dcs-retribution/game/theater/conflicttheater.py
Dan Albert f659dc1f76 Reference point rework.
* Introduce a real type.
* Rewrite _transform_point to make use of Point.
* Add shift modifier for large (10 pixel) adjustements to reference
  points. Unmodified behavior is now single pixel.
* Use WASD for moving the second point (shift modified numpad keys don't
  seem to work).
* Add a debug option to draw transformed reference points to check for
  errors. If they don't overlap, something is wrong.
* Cleaned up all the existing reference points. Caucasus in particular
  is now *much* better.

As an added bonus, the cleanup for carrier movement projection now also
shows an invalid destination when the destination is on land.
2020-12-10 21:08:38 -08:00

906 lines
32 KiB
Python

from __future__ import annotations
import itertools
import json
import logging
from dataclasses import dataclass
from functools import cached_property
from itertools import tee
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Set, Tuple, Union, cast
from dcs import Mission
from dcs.countries import (
CombinedJointTaskForcesBlue,
CombinedJointTaskForcesRed,
)
from dcs.country import Country
from dcs.mapping import Point
from dcs.planes import F_15C
from dcs.ships import (
CVN_74_John_C__Stennis,
LHA_1_Tarawa,
USS_Arleigh_Burke_IIa,
)
from dcs.statics import Fortification
from dcs.terrain import (
caucasus,
nevada,
normandy,
persiangulf,
syria,
thechannel,
)
from dcs.terrain.terrain import Airport, Terrain
from dcs.unitgroup import (
FlyingGroup,
Group,
ShipGroup,
StaticGroup,
VehicleGroup,
)
from dcs.vehicles import AirDefence, Armor, MissilesSS, Unarmed
from gen.flights.flight import FlightType
from .controlpoint import (
Airfield,
Carrier,
ControlPoint,
Lha,
MissionTarget,
OffMapSpawn,
Fob,
)
from .landmap import Landmap, load_landmap, poly_contains
from ..utils import nm_to_meter
Numeric = Union[int, float]
SIZE_TINY = 150
SIZE_SMALL = 600
SIZE_REGULAR = 1000
SIZE_BIG = 2000
SIZE_LARGE = 3000
IMPORTANCE_LOW = 1
IMPORTANCE_MEDIUM = 1.2
IMPORTANCE_HIGH = 1.4
FRONTLINE_MIN_CP_DISTANCE = 5000
def pairwise(iterable):
"""
itertools recipe
s -> (s0,s1), (s1,s2), (s2, s3), ...
"""
a, b = tee(iterable)
next(b, None)
return zip(a, b)
class MizCampaignLoader:
BLUE_COUNTRY = CombinedJointTaskForcesBlue()
RED_COUNTRY = CombinedJointTaskForcesRed()
OFF_MAP_UNIT_TYPE = F_15C.id
CV_UNIT_TYPE = CVN_74_John_C__Stennis.id
LHA_UNIT_TYPE = LHA_1_Tarawa.id
FRONT_LINE_UNIT_TYPE = Armor.APC_M113.id
FOB_UNIT_TYPE = Unarmed.CP_SKP_11_ATC_Mobile_Command_Post.id
EWR_UNIT_TYPE = AirDefence.EWR_55G6.id
SAM_UNIT_TYPE = AirDefence.SAM_SA_10_S_300PS_SR_64H6E.id
GARRISON_UNIT_TYPE = AirDefence.SAM_SA_19_Tunguska_2S6.id
OFFSHORE_STRIKE_TARGET_UNIT_TYPE = Fortification.Oil_platform.id
SHIP_UNIT_TYPE = USS_Arleigh_Burke_IIa.id
MISSILE_SITE_UNIT_TYPE = MissilesSS.SRBM_SS_1C_Scud_B_9K72_LN_9P117M.id
COASTAL_DEFENSE_UNIT_TYPE = MissilesSS.SS_N_2_Silkworm.id
# Multiple options for the required SAMs so campaign designers can more
# accurately see the coverage of their IADS for the expected type.
REQUIRED_LONG_RANGE_SAM_UNIT_TYPES = {
AirDefence.SAM_Patriot_LN_M901.id,
AirDefence.SAM_SA_10_S_300PS_LN_5P85C.id,
AirDefence.SAM_SA_10_S_300PS_LN_5P85D.id,
}
REQUIRED_MEDIUM_RANGE_SAM_UNIT_TYPES = {
AirDefence.SAM_Hawk_LN_M192.id,
AirDefence.SAM_SA_2_LN_SM_90.id,
AirDefence.SAM_SA_3_S_125_LN_5P73.id,
}
BASE_DEFENSE_RADIUS = nm_to_meter(2)
def __init__(self, miz: Path, theater: ConflictTheater) -> None:
self.theater = theater
self.mission = Mission()
self.mission.load_file(str(miz))
self.control_point_id = itertools.count(1000)
# If there are no red carriers there usually aren't red units. Make sure
# both countries are initialized so we don't have to deal with None.
if self.mission.country(self.BLUE_COUNTRY.name) is None:
self.mission.coalition["blue"].add_country(self.BLUE_COUNTRY)
if self.mission.country(self.RED_COUNTRY.name) is None:
self.mission.coalition["red"].add_country(self.RED_COUNTRY)
@staticmethod
def control_point_from_airport(airport: Airport) -> ControlPoint:
# The wiki says this is a legacy property and to just use regular.
size = SIZE_REGULAR
# The importance is taken from the periodicity of the airport's
# warehouse divided by 10. 30 is the default, and out of range (valid
# values are between 1.0 and 1.4). If it is used, pick the default
# importance.
if airport.periodicity == 30:
importance = IMPORTANCE_MEDIUM
else:
importance = airport.periodicity / 10
cp = Airfield(airport, size, importance)
cp.captured = airport.is_blue()
# Use the unlimited aircraft option to determine if an airfield should
# be owned by the player when the campaign is "inverted".
cp.captured_invert = airport.unlimited_aircrafts
return cp
def country(self, blue: bool) -> Country:
country = self.mission.country(
self.BLUE_COUNTRY.name if blue else self.RED_COUNTRY.name)
# Should be guaranteed because we initialized them.
assert country
return country
@property
def blue(self) -> Country:
return self.country(blue=True)
@property
def red(self) -> Country:
return self.country(blue=False)
def off_map_spawns(self, blue: bool) -> Iterator[FlyingGroup]:
for group in self.country(blue).plane_group:
if group.units[0].type == self.OFF_MAP_UNIT_TYPE:
yield group
def carriers(self, blue: bool) -> Iterator[ShipGroup]:
for group in self.country(blue).ship_group:
if group.units[0].type == self.CV_UNIT_TYPE:
yield group
def lhas(self, blue: bool) -> Iterator[ShipGroup]:
for group in self.country(blue).ship_group:
if group.units[0].type == self.LHA_UNIT_TYPE:
yield group
def fobs(self, blue: bool) -> Iterator[VehicleGroup]:
for group in self.country(blue).vehicle_group:
if group.units[0].type == self.FOB_UNIT_TYPE:
yield group
@property
def ships(self) -> Iterator[ShipGroup]:
for group in self.blue.ship_group:
if group.units[0].type == self.SHIP_UNIT_TYPE:
yield group
@property
def ewrs(self) -> Iterator[VehicleGroup]:
for group in self.blue.vehicle_group:
if group.units[0].type == self.EWR_UNIT_TYPE:
yield group
@property
def sams(self) -> Iterator[VehicleGroup]:
for group in self.blue.vehicle_group:
if group.units[0].type == self.SAM_UNIT_TYPE:
yield group
@property
def garrisons(self) -> Iterator[VehicleGroup]:
for group in self.blue.vehicle_group:
if group.units[0].type == self.GARRISON_UNIT_TYPE:
yield group
@property
def offshore_strike_targets(self) -> Iterator[StaticGroup]:
for group in self.blue.static_group:
if group.units[0].type == self.OFFSHORE_STRIKE_TARGET_UNIT_TYPE:
yield group
@property
def missile_sites(self) -> Iterator[VehicleGroup]:
for group in self.blue.vehicle_group:
if group.units[0].type == self.MISSILE_SITE_UNIT_TYPE:
yield group
@property
def coastal_defenses(self) -> Iterator[VehicleGroup]:
for group in self.blue.vehicle_group:
if group.units[0].type == self.COASTAL_DEFENSE_UNIT_TYPE:
yield group
@property
def required_long_range_sams(self) -> Iterator[VehicleGroup]:
for group in self.red.vehicle_group:
if group.units[0].type in self.REQUIRED_LONG_RANGE_SAM_UNIT_TYPES:
yield group
@property
def required_medium_range_sams(self) -> Iterator[VehicleGroup]:
for group in self.red.vehicle_group:
if group.units[0].type in self.REQUIRED_MEDIUM_RANGE_SAM_UNIT_TYPES:
yield group
@cached_property
def control_points(self) -> Dict[int, ControlPoint]:
control_points = {}
for airport in self.mission.terrain.airport_list():
if airport.is_blue() or airport.is_red():
control_point = self.control_point_from_airport(airport)
control_points[control_point.id] = control_point
for blue in (False, True):
for group in self.off_map_spawns(blue):
control_point = OffMapSpawn(next(self.control_point_id),
str(group.name), group.position)
control_point.captured = blue
control_point.captured_invert = group.late_activation
control_points[control_point.id] = control_point
for group in self.carriers(blue):
# TODO: Name the carrier.
control_point = Carrier(
"carrier", group.position, next(self.control_point_id))
control_point.captured = blue
control_point.captured_invert = group.late_activation
control_points[control_point.id] = control_point
for group in self.lhas(blue):
# TODO: Name the LHA.
control_point = Lha(
"lha", group.position, next(self.control_point_id))
control_point.captured = blue
control_point.captured_invert = group.late_activation
control_points[control_point.id] = control_point
for group in self.fobs(blue):
control_point = Fob(
str(group.name), group.position, next(self.control_point_id)
)
control_point.captured = blue
control_point.captured_invert = group.late_activation
control_points[control_point.id] = control_point
return control_points
@property
def front_line_path_groups(self) -> Iterator[VehicleGroup]:
for group in self.country(blue=True).vehicle_group:
if group.units[0].type == self.FRONT_LINE_UNIT_TYPE:
yield group
@cached_property
def front_lines(self) -> Dict[str, ComplexFrontLine]:
# Dict of front line ID to a front line.
front_lines = {}
for group in self.front_line_path_groups:
# The unit will have its first waypoint at the source CP and the
# final waypoint at the destination CP. Intermediate waypoints
# define the curve of the front line.
waypoints = [p.position for p in group.points]
origin = self.theater.closest_control_point(waypoints[0])
if origin is None:
raise RuntimeError(
f"No control point near the first waypoint of {group.name}")
destination = self.theater.closest_control_point(waypoints[-1])
if destination is None:
raise RuntimeError(
f"No control point near the final waypoint of {group.name}")
# Snap the begin and end points to the control points.
waypoints[0] = origin.position
waypoints[-1] = destination.position
front_line_id = f"{origin.id}|{destination.id}"
front_lines[front_line_id] = ComplexFrontLine(origin, waypoints)
self.control_points[origin.id].connect(
self.control_points[destination.id])
self.control_points[destination.id].connect(
self.control_points[origin.id])
return front_lines
def objective_info(self, group: Group) -> Tuple[ControlPoint, int]:
closest = self.theater.closest_control_point(group.position)
distance = closest.position.distance_to_point(group.position)
return closest, distance
def add_preset_locations(self) -> None:
for group in self.garrisons:
closest, distance = self.objective_info(group)
if distance < self.BASE_DEFENSE_RADIUS:
closest.preset_locations.base_garrisons.append(group.position)
else:
logging.warning(
f"Found garrison unit too far from base: {group.name}")
for group in self.sams:
closest, distance = self.objective_info(group)
if distance < self.BASE_DEFENSE_RADIUS:
closest.preset_locations.base_air_defense.append(group.position)
else:
closest.preset_locations.strike_locations.append(group.position)
for group in self.ewrs:
closest, distance = self.objective_info(group)
closest.preset_locations.ewrs.append(group.position)
for group in self.offshore_strike_targets:
closest, distance = self.objective_info(group)
closest.preset_locations.offshore_strike_locations.append(
group.position)
for group in self.ships:
closest, distance = self.objective_info(group)
closest.preset_locations.ships.append(group.position)
for group in self.missile_sites:
closest, distance = self.objective_info(group)
closest.preset_locations.missile_sites.append(group.position)
for group in self.coastal_defenses:
closest, distance = self.objective_info(group)
closest.preset_locations.coastal_defenses.append(group.position)
for group in self.required_long_range_sams:
closest, distance = self.objective_info(group)
closest.preset_locations.required_long_range_sams.append(
group.position
)
for group in self.required_medium_range_sams:
closest, distance = self.objective_info(group)
closest.preset_locations.required_medium_range_sams.append(
group.position
)
def populate_theater(self) -> None:
for control_point in self.control_points.values():
self.theater.add_controlpoint(control_point)
self.add_preset_locations()
self.theater.set_frontline_data(self.front_lines)
@dataclass
class ReferencePoint:
world_coordinates: Point
image_coordinates: Point
class ConflictTheater:
terrain: Terrain
reference_points: Tuple[ReferencePoint, ReferencePoint]
overview_image: str
landmap: Optional[Landmap]
"""
land_poly = None # type: Polygon
"""
daytime_map: Dict[str, Tuple[int, int]]
_frontline_data: Optional[Dict[str, ComplexFrontLine]] = None
def __init__(self):
self.controlpoints: List[ControlPoint] = []
self._frontline_data: Optional[Dict[str, ComplexFrontLine]] = None
"""
self.land_poly = geometry.Polygon(self.landmap[0][0])
for x in self.landmap[1]:
self.land_poly = self.land_poly.difference(geometry.Polygon(x))
"""
@property
def frontline_data(self) -> Optional[Dict[str, ComplexFrontLine]]:
if self._frontline_data is None:
self.load_frontline_data_from_file()
return self._frontline_data
def load_frontline_data_from_file(self) -> None:
if self._frontline_data is not None:
logging.warning("Replacing existing frontline data from file")
self._frontline_data = FrontLine.load_json_frontlines(self)
if self._frontline_data is None:
self._frontline_data = {}
def set_frontline_data(self, data: Dict[str, ComplexFrontLine]) -> None:
if self._frontline_data is not None:
logging.warning("Replacing existing frontline data")
self._frontline_data = data
def add_controlpoint(self, point: ControlPoint,
connected_to: Optional[List[ControlPoint]] = None):
if connected_to is None:
connected_to = []
for connected_point in connected_to:
point.connect(to=connected_point)
self.controlpoints.append(point)
def find_ground_objects_by_obj_name(self, obj_name):
found = []
for cp in self.controlpoints:
for g in cp.ground_objects:
if g.obj_name == obj_name:
found.append(g)
return found
def is_in_sea(self, point: Point) -> bool:
if not self.landmap:
return False
if self.is_on_land(point):
return False
for exclusion_zone in self.landmap[1]:
if poly_contains(point.x, point.y, exclusion_zone):
return False
for sea in self.landmap[2]:
if poly_contains(point.x, point.y, sea):
return True
return False
def is_on_land(self, point: Point) -> bool:
if not self.landmap:
return True
is_point_included = False
for inclusion_zone in self.landmap[0]:
if poly_contains(point.x, point.y, inclusion_zone):
is_point_included = True
if not is_point_included:
return False
for exclusion_zone in self.landmap[1]:
if poly_contains(point.x, point.y, exclusion_zone):
return False
return True
def player_points(self) -> List[ControlPoint]:
return [point for point in self.controlpoints if point.captured]
def conflicts(self, from_player=True) -> Iterator[FrontLine]:
for cp in [x for x in self.controlpoints if x.captured == from_player]:
for connected_point in [x for x in cp.connected_points if x.captured != from_player]:
yield FrontLine(cp, connected_point, self)
def enemy_points(self) -> List[ControlPoint]:
return [point for point in self.controlpoints if not point.captured]
def closest_control_point(self, point: Point) -> ControlPoint:
closest = self.controlpoints[0]
closest_distance = point.distance_to_point(closest.position)
for control_point in self.controlpoints[1:]:
distance = point.distance_to_point(control_point.position)
if distance < closest_distance:
closest = control_point
closest_distance = distance
return closest
def closest_opposing_control_points(self) -> Tuple[ControlPoint, ControlPoint]:
"""
Returns a tuple of the two nearest opposing ControlPoints in theater.
(player_cp, enemy_cp)
"""
all_cp_min_distances = {}
for idx, control_point in enumerate(self.controlpoints):
distances = {}
closest_distance = None
for i, cp in enumerate(self.controlpoints):
if i != idx and cp.captured is not control_point.captured:
dist = cp.position.distance_to_point(control_point.position)
if not closest_distance:
closest_distance = dist
distances[cp.id] = dist
if dist < closest_distance:
distances[cp.id] = dist
closest_cp_id = min(distances, key=distances.get) # type: ignore
all_cp_min_distances[(control_point.id, closest_cp_id)] = distances[closest_cp_id]
closest_opposing_cps = [
self.find_control_point_by_id(i)
for i
in min(all_cp_min_distances, key=all_cp_min_distances.get) # type: ignore
] # type: List[ControlPoint]
assert len(closest_opposing_cps) == 2
if closest_opposing_cps[0].captured:
return cast(Tuple[ControlPoint, ControlPoint], tuple(closest_opposing_cps))
else:
return cast(Tuple[ControlPoint, ControlPoint], tuple(reversed(closest_opposing_cps)))
def find_control_point_by_id(self, id: int) -> ControlPoint:
for i in self.controlpoints:
if i.id == id:
return i
raise RuntimeError(f"Cannot find ControlPoint with ID {id}")
def add_json_cp(self, theater, p: dict) -> ControlPoint:
cp: ControlPoint
if p["type"] == "airbase":
airbase = theater.terrain.airports[p["id"]]
if "size" in p.keys():
size = p["size"]
else:
size = SIZE_REGULAR
if "importance" in p.keys():
importance = p["importance"]
else:
importance = IMPORTANCE_MEDIUM
cp = Airfield(airbase, size, importance)
elif p["type"] == "carrier":
cp = Carrier("carrier", Point(p["x"], p["y"]), p["id"])
else:
cp = Lha("lha", Point(p["x"], p["y"]), p["id"])
if "captured_invert" in p.keys():
cp.captured_invert = p["captured_invert"]
else:
cp.captured_invert = False
return cp
@staticmethod
def from_json(directory: Path, data: Dict[str, Any]) -> ConflictTheater:
theaters = {
"Caucasus": CaucasusTheater,
"Nevada": NevadaTheater,
"Persian Gulf": PersianGulfTheater,
"Normandy": NormandyTheater,
"The Channel": TheChannelTheater,
"Syria": SyriaTheater,
}
theater = theaters[data["theater"]]
t = theater()
miz = data.get("miz", None)
if miz is not None:
MizCampaignLoader(directory / miz, t).populate_theater()
return t
cps = {}
for p in data["player_points"]:
cp = t.add_json_cp(theater, p)
cp.captured = True
cps[p["id"]] = cp
t.add_controlpoint(cp)
for p in data["enemy_points"]:
cp = t.add_json_cp(theater, p)
cps[p["id"]] = cp
t.add_controlpoint(cp)
for l in data["links"]:
cps[l[0]].connect(cps[l[1]])
cps[l[1]].connect(cps[l[0]])
return t
class CaucasusTheater(ConflictTheater):
terrain = caucasus.Caucasus()
overview_image = "caumap.gif"
reference_points = (
ReferencePoint(caucasus.Gelendzhik.position, Point(176, 298)),
ReferencePoint(caucasus.Batumi.position, Point(1307, 1205)),
)
landmap = load_landmap("resources\\caulandmap.p")
daytime_map = {
"dawn": (6, 9),
"day": (9, 18),
"dusk": (18, 20),
"night": (0, 5),
}
class PersianGulfTheater(ConflictTheater):
terrain = persiangulf.PersianGulf()
overview_image = "persiangulf.gif"
reference_points = (
ReferencePoint(persiangulf.Jiroft_Airport.position,
Point(1692, 1343)),
ReferencePoint(persiangulf.Liwa_Airbase.position, Point(358, 3238)),
)
landmap = load_landmap("resources\\gulflandmap.p")
daytime_map = {
"dawn": (6, 8),
"day": (8, 16),
"dusk": (16, 18),
"night": (0, 5),
}
class NevadaTheater(ConflictTheater):
terrain = nevada.Nevada()
overview_image = "nevada.gif"
reference_points = (
ReferencePoint(nevada.Mina_Airport_3Q0.position, Point(252, 295)),
ReferencePoint(nevada.Laughlin_Airport.position, Point(844, 909)),
)
landmap = load_landmap("resources\\nevlandmap.p")
daytime_map = {
"dawn": (4, 6),
"day": (6, 17),
"dusk": (17, 18),
"night": (0, 5),
}
class NormandyTheater(ConflictTheater):
terrain = normandy.Normandy()
overview_image = "normandy.gif"
reference_points = (
ReferencePoint(normandy.Needs_Oar_Point.position, Point(515, 329)),
ReferencePoint(normandy.Evreux.position, Point(2029, 1709)),
)
landmap = load_landmap("resources\\normandylandmap.p")
daytime_map = {
"dawn": (6, 8),
"day": (10, 17),
"dusk": (17, 18),
"night": (0, 5),
}
class TheChannelTheater(ConflictTheater):
terrain = thechannel.TheChannel()
overview_image = "thechannel.gif"
reference_points = (
ReferencePoint(thechannel.Abbeville_Drucat.position, Point(2005, 2390)),
ReferencePoint(thechannel.Detling.position, Point(706, 382))
)
landmap = load_landmap("resources\\channellandmap.p")
daytime_map = {
"dawn": (6, 8),
"day": (10, 17),
"dusk": (17, 18),
"night": (0, 5),
}
class SyriaTheater(ConflictTheater):
terrain = syria.Syria()
overview_image = "syria.gif"
reference_points = (
ReferencePoint(syria.Eyn_Shemer.position, Point(564, 1289)),
ReferencePoint(syria.Tabqa.position, Point(1329, 491)),
)
landmap = load_landmap("resources\\syrialandmap.p")
daytime_map = {
"dawn": (6, 8),
"day": (8, 16),
"dusk": (16, 18),
"night": (0, 5),
}
@dataclass
class ComplexFrontLine:
"""
Stores data necessary for building a multi-segment frontline.
"points" should be ordered from closest to farthest distance originating from start_cp.position
"""
start_cp: ControlPoint
points: List[Point]
@dataclass
class FrontLineSegment:
"""
Describes a line segment of a FrontLine
"""
point_a: Point
point_b: Point
@property
def attack_heading(self) -> Numeric:
"""The heading of the frontline segment from player to enemy control point"""
return self.point_a.heading_between_point(self.point_b)
@property
def attack_distance(self) -> Numeric:
"""Length of the segment"""
return self.point_a.distance_to_point(self.point_b)
class FrontLine(MissionTarget):
"""Defines a front line location between two control points.
Front lines are the area where ground combat happens.
Overwrites the entirety of MissionTarget __init__ method to allow for
dynamic position calculation.
"""
def __init__(
self,
control_point_a: ControlPoint,
control_point_b: ControlPoint,
theater: ConflictTheater
) -> None:
self.control_point_a = control_point_a
self.control_point_b = control_point_b
self.segments: List[FrontLineSegment] = []
self.theater = theater
self._build_segments()
self.name = f"Front line {control_point_a}/{control_point_b}"
def is_friendly(self, to_player: bool) -> bool:
"""Returns True if the objective is in friendly territory."""
return False
def mission_types(self, for_player: bool) -> Iterator[FlightType]:
yield from [
FlightType.CAS,
# TODO: FlightType.TROOP_TRANSPORT
# TODO: FlightType.EVAC
]
yield from super().mission_types(for_player)
@property
def position(self):
"""
The position where the conflict should occur
according to the current strength of each control point.
"""
return self.point_from_a(self._position_distance)
@property
def control_points(self) -> Tuple[ControlPoint, ControlPoint]:
"""Returns a tuple of the two control points."""
return self.control_point_a, self.control_point_b
@property
def attack_distance(self):
"""The total distance of all segments"""
return sum(i.attack_distance for i in self.segments)
@property
def attack_heading(self):
"""The heading of the active attack segment from player to enemy control point"""
return self.active_segment.attack_heading
@property
def active_segment(self) -> FrontLineSegment:
"""The FrontLine segment where there can be an active conflict"""
if self._position_distance <= self.segments[0].attack_distance:
return self.segments[0]
remaining_dist = self._position_distance
for segment in self.segments:
if remaining_dist <= segment.attack_distance:
return segment
else:
remaining_dist -= segment.attack_distance
logging.error(
"Frontline attack distance is greater than the sum of its segments"
)
return self.segments[0]
def point_from_a(self, distance: Numeric) -> Point:
"""
Returns a point {distance} away from control_point_a along the frontline segments.
"""
if distance < self.segments[0].attack_distance:
return self.control_point_a.position.point_from_heading(
self.segments[0].attack_heading, distance
)
remaining_dist = distance
for segment in self.segments:
if remaining_dist < segment.attack_distance:
return segment.point_a.point_from_heading(
segment.attack_heading, remaining_dist
)
else:
remaining_dist -= segment.attack_distance
@property
def _position_distance(self) -> float:
"""
The distance from point "a" where the conflict should occur
according to the current strength of each control point
"""
total_strength = (
self.control_point_a.base.strength + self.control_point_b.base.strength
)
if self.control_point_a.base.strength == 0:
return self._adjust_for_min_dist(0)
if self.control_point_b.base.strength == 0:
return self._adjust_for_min_dist(self.attack_distance)
strength_pct = self.control_point_a.base.strength / total_strength
return self._adjust_for_min_dist(strength_pct * self.attack_distance)
def _adjust_for_min_dist(self, distance: Numeric) -> Numeric:
"""
Ensures the frontline conflict is never located within the minimum distance
constant of either end control point.
"""
if (distance > self.attack_distance / 2) and (
distance + FRONTLINE_MIN_CP_DISTANCE > self.attack_distance
):
distance = self.attack_distance - FRONTLINE_MIN_CP_DISTANCE
elif (distance < self.attack_distance / 2) and (
distance < FRONTLINE_MIN_CP_DISTANCE
):
distance = FRONTLINE_MIN_CP_DISTANCE
return distance
def _build_segments(self) -> None:
"""Create line segments for the frontline"""
control_point_ids = "|".join(
[str(self.control_point_a.id), str(self.control_point_b.id)]
) # from_cp.id|to_cp.id
reversed_cp_ids = "|".join(
[str(self.control_point_b.id), str(self.control_point_a.id)]
)
complex_frontlines = self.theater.frontline_data
if (complex_frontlines) and (
(control_point_ids in complex_frontlines)
or (reversed_cp_ids in complex_frontlines)
):
# The frontline segments must be stored in the correct order for the distance algorithms to work.
# The points in the frontline are ordered from the id before the | to the id after.
# First, check if control point id pair matches in order, and create segments if a match is found.
if control_point_ids in complex_frontlines:
point_pairs = pairwise(complex_frontlines[control_point_ids].points)
for i in point_pairs:
self.segments.append(FrontLineSegment(i[0], i[1]))
# Check the reverse order and build in reverse if found.
elif reversed_cp_ids in complex_frontlines:
point_pairs = pairwise(
reversed(complex_frontlines[reversed_cp_ids].points)
)
for i in point_pairs:
self.segments.append(FrontLineSegment(i[0], i[1]))
# If no complex frontline has been configured, fall back to the old straight line method.
else:
self.segments.append(
FrontLineSegment(
self.control_point_a.position, self.control_point_b.position
)
)
@staticmethod
def load_json_frontlines(
theater: ConflictTheater
) -> Optional[Dict[str, ComplexFrontLine]]:
"""Load complex frontlines from json"""
try:
path = Path(f"resources/frontlines/{theater.terrain.name.lower()}.json")
with open(path, "r") as file:
logging.debug(f"Loading frontline from {path}...")
data = json.load(file)
return {
frontline: ComplexFrontLine(
data[frontline]["start_cp"],
[Point(i[0], i[1]) for i in data[frontline]["points"]],
)
for frontline in data
}
except OSError:
logging.warning(
f"Unable to load preset frontlines for {theater.terrain.name}"
)
return None