .. " *** " )
end
if ClassName == "FSM_PROCESS" then
self:T( "*** FSM *** Transit *** " .. self.current .. " --> " .. EventName .. " --> " .. To .. " *** Task: " .. self.Task:GetName() .. ", TaskUnit: " .. self.Controllable.ControllableName .. " *** " )
end
end
-- New current state.
self.current = To
local execute = true
local subtable = self:_gosub( From, EventName )
for _, sub in pairs( subtable ) do
-- if sub.nextevent then
-- self:F2( "nextevent = " .. sub.nextevent )
-- self[sub.nextevent]( self )
-- end
self:T( "*** FSM *** Sub *** " .. sub.StartEvent )
sub.fsm.fsmparent = self
sub.fsm.ReturnEvents = sub.ReturnEvents
sub.fsm[sub.StartEvent]( sub.fsm )
execute = false
end
local fsmparent, Event = self:_isendstate( To )
if fsmparent and Event then
self:T( "*** FSM *** End *** " .. Event )
self:_call_handler( "onenter", To, Params, EventName )
self:_call_handler( "OnEnter", To, Params, EventName )
self:_call_handler( "onafter", EventName, Params, EventName )
self:_call_handler( "OnAfter", EventName, Params, EventName )
self:_call_handler( "onstate", "change", Params, EventName )
fsmparent[Event]( fsmparent )
execute = false
end
if execute then
self:_call_handler( "onafter", EventName, Params, EventName )
self:_call_handler( "OnAfter", EventName, Params, EventName )
self:_call_handler( "onenter", To, Params, EventName )
self:_call_handler( "OnEnter", To, Params, EventName )
self:_call_handler( "onstate", "change", Params, EventName )
end
else
self:T( "*** FSM *** NO Transition *** " .. self.current .. " --> " .. EventName .. " --> ? " )
end
return nil
end
--- Delayed transition.
-- @param #FSM self
-- @param #string EventName Event name.
-- @return #function Function.
function FSM:_delayed_transition( EventName )
return function( self, DelaySeconds, ... )
-- Debug.
self:T3( "Delayed Event: " .. EventName )
local CallID = 0
if DelaySeconds ~= nil then
if DelaySeconds < 0 then -- Only call the event ONCE!
DelaySeconds = math.abs( DelaySeconds )
if not self._EventSchedules[EventName] then
-- Call _handler.
CallID = self.CallScheduler:Schedule( self, self._handler, { EventName, ... }, DelaySeconds or 1, nil, nil, nil, 4, true )
-- Set call ID.
self._EventSchedules[EventName] = CallID
-- Debug output.
self:T2(string.format("NEGATIVE Event %s delayed by %.3f sec SCHEDULED with CallID=%s", EventName, DelaySeconds, tostring(CallID)))
else
self:T2(string.format("NEGATIVE Event %s delayed by %.3f sec CANCELLED as we already have such an event in the queue.", EventName, DelaySeconds))
-- reschedule
end
else
CallID = self.CallScheduler:Schedule( self, self._handler, { EventName, ... }, DelaySeconds or 1, nil, nil, nil, 4, true )
self:T2(string.format("Event %s delayed by %.3f sec SCHEDULED with CallID=%s", EventName, DelaySeconds, tostring(CallID)))
end
else
error( "FSM: An asynchronous event trigger requires a DelaySeconds parameter!!! This can be positive or negative! Sorry, but will not process this." )
end
-- Debug.
--self:T3( { CallID = CallID } )
end
end
--- Create transition.
-- @param #FSM self
-- @param #string EventName Event name.
-- @return #function Function.
function FSM:_create_transition( EventName )
return function( self, ... )
return self._handler( self, EventName, ... )
end
end
--- Go sub.
-- @param #FSM self
-- @param #string ParentFrom Parent from state.
-- @param #string ParentEvent Parent event name.
-- @return #table Subs.
function FSM:_gosub( ParentFrom, ParentEvent )
local fsmtable = {}
if self.subs[ParentFrom] and self.subs[ParentFrom][ParentEvent] then
--self:T3( { ParentFrom, ParentEvent, self.subs[ParentFrom], self.subs[ParentFrom][ParentEvent] } )
return self.subs[ParentFrom][ParentEvent]
else
return {}
end
end
--- Is end state.
-- @param #FSM self
-- @param #string Current Current state name.
-- @return #table FSM parent.
-- @return #string Event name.
function FSM:_isendstate( Current )
local FSMParent = self.fsmparent
if FSMParent and self.endstates[Current] then
-- self:T( { state = Current, endstates = self.endstates, endstate = self.endstates[Current] } )
FSMParent.current = Current
local ParentFrom = FSMParent.current
-- self:T( { ParentFrom, self.ReturnEvents } )
local Event = self.ReturnEvents[Current]
-- self:T( { Event } )
if Event then
return FSMParent, Event
else
-- self:T( { "Could not find parent event name for state ", ParentFrom } )
end
end
return nil
end
--- Add to map.
-- @param #FSM self
-- @param #table Map Map.
-- @param #table Event Event table.
function FSM:_add_to_map( Map, Event )
self:F3( { Map, Event } )
if type( Event.From ) == 'string' then
Map[Event.From] = Event.To
else
for _, From in ipairs( Event.From ) do
Map[From] = Event.To
end
end
--self:T3( { Map, Event } )
end
--- Get current state.
-- @param #FSM self
-- @return #string Current FSM state.
function FSM:GetState()
return self.current
end
--- Get current state.
-- @param #FSM self
-- @return #string Current FSM state.
function FSM:GetCurrentState()
return self.current
end
--- Check if FSM is in state.
-- @param #FSM self
-- @param #string State State name.
-- @return #boolean If true, FSM is in this state.
function FSM:Is( State )
return self.current == State
end
--- Check if FSM is in state.
-- @param #FSM self
-- @param #string State State name.
-- @return #boolean If true, FSM is in this state.
function FSM:is(state)
return self.current == state
end
--- Check if can do an event.
-- @param #FSM self
-- @param #string e Event name.
-- @return #boolean If true, FSM can do the event.
-- @return #string To state.
function FSM:can( e )
local Event = self.Events[e]
-- self:F3( { self.current, Event } )
local To = Event and Event.map[self.current] or Event.map['*']
return To ~= nil, To
end
--- Check if cannot do an event.
-- @param #FSM self
-- @param #string e Event name.
-- @return #boolean If true, FSM cannot do the event.
function FSM:cannot( e )
return not self:can( e )
end
end
do -- FSM_CONTROLLABLE
--- @type FSM_CONTROLLABLE
-- @field Wrapper.Controllable#CONTROLLABLE Controllable
-- @extends Core.Fsm#FSM
--- Models Finite State Machines for @{Wrapper.Controllable}s, which are @{Wrapper.Group}s, @{Wrapper.Unit}s, @{Wrapper.Client}s.
--
-- ===
--
-- @field #FSM_CONTROLLABLE
FSM_CONTROLLABLE = {
ClassName = "FSM_CONTROLLABLE",
}
--- Creates a new FSM_CONTROLLABLE object.
-- @param #FSM_CONTROLLABLE self
-- @param #table FSMT Finite State Machine Table
-- @param Wrapper.Controllable#CONTROLLABLE Controllable (optional) The CONTROLLABLE object that the FSM_CONTROLLABLE governs.
-- @return #FSM_CONTROLLABLE
function FSM_CONTROLLABLE:New( Controllable )
-- Inherits from BASE
local self = BASE:Inherit( self, FSM:New() ) -- Core.Fsm#FSM_CONTROLLABLE
if Controllable then
self:SetControllable( Controllable )
end
self:AddTransition( "*", "Stop", "Stopped" )
--- OnBefore Transition Handler for Event Stop.
-- @function [parent=#FSM_CONTROLLABLE] OnBeforeStop
-- @param #FSM_CONTROLLABLE self
-- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM.
-- @param #string From The From State string.
-- @param #string Event The Event string.
-- @param #string To The To State string.
-- @return #boolean Return false to cancel Transition.
--- OnAfter Transition Handler for Event Stop.
-- @function [parent=#FSM_CONTROLLABLE] OnAfterStop
-- @param #FSM_CONTROLLABLE self
-- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM.
-- @param #string From The From State string.
-- @param #string Event The Event string.
-- @param #string To The To State string.
--- Synchronous Event Trigger for Event Stop.
-- @function [parent=#FSM_CONTROLLABLE] Stop
-- @param #FSM_CONTROLLABLE self
--- Asynchronous Event Trigger for Event Stop.
-- @function [parent=#FSM_CONTROLLABLE] __Stop
-- @param #FSM_CONTROLLABLE self
-- @param #number Delay The delay in seconds.
--- OnLeave Transition Handler for State Stopped.
-- @function [parent=#FSM_CONTROLLABLE] OnLeaveStopped
-- @param #FSM_CONTROLLABLE self
-- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM.
-- @param #string From The From State string.
-- @param #string Event The Event string.
-- @param #string To The To State string.
-- @return #boolean Return false to cancel Transition.
--- OnEnter Transition Handler for State Stopped.
-- @function [parent=#FSM_CONTROLLABLE] OnEnterStopped
-- @param #FSM_CONTROLLABLE self
-- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM.
-- @param #string From The From State string.
-- @param #string Event The Event string.
-- @param #string To The To State string.
return self
end
--- OnAfter Transition Handler for Event Stop.
-- @function [parent=#FSM_CONTROLLABLE] OnAfterStop
-- @param #FSM_CONTROLLABLE self
-- @param Wrapper.Controllable#CONTROLLABLE Controllable The Controllable Object managed by the FSM.
-- @param #string From The From State string.
-- @param #string Event The Event string.
-- @param #string To The To State string.
function FSM_CONTROLLABLE:OnAfterStop( Controllable, From, Event, To )
-- Clear all pending schedules
self.CallScheduler:Clear()
end
--- Sets the CONTROLLABLE object that the FSM_CONTROLLABLE governs.
-- @param #FSM_CONTROLLABLE self
-- @param Wrapper.Controllable#CONTROLLABLE FSMControllable
-- @return #FSM_CONTROLLABLE
function FSM_CONTROLLABLE:SetControllable( FSMControllable )
-- self:F( FSMControllable:GetName() )
self.Controllable = FSMControllable
end
--- Gets the CONTROLLABLE object that the FSM_CONTROLLABLE governs.
-- @param #FSM_CONTROLLABLE self
-- @return Wrapper.Controllable#CONTROLLABLE
function FSM_CONTROLLABLE:GetControllable()
return self.Controllable
end
function FSM_CONTROLLABLE:_call_handler( step, trigger, params, EventName )
local handler = step .. trigger
local ErrorHandler = function( errmsg )
env.info( "Error in SCHEDULER function:" .. errmsg )
if BASE.Debug ~= nil then
env.info( BASE.Debug.traceback() )
end
return errmsg
end
if self[handler] then
self:T( "*** FSM *** " .. step .. " *** " .. params[1] .. " --> " .. params[2] .. " --> " .. params[3] .. " *** TaskUnit: " .. self.Controllable:GetName() )
self._EventSchedules[EventName] = nil
local Result, Value = xpcall( function()
return self[handler]( self, self.Controllable, unpack( params ) )
end, ErrorHandler )
return Value
-- return self[handler]( self, self.Controllable, unpack( params ) )
end
end
end
do -- FSM_PROCESS
--- @type FSM_PROCESS
-- @field Tasking.Task#TASK Task
-- @extends Core.Fsm#FSM_CONTROLLABLE
--- FSM_PROCESS class models Finite State Machines for @{Tasking.Task} actions, which control @{Wrapper.Client}s.
--
-- ===
--
-- @field #FSM_PROCESS FSM_PROCESS
--
FSM_PROCESS = { ClassName = "FSM_PROCESS" }
--- Creates a new FSM_PROCESS object.
-- @param #FSM_PROCESS self
-- @return #FSM_PROCESS
function FSM_PROCESS:New( Controllable, Task )
local self = BASE:Inherit( self, FSM_CONTROLLABLE:New() ) -- Core.Fsm#FSM_PROCESS
-- self:F( Controllable )
self:Assign( Controllable, Task )
return self
end
function FSM_PROCESS:Init( FsmProcess )
self:T( "No Initialisation" )
end
function FSM_PROCESS:_call_handler( step, trigger, params, EventName )
local handler = step .. trigger
local ErrorHandler = function( errmsg )
env.info( "Error in FSM_PROCESS call handler:" .. errmsg )
if BASE.Debug ~= nil then
env.info( BASE.Debug.traceback() )
end
return errmsg
end
if self[handler] then
if handler ~= "onstatechange" then
self:T( "*** FSM *** " .. step .. " *** " .. params[1] .. " --> " .. params[2] .. " --> " .. params[3] .. " *** Task: " .. self.Task:GetName() .. ", TaskUnit: " .. self.Controllable:GetName() )
end
self._EventSchedules[EventName] = nil
local Result, Value
if self.Controllable and self.Controllable:IsAlive() == true then
Result, Value = xpcall( function()
return self[handler]( self, self.Controllable, self.Task, unpack( params ) )
end, ErrorHandler )
end
return Value
-- return self[handler]( self, self.Controllable, unpack( params ) )
end
end
--- Creates a new FSM_PROCESS object based on this FSM_PROCESS.
-- @param #FSM_PROCESS self
-- @return #FSM_PROCESS
function FSM_PROCESS:Copy( Controllable, Task )
--self:T3( { self:GetClassNameAndID() } )
local NewFsm = self:New( Controllable, Task ) -- Core.Fsm#FSM_PROCESS
NewFsm:Assign( Controllable, Task )
-- Polymorphic call to initialize the new FSM_PROCESS based on self FSM_PROCESS
NewFsm:Init( self )
-- Set Start State
NewFsm:SetStartState( self:GetStartState() )
-- Copy Transitions
for TransitionID, Transition in pairs( self:GetTransitions() ) do
NewFsm:AddTransition( Transition.From, Transition.Event, Transition.To )
end
-- Copy Processes
for ProcessID, Process in pairs( self:GetProcesses() ) do
-- self:E( { Process:GetName() } )
local FsmProcess = NewFsm:AddProcess( Process.From, Process.Event, Process.fsm:Copy( Controllable, Task ), Process.ReturnEvents )
end
-- Copy End States
for EndStateID, EndState in pairs( self:GetEndStates() ) do
--self:T3( EndState )
NewFsm:AddEndState( EndState )
end
-- Copy the score tables
for ScoreID, Score in pairs( self:GetScores() ) do
--self:T3( Score )
NewFsm:AddScore( ScoreID, Score.ScoreText, Score.Score )
end
return NewFsm
end
--- Removes an FSM_PROCESS object.
-- @param #FSM_PROCESS self
-- @return #FSM_PROCESS
function FSM_PROCESS:Remove()
self:F( { self:GetClassNameAndID() } )
self:F( "Clearing Schedules" )
self.CallScheduler:Clear()
-- Copy Processes
for ProcessID, Process in pairs( self:GetProcesses() ) do
if Process.fsm then
Process.fsm:Remove()
Process.fsm = nil
end
end
return self
end
--- Sets the task of the process.
-- @param #FSM_PROCESS self
-- @param Tasking.Task#TASK Task
-- @return #FSM_PROCESS
function FSM_PROCESS:SetTask( Task )
self.Task = Task
return self
end
--- Gets the task of the process.
-- @param #FSM_PROCESS self
-- @return Tasking.Task#TASK
function FSM_PROCESS:GetTask()
return self.Task
end
--- Gets the mission of the process.
-- @param #FSM_PROCESS self
-- @return Tasking.Mission#MISSION
function FSM_PROCESS:GetMission()
return self.Task.Mission
end
--- Gets the mission of the process.
-- @param #FSM_PROCESS self
-- @return Tasking.CommandCenter#COMMANDCENTER
function FSM_PROCESS:GetCommandCenter()
return self:GetTask():GetMission():GetCommandCenter()
end
-- TODO: Need to check and fix that an FSM_PROCESS is only for a UNIT. Not for a GROUP.
--- Send a message of the @{Tasking.Task} to the Group of the Unit.
-- @param #FSM_PROCESS self
function FSM_PROCESS:Message( Message )
self:F( { Message = Message } )
local CC = self:GetCommandCenter()
local TaskGroup = self.Controllable:GetGroup()
local PlayerName = self.Controllable:GetPlayerName() -- Only for a unit
PlayerName = PlayerName and " (" .. PlayerName .. ")" or "" -- If PlayerName is nil, then keep it nil, otherwise add brackets.
local Callsign = self.Controllable:GetCallsign()
local Prefix = Callsign and " @ " .. Callsign .. PlayerName or ""
Message = Prefix .. ": " .. Message
CC:MessageToGroup( Message, TaskGroup )
end
--- Assign the process to a @{Wrapper.Unit} and activate the process.
-- @param #FSM_PROCESS self
-- @param Task.Tasking#TASK Task
-- @param Wrapper.Unit#UNIT ProcessUnit
-- @return #FSM_PROCESS self
function FSM_PROCESS:Assign( ProcessUnit, Task )
-- self:T( { Task:GetName(), ProcessUnit:GetName() } )
self:SetControllable( ProcessUnit )
self:SetTask( Task )
-- self.ProcessGroup = ProcessUnit:GetGroup()
return self
end
-- function FSM_PROCESS:onenterAssigned( ProcessUnit, Task, From, Event, To )
--
-- if From( "Planned" ) then
-- self:T( "*** FSM *** Assign *** " .. Task:GetName() .. "/" .. ProcessUnit:GetName() .. " *** " .. From .. " --> " .. Event .. " --> " .. To )
-- self.Task:Assign()
-- end
-- end
function FSM_PROCESS:onenterFailed( ProcessUnit, Task, From, Event, To )
self:T( "*** FSM *** Failed *** " .. Task:GetName() .. "/" .. ProcessUnit:GetName() .. " *** " .. From .. " --> " .. Event .. " --> " .. To )
self.Task:Fail()
end
--- StateMachine callback function for a FSM_PROCESS
-- @param #FSM_PROCESS self
-- @param Wrapper.Controllable#CONTROLLABLE ProcessUnit
-- @param #string Event
-- @param #string From
-- @param #string To
function FSM_PROCESS:onstatechange( ProcessUnit, Task, From, Event, To )
if From ~= To then
self:T( "*** FSM *** Change *** " .. Task:GetName() .. "/" .. ProcessUnit:GetName() .. " *** " .. From .. " --> " .. Event .. " --> " .. To )
end
-- if self:IsTrace() then
-- MESSAGE:New( "@ Process " .. self:GetClassNameAndID() .. " : " .. Event .. " changed to state " .. To, 2 ):ToAll()
-- self:F2( { Scores = self._Scores, To = To } )
-- end
-- TODO: This needs to be reworked with a callback functions allocated within Task, and set within the mission script from the Task Objects...
if self._Scores[To] then
local Task = self.Task
local Scoring = Task:GetScoring()
if Scoring then
Scoring:_AddMissionTaskScore( Task.Mission, ProcessUnit, self._Scores[To].ScoreText, self._Scores[To].Score )
end
end
end
end
do -- FSM_TASK
--- FSM_TASK class
-- @type FSM_TASK
-- @field Tasking.Task#TASK Task
-- @extends #FSM
--- Models Finite State Machines for @{Tasking.Task}s.
--
-- ===
--
-- @field #FSM_TASK FSM_TASK
--
FSM_TASK = {
ClassName = "FSM_TASK",
}
--- Creates a new FSM_TASK object.
-- @param #FSM_TASK self
-- @param #string TaskName The name of the task.
-- @return #FSM_TASK
function FSM_TASK:New( TaskName )
local self = BASE:Inherit( self, FSM_CONTROLLABLE:New() ) -- Core.Fsm#FSM_TASK
self["onstatechange"] = self.OnStateChange
self.TaskName = TaskName
return self
end
function FSM_TASK:_call_handler( step, trigger, params, EventName )
local handler = step .. trigger
local ErrorHandler = function( errmsg )
env.info( "Error in SCHEDULER function:" .. errmsg )
if BASE.Debug ~= nil then
env.info( BASE.Debug.traceback() )
end
return errmsg
end
if self[handler] then
self:T( "*** FSM *** " .. step .. " *** " .. params[1] .. " --> " .. params[2] .. " --> " .. params[3] .. " *** Task: " .. self.TaskName )
self._EventSchedules[EventName] = nil
-- return self[handler]( self, unpack( params ) )
local Result, Value = xpcall( function()
return self[handler]( self, unpack( params ) )
end, ErrorHandler )
return Value
end
end
end -- FSM_TASK
do -- FSM_SET
--- FSM_SET class
-- @type FSM_SET
-- @field Core.Set#SET_BASE Set
-- @extends Core.Fsm#FSM
--- FSM_SET class models Finite State Machines for @{Core.Set}s. Note that these FSMs control multiple objects!!! So State concerns here
-- for multiple objects or the position of the state machine in the process.
--
-- ===
--
-- @field #FSM_SET FSM_SET
FSM_SET = {
ClassName = "FSM_SET",
}
--- Creates a new FSM_SET object.
-- @param #FSM_SET self
-- @param #table FSMT Finite State Machine Table
-- @param Set_SET_BASE FSMSet (optional) The Set object that the FSM_SET governs.
-- @return #FSM_SET
function FSM_SET:New( FSMSet )
-- Inherits from BASE
self = BASE:Inherit( self, FSM:New() ) -- Core.Fsm#FSM_SET
if FSMSet then
self:Set( FSMSet )
end
return self
end
--- Sets the SET_BASE object that the FSM_SET governs.
-- @param #FSM_SET self
-- @param Core.Set#SET_BASE FSMSet
-- @return #FSM_SET
function FSM_SET:Set( FSMSet )
self:F( FSMSet )
self.Set = FSMSet
end
--- Gets the SET_BASE object that the FSM_SET governs.
-- @param #FSM_SET self
-- @return Core.Set#SET_BASE
function FSM_SET:Get()
return self.Set
end
function FSM_SET:_call_handler( step, trigger, params, EventName )
local handler = step .. trigger
if self[handler] then
self:T( "*** FSM *** " .. step .. " *** " .. params[1] .. " --> " .. params[2] .. " --> " .. params[3] )
self._EventSchedules[EventName] = nil
return self[handler]( self, self.Set, unpack( params ) )
end
end
end -- FSM_SET