dcs-retribution/game/theater/conflicttheater.py
SnappyComebacks 52ce1a5959
Add support for additional EWR sites in campaigns.
* A Bluefor EWR 55GS in the campaign miz defines an optional EWR site. There is no distinction between how close or far it is to a base, so it's possible that there will be many EWRs within an airbase.
* A Redfor EWR 1L13 in the campaign miz defines a required EWR site.

It would be a good future idea to limit the amount of EWRs within a certain distance from an airbase. That way there's no chance of 5 EWRs all at the same airbase. Even better if there were something preventing any two EWRs from being right next to each other.

No campaigns take advantage of this yet.

Fixes https://github.com/Khopa/dcs_liberation/issues/524
2021-04-15 21:23:27 -07:00

1018 lines
36 KiB
Python

from __future__ import annotations
import itertools
import json
import logging
from dataclasses import dataclass
from functools import cached_property
from itertools import tee
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Set, Tuple, Union, cast
from shapely import geometry
from shapely import ops
from dcs import Mission
from dcs.countries import (
CombinedJointTaskForcesBlue,
CombinedJointTaskForcesRed,
)
from dcs.country import Country
from dcs.mapping import Point
from dcs.planes import F_15C
from dcs.ships import (
CVN_74_John_C__Stennis,
LHA_1_Tarawa,
USS_Arleigh_Burke_IIa,
)
from dcs.statics import Fortification
from dcs.terrain import (
caucasus,
nevada,
normandy,
persiangulf,
syria,
thechannel,
)
from dcs.terrain.terrain import Airport, Terrain
from dcs.unitgroup import (
FlyingGroup,
Group,
ShipGroup,
StaticGroup,
VehicleGroup,
)
from dcs.vehicles import AirDefence, Armor, MissilesSS, Unarmed
from gen.flights.flight import FlightType
from .controlpoint import (
Airfield,
Carrier,
ControlPoint,
Lha,
MissionTarget,
OffMapSpawn,
Fob,
)
from .landmap import Landmap, load_landmap, poly_contains
from ..point_with_heading import PointWithHeading
from ..utils import Distance, meters, nautical_miles
Numeric = Union[int, float]
SIZE_TINY = 150
SIZE_SMALL = 600
SIZE_REGULAR = 1000
SIZE_BIG = 2000
SIZE_LARGE = 3000
IMPORTANCE_LOW = 1
IMPORTANCE_MEDIUM = 1.2
IMPORTANCE_HIGH = 1.4
FRONTLINE_MIN_CP_DISTANCE = 5000
def pairwise(iterable):
"""
itertools recipe
s -> (s0,s1), (s1,s2), (s2, s3), ...
"""
a, b = tee(iterable)
next(b, None)
return zip(a, b)
class MizCampaignLoader:
BLUE_COUNTRY = CombinedJointTaskForcesBlue()
RED_COUNTRY = CombinedJointTaskForcesRed()
OFF_MAP_UNIT_TYPE = F_15C.id
CV_UNIT_TYPE = CVN_74_John_C__Stennis.id
LHA_UNIT_TYPE = LHA_1_Tarawa.id
FRONT_LINE_UNIT_TYPE = Armor.APC_M113.id
FOB_UNIT_TYPE = Unarmed.CP_SKP_11_ATC_Mobile_Command_Post.id
FARP_HELIPAD = "SINGLE_HELIPAD"
EWR_UNIT_TYPE = AirDefence.EWR_55G6.id
SAM_UNIT_TYPE = AirDefence.SAM_SA_10_S_300PS_SR_64H6E.id
GARRISON_UNIT_TYPE = AirDefence.SAM_SA_19_Tunguska_2S6.id
OFFSHORE_STRIKE_TARGET_UNIT_TYPE = Fortification.Oil_platform.id
SHIP_UNIT_TYPE = USS_Arleigh_Burke_IIa.id
MISSILE_SITE_UNIT_TYPE = MissilesSS.SRBM_SS_1C_Scud_B_9K72_LN_9P117M.id
COASTAL_DEFENSE_UNIT_TYPE = MissilesSS.SS_N_2_Silkworm.id
# Multiple options for the required SAMs so campaign designers can more
# accurately see the coverage of their IADS for the expected type.
REQUIRED_LONG_RANGE_SAM_UNIT_TYPES = {
AirDefence.SAM_Patriot_LN_M901.id,
AirDefence.SAM_SA_10_S_300PS_LN_5P85C.id,
AirDefence.SAM_SA_10_S_300PS_LN_5P85D.id,
}
REQUIRED_MEDIUM_RANGE_SAM_UNIT_TYPES = {
AirDefence.SAM_Hawk_LN_M192.id,
AirDefence.SAM_SA_2_LN_SM_90.id,
AirDefence.SAM_SA_3_S_125_LN_5P73.id,
}
REQUIRED_EWR_UNIT_TYPE = AirDefence.EWR_1L13.id
BASE_DEFENSE_RADIUS = nautical_miles(2)
def __init__(self, miz: Path, theater: ConflictTheater) -> None:
self.theater = theater
self.mission = Mission()
self.mission.load_file(str(miz))
self.control_point_id = itertools.count(1000)
# If there are no red carriers there usually aren't red units. Make sure
# both countries are initialized so we don't have to deal with None.
if self.mission.country(self.BLUE_COUNTRY.name) is None:
self.mission.coalition["blue"].add_country(self.BLUE_COUNTRY)
if self.mission.country(self.RED_COUNTRY.name) is None:
self.mission.coalition["red"].add_country(self.RED_COUNTRY)
@staticmethod
def control_point_from_airport(airport: Airport) -> ControlPoint:
# The wiki says this is a legacy property and to just use regular.
size = SIZE_REGULAR
# The importance is taken from the periodicity of the airport's
# warehouse divided by 10. 30 is the default, and out of range (valid
# values are between 1.0 and 1.4). If it is used, pick the default
# importance.
if airport.periodicity == 30:
importance = IMPORTANCE_MEDIUM
else:
importance = airport.periodicity / 10
cp = Airfield(airport, size, importance)
cp.captured = airport.is_blue()
# Use the unlimited aircraft option to determine if an airfield should
# be owned by the player when the campaign is "inverted".
cp.captured_invert = airport.unlimited_aircrafts
return cp
def country(self, blue: bool) -> Country:
country = self.mission.country(
self.BLUE_COUNTRY.name if blue else self.RED_COUNTRY.name
)
# Should be guaranteed because we initialized them.
assert country
return country
@property
def blue(self) -> Country:
return self.country(blue=True)
@property
def red(self) -> Country:
return self.country(blue=False)
def off_map_spawns(self, blue: bool) -> Iterator[FlyingGroup]:
for group in self.country(blue).plane_group:
if group.units[0].type == self.OFF_MAP_UNIT_TYPE:
yield group
def carriers(self, blue: bool) -> Iterator[ShipGroup]:
for group in self.country(blue).ship_group:
if group.units[0].type == self.CV_UNIT_TYPE:
yield group
def lhas(self, blue: bool) -> Iterator[ShipGroup]:
for group in self.country(blue).ship_group:
if group.units[0].type == self.LHA_UNIT_TYPE:
yield group
def fobs(self, blue: bool) -> Iterator[VehicleGroup]:
for group in self.country(blue).vehicle_group:
if group.units[0].type == self.FOB_UNIT_TYPE:
yield group
@property
def ships(self) -> Iterator[ShipGroup]:
for group in self.blue.ship_group:
if group.units[0].type == self.SHIP_UNIT_TYPE:
yield group
@property
def ewrs(self) -> Iterator[VehicleGroup]:
for group in self.blue.vehicle_group:
if group.units[0].type == self.EWR_UNIT_TYPE:
yield group
@property
def sams(self) -> Iterator[VehicleGroup]:
for group in self.blue.vehicle_group:
if group.units[0].type == self.SAM_UNIT_TYPE:
yield group
@property
def garrisons(self) -> Iterator[VehicleGroup]:
for group in self.blue.vehicle_group:
if group.units[0].type == self.GARRISON_UNIT_TYPE:
yield group
@property
def offshore_strike_targets(self) -> Iterator[StaticGroup]:
for group in self.blue.static_group:
if group.units[0].type == self.OFFSHORE_STRIKE_TARGET_UNIT_TYPE:
yield group
@property
def missile_sites(self) -> Iterator[VehicleGroup]:
for group in self.blue.vehicle_group:
if group.units[0].type == self.MISSILE_SITE_UNIT_TYPE:
yield group
@property
def coastal_defenses(self) -> Iterator[VehicleGroup]:
for group in self.blue.vehicle_group:
if group.units[0].type == self.COASTAL_DEFENSE_UNIT_TYPE:
yield group
@property
def required_long_range_sams(self) -> Iterator[VehicleGroup]:
for group in self.red.vehicle_group:
if group.units[0].type in self.REQUIRED_LONG_RANGE_SAM_UNIT_TYPES:
yield group
@property
def required_medium_range_sams(self) -> Iterator[VehicleGroup]:
for group in self.red.vehicle_group:
if group.units[0].type in self.REQUIRED_MEDIUM_RANGE_SAM_UNIT_TYPES:
yield group
@property
def required_ewrs(self) -> Iterator[VehicleGroup]:
for group in self.red.vehicle_group:
if group.units[0].type in self.REQUIRED_EWR_UNIT_TYPE:
yield group
@property
def helipads(self) -> Iterator[StaticGroup]:
for group in self.blue.static_group:
if group.units[0].type == self.FARP_HELIPAD:
yield group
@cached_property
def control_points(self) -> Dict[int, ControlPoint]:
control_points = {}
for airport in self.mission.terrain.airport_list():
if airport.is_blue() or airport.is_red():
control_point = self.control_point_from_airport(airport)
control_points[control_point.id] = control_point
for blue in (False, True):
for group in self.off_map_spawns(blue):
control_point = OffMapSpawn(
next(self.control_point_id), str(group.name), group.position
)
control_point.captured = blue
control_point.captured_invert = group.late_activation
control_points[control_point.id] = control_point
for group in self.carriers(blue):
# TODO: Name the carrier.
control_point = Carrier(
"carrier", group.position, next(self.control_point_id)
)
control_point.captured = blue
control_point.captured_invert = group.late_activation
control_points[control_point.id] = control_point
for group in self.lhas(blue):
# TODO: Name the LHA.
control_point = Lha("lha", group.position, next(self.control_point_id))
control_point.captured = blue
control_point.captured_invert = group.late_activation
control_points[control_point.id] = control_point
for group in self.fobs(blue):
control_point = Fob(
str(group.name), group.position, next(self.control_point_id)
)
control_point.captured = blue
control_point.captured_invert = group.late_activation
control_points[control_point.id] = control_point
return control_points
@property
def front_line_path_groups(self) -> Iterator[VehicleGroup]:
for group in self.country(blue=True).vehicle_group:
if group.units[0].type == self.FRONT_LINE_UNIT_TYPE:
yield group
@cached_property
def front_lines(self) -> Dict[str, ComplexFrontLine]:
# Dict of front line ID to a front line.
front_lines = {}
for group in self.front_line_path_groups:
# The unit will have its first waypoint at the source CP and the
# final waypoint at the destination CP. Intermediate waypoints
# define the curve of the front line.
waypoints = [p.position for p in group.points]
origin = self.theater.closest_control_point(waypoints[0])
if origin is None:
raise RuntimeError(
f"No control point near the first waypoint of {group.name}"
)
destination = self.theater.closest_control_point(waypoints[-1])
if destination is None:
raise RuntimeError(
f"No control point near the final waypoint of {group.name}"
)
# Snap the begin and end points to the control points.
waypoints[0] = origin.position
waypoints[-1] = destination.position
front_line_id = f"{origin.id}|{destination.id}"
front_lines[front_line_id] = ComplexFrontLine(origin, waypoints)
self.control_points[origin.id].connect(self.control_points[destination.id])
self.control_points[destination.id].connect(self.control_points[origin.id])
return front_lines
def objective_info(self, group: Group) -> Tuple[ControlPoint, Distance]:
closest = self.theater.closest_control_point(group.position)
distance = meters(closest.position.distance_to_point(group.position))
return closest, distance
def add_preset_locations(self) -> None:
for group in self.garrisons:
closest, distance = self.objective_info(group)
if distance < self.BASE_DEFENSE_RADIUS:
closest.preset_locations.base_garrisons.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
else:
logging.warning(f"Found garrison unit too far from base: {group.name}")
for group in self.sams:
closest, distance = self.objective_info(group)
if distance < self.BASE_DEFENSE_RADIUS:
closest.preset_locations.base_air_defense.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
else:
closest.preset_locations.strike_locations.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
for group in self.ewrs:
closest, distance = self.objective_info(group)
if distance < self.BASE_DEFENSE_RADIUS:
closest.preset_locations.ewrs.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
else:
closest.preset_locations.ewrs.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
for group in self.offshore_strike_targets:
closest, distance = self.objective_info(group)
closest.preset_locations.offshore_strike_locations.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
for group in self.ships:
closest, distance = self.objective_info(group)
closest.preset_locations.ships.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
for group in self.missile_sites:
closest, distance = self.objective_info(group)
closest.preset_locations.missile_sites.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
for group in self.coastal_defenses:
closest, distance = self.objective_info(group)
closest.preset_locations.coastal_defenses.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
for group in self.required_long_range_sams:
closest, distance = self.objective_info(group)
closest.preset_locations.required_long_range_sams.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
for group in self.required_medium_range_sams:
closest, distance = self.objective_info(group)
closest.preset_locations.required_medium_range_sams.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
for group in self.required_ewrs:
closest, distance = self.objective_info(group)
closest.preset_locations.required_ewrs.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
for group in self.helipads:
closest, distance = self.objective_info(group)
closest.helipads.append(
PointWithHeading.from_point(group.position, group.units[0].heading)
)
def populate_theater(self) -> None:
for control_point in self.control_points.values():
self.theater.add_controlpoint(control_point)
self.add_preset_locations()
self.theater.set_frontline_data(self.front_lines)
@dataclass
class ReferencePoint:
world_coordinates: Point
image_coordinates: Point
class ConflictTheater:
terrain: Terrain
reference_points: Tuple[ReferencePoint, ReferencePoint]
overview_image: str
landmap: Optional[Landmap]
"""
land_poly = None # type: Polygon
"""
daytime_map: Dict[str, Tuple[int, int]]
_frontline_data: Optional[Dict[str, ComplexFrontLine]] = None
def __init__(self):
self.controlpoints: List[ControlPoint] = []
self._frontline_data: Optional[Dict[str, ComplexFrontLine]] = None
"""
self.land_poly = geometry.Polygon(self.landmap[0][0])
for x in self.landmap[1]:
self.land_poly = self.land_poly.difference(geometry.Polygon(x))
"""
@property
def frontline_data(self) -> Optional[Dict[str, ComplexFrontLine]]:
if self._frontline_data is None:
self.load_frontline_data_from_file()
return self._frontline_data
def load_frontline_data_from_file(self) -> None:
if self._frontline_data is not None:
logging.warning("Replacing existing frontline data from file")
self._frontline_data = FrontLine.load_json_frontlines(self)
if self._frontline_data is None:
self._frontline_data = {}
def set_frontline_data(self, data: Dict[str, ComplexFrontLine]) -> None:
if self._frontline_data is not None:
logging.warning("Replacing existing frontline data")
self._frontline_data = data
def add_controlpoint(
self, point: ControlPoint, connected_to: Optional[List[ControlPoint]] = None
):
if connected_to is None:
connected_to = []
for connected_point in connected_to:
point.connect(to=connected_point)
self.controlpoints.append(point)
def find_ground_objects_by_obj_name(self, obj_name):
found = []
for cp in self.controlpoints:
for g in cp.ground_objects:
if g.obj_name == obj_name:
found.append(g)
return found
def is_in_sea(self, point: Point) -> bool:
if not self.landmap:
return False
if self.is_on_land(point):
return False
for exclusion_zone in self.landmap.exclusion_zones:
if poly_contains(point.x, point.y, exclusion_zone):
return False
for sea in self.landmap.sea_zones:
if poly_contains(point.x, point.y, sea):
return True
return False
def is_on_land(self, point: Point) -> bool:
if not self.landmap:
return True
is_point_included = False
if poly_contains(point.x, point.y, self.landmap.inclusion_zones):
is_point_included = True
if not is_point_included:
return False
for exclusion_zone in self.landmap.exclusion_zones:
if poly_contains(point.x, point.y, exclusion_zone):
return False
return True
def nearest_land_pos(self, point: Point, extend_dist: int = 50) -> Point:
"""Returns the nearest point inside a land exclusion zone from point
`extend_dist` determines how far inside the zone the point should be placed"""
if self.is_on_land(point):
return point
point = geometry.Point(point.x, point.y)
nearest_points = []
if not self.landmap:
raise RuntimeError("Landmap not initialized")
for inclusion_zone in self.landmap.inclusion_zones:
nearest_pair = ops.nearest_points(point, inclusion_zone)
nearest_points.append(nearest_pair[1])
min_distance = point.distance(nearest_points[0]) # type: geometry.Point
nearest_point = nearest_points[0] # type: geometry.Point
for pt in nearest_points[1:]:
distance = point.distance(pt)
if distance < min_distance:
min_distance = distance
nearest_point = pt
assert isinstance(nearest_point, geometry.Point)
point = Point(point.x, point.y)
nearest_point = Point(nearest_point.x, nearest_point.y)
new_point = point.point_from_heading(
point.heading_between_point(nearest_point),
point.distance_to_point(nearest_point) + extend_dist,
)
return new_point
def control_points_for(self, player: bool) -> Iterator[ControlPoint]:
for point in self.controlpoints:
if point.captured == player:
yield point
def player_points(self) -> List[ControlPoint]:
return list(self.control_points_for(player=True))
def conflicts(self, from_player=True) -> Iterator[FrontLine]:
for cp in [x for x in self.controlpoints if x.captured == from_player]:
for connected_point in [
x for x in cp.connected_points if x.captured != from_player
]:
yield FrontLine(cp, connected_point, self)
def enemy_points(self) -> List[ControlPoint]:
return list(self.control_points_for(player=False))
def closest_control_point(self, point: Point) -> ControlPoint:
closest = self.controlpoints[0]
closest_distance = point.distance_to_point(closest.position)
for control_point in self.controlpoints[1:]:
distance = point.distance_to_point(control_point.position)
if distance < closest_distance:
closest = control_point
closest_distance = distance
return closest
def closest_target(self, point: Point) -> MissionTarget:
closest: MissionTarget = self.controlpoints[0]
closest_distance = point.distance_to_point(closest.position)
for control_point in self.controlpoints[1:]:
distance = point.distance_to_point(control_point.position)
if distance < closest_distance:
closest = control_point
closest_distance = distance
for tgo in control_point.ground_objects:
distance = point.distance_to_point(tgo.position)
if distance < closest_distance:
closest = tgo
closest_distance = distance
for conflict in self.conflicts():
distance = conflict.position.distance_to_point(point)
if distance < closest_distance:
closest = conflict
closest_distance = distance
return closest
def closest_opposing_control_points(self) -> Tuple[ControlPoint, ControlPoint]:
"""
Returns a tuple of the two nearest opposing ControlPoints in theater.
(player_cp, enemy_cp)
"""
all_cp_min_distances = {}
for idx, control_point in enumerate(self.controlpoints):
distances = {}
closest_distance = None
for i, cp in enumerate(self.controlpoints):
if i != idx and cp.captured is not control_point.captured:
dist = cp.position.distance_to_point(control_point.position)
if not closest_distance:
closest_distance = dist
distances[cp.id] = dist
if dist < closest_distance:
distances[cp.id] = dist
closest_cp_id = min(distances, key=distances.get) # type: ignore
all_cp_min_distances[(control_point.id, closest_cp_id)] = distances[
closest_cp_id
]
closest_opposing_cps = [
self.find_control_point_by_id(i)
for i in min(
all_cp_min_distances, key=all_cp_min_distances.get
) # type: ignore
] # type: List[ControlPoint]
assert len(closest_opposing_cps) == 2
if closest_opposing_cps[0].captured:
return cast(Tuple[ControlPoint, ControlPoint], tuple(closest_opposing_cps))
else:
return cast(
Tuple[ControlPoint, ControlPoint], tuple(reversed(closest_opposing_cps))
)
def find_control_point_by_id(self, id: int) -> ControlPoint:
for i in self.controlpoints:
if i.id == id:
return i
raise RuntimeError(f"Cannot find ControlPoint with ID {id}")
def add_json_cp(self, theater, p: dict) -> ControlPoint:
cp: ControlPoint
if p["type"] == "airbase":
airbase = theater.terrain.airports[p["id"]]
if "size" in p.keys():
size = p["size"]
else:
size = SIZE_REGULAR
if "importance" in p.keys():
importance = p["importance"]
else:
importance = IMPORTANCE_MEDIUM
cp = Airfield(airbase, size, importance)
elif p["type"] == "carrier":
cp = Carrier("carrier", Point(p["x"], p["y"]), p["id"])
else:
cp = Lha("lha", Point(p["x"], p["y"]), p["id"])
if "captured_invert" in p.keys():
cp.captured_invert = p["captured_invert"]
else:
cp.captured_invert = False
return cp
@staticmethod
def from_json(directory: Path, data: Dict[str, Any]) -> ConflictTheater:
theaters = {
"Caucasus": CaucasusTheater,
"Nevada": NevadaTheater,
"Persian Gulf": PersianGulfTheater,
"Normandy": NormandyTheater,
"The Channel": TheChannelTheater,
"Syria": SyriaTheater,
}
theater = theaters[data["theater"]]
t = theater()
miz = data.get("miz", None)
if miz is not None:
MizCampaignLoader(directory / miz, t).populate_theater()
return t
cps = {}
for p in data["player_points"]:
cp = t.add_json_cp(theater, p)
cp.captured = True
cps[p["id"]] = cp
t.add_controlpoint(cp)
for p in data["enemy_points"]:
cp = t.add_json_cp(theater, p)
cps[p["id"]] = cp
t.add_controlpoint(cp)
for l in data["links"]:
cps[l[0]].connect(cps[l[1]])
cps[l[1]].connect(cps[l[0]])
return t
class CaucasusTheater(ConflictTheater):
terrain = caucasus.Caucasus()
overview_image = "caumap.gif"
reference_points = (
ReferencePoint(caucasus.Gelendzhik.position, Point(176, 298)),
ReferencePoint(caucasus.Batumi.position, Point(1307, 1205)),
)
landmap = load_landmap("resources\\caulandmap.p")
daytime_map = {
"dawn": (6, 9),
"day": (9, 18),
"dusk": (18, 20),
"night": (0, 5),
}
class PersianGulfTheater(ConflictTheater):
terrain = persiangulf.PersianGulf()
overview_image = "persiangulf.gif"
reference_points = (
ReferencePoint(persiangulf.Jiroft_Airport.position, Point(1692, 1343)),
ReferencePoint(persiangulf.Liwa_Airbase.position, Point(358, 3238)),
)
landmap = load_landmap("resources\\gulflandmap.p")
daytime_map = {
"dawn": (6, 8),
"day": (8, 16),
"dusk": (16, 18),
"night": (0, 5),
}
class NevadaTheater(ConflictTheater):
terrain = nevada.Nevada()
overview_image = "nevada.gif"
reference_points = (
ReferencePoint(nevada.Mina_Airport_3Q0.position, Point(252, 295)),
ReferencePoint(nevada.Laughlin_Airport.position, Point(844, 909)),
)
landmap = load_landmap("resources\\nevlandmap.p")
daytime_map = {
"dawn": (4, 6),
"day": (6, 17),
"dusk": (17, 18),
"night": (0, 5),
}
class NormandyTheater(ConflictTheater):
terrain = normandy.Normandy()
overview_image = "normandy.gif"
reference_points = (
ReferencePoint(normandy.Needs_Oar_Point.position, Point(515, 329)),
ReferencePoint(normandy.Evreux.position, Point(2029, 1709)),
)
landmap = load_landmap("resources\\normandylandmap.p")
daytime_map = {
"dawn": (6, 8),
"day": (10, 17),
"dusk": (17, 18),
"night": (0, 5),
}
class TheChannelTheater(ConflictTheater):
terrain = thechannel.TheChannel()
overview_image = "thechannel.gif"
reference_points = (
ReferencePoint(thechannel.Abbeville_Drucat.position, Point(2005, 2390)),
ReferencePoint(thechannel.Detling.position, Point(706, 382)),
)
landmap = load_landmap("resources\\channellandmap.p")
daytime_map = {
"dawn": (6, 8),
"day": (10, 17),
"dusk": (17, 18),
"night": (0, 5),
}
class SyriaTheater(ConflictTheater):
terrain = syria.Syria()
overview_image = "syria.gif"
reference_points = (
ReferencePoint(syria.Eyn_Shemer.position, Point(564, 1289)),
ReferencePoint(syria.Tabqa.position, Point(1329, 491)),
)
landmap = load_landmap("resources\\syrialandmap.p")
daytime_map = {
"dawn": (6, 8),
"day": (8, 16),
"dusk": (16, 18),
"night": (0, 5),
}
@dataclass
class ComplexFrontLine:
"""
Stores data necessary for building a multi-segment frontline.
"points" should be ordered from closest to farthest distance originating from start_cp.position
"""
start_cp: ControlPoint
points: List[Point]
@dataclass
class FrontLineSegment:
"""
Describes a line segment of a FrontLine
"""
point_a: Point
point_b: Point
@property
def attack_heading(self) -> Numeric:
"""The heading of the frontline segment from player to enemy control point"""
return self.point_a.heading_between_point(self.point_b)
@property
def attack_distance(self) -> Numeric:
"""Length of the segment"""
return self.point_a.distance_to_point(self.point_b)
class FrontLine(MissionTarget):
"""Defines a front line location between two control points.
Front lines are the area where ground combat happens.
Overwrites the entirety of MissionTarget __init__ method to allow for
dynamic position calculation.
"""
def __init__(
self,
control_point_a: ControlPoint,
control_point_b: ControlPoint,
theater: ConflictTheater,
) -> None:
self.control_point_a = control_point_a
self.control_point_b = control_point_b
self.segments: List[FrontLineSegment] = []
self.theater = theater
self._build_segments()
self.name = f"Front line {control_point_a}/{control_point_b}"
def is_friendly(self, to_player: bool) -> bool:
"""Returns True if the objective is in friendly territory."""
return False
def mission_types(self, for_player: bool) -> Iterator[FlightType]:
yield from [
FlightType.CAS,
FlightType.AEWC,
# TODO: FlightType.TROOP_TRANSPORT
# TODO: FlightType.EVAC
]
yield from super().mission_types(for_player)
@property
def position(self):
"""
The position where the conflict should occur
according to the current strength of each control point.
"""
return self.point_from_a(self._position_distance)
@property
def control_points(self) -> Tuple[ControlPoint, ControlPoint]:
"""Returns a tuple of the two control points."""
return self.control_point_a, self.control_point_b
@property
def attack_distance(self):
"""The total distance of all segments"""
return sum(i.attack_distance for i in self.segments)
@property
def attack_heading(self):
"""The heading of the active attack segment from player to enemy control point"""
return self.active_segment.attack_heading
@property
def active_segment(self) -> FrontLineSegment:
"""The FrontLine segment where there can be an active conflict"""
if self._position_distance <= self.segments[0].attack_distance:
return self.segments[0]
remaining_dist = self._position_distance
for segment in self.segments:
if remaining_dist <= segment.attack_distance:
return segment
else:
remaining_dist -= segment.attack_distance
logging.error(
"Frontline attack distance is greater than the sum of its segments"
)
return self.segments[0]
def point_from_a(self, distance: Numeric) -> Point:
"""
Returns a point {distance} away from control_point_a along the frontline segments.
"""
if distance < self.segments[0].attack_distance:
return self.control_point_a.position.point_from_heading(
self.segments[0].attack_heading, distance
)
remaining_dist = distance
for segment in self.segments:
if remaining_dist < segment.attack_distance:
return segment.point_a.point_from_heading(
segment.attack_heading, remaining_dist
)
else:
remaining_dist -= segment.attack_distance
@property
def _position_distance(self) -> float:
"""
The distance from point "a" where the conflict should occur
according to the current strength of each control point
"""
total_strength = (
self.control_point_a.base.strength + self.control_point_b.base.strength
)
if self.control_point_a.base.strength == 0:
return self._adjust_for_min_dist(0)
if self.control_point_b.base.strength == 0:
return self._adjust_for_min_dist(self.attack_distance)
strength_pct = self.control_point_a.base.strength / total_strength
return self._adjust_for_min_dist(strength_pct * self.attack_distance)
def _adjust_for_min_dist(self, distance: Numeric) -> Numeric:
"""
Ensures the frontline conflict is never located within the minimum distance
constant of either end control point.
"""
if (distance > self.attack_distance / 2) and (
distance + FRONTLINE_MIN_CP_DISTANCE > self.attack_distance
):
distance = self.attack_distance - FRONTLINE_MIN_CP_DISTANCE
elif (distance < self.attack_distance / 2) and (
distance < FRONTLINE_MIN_CP_DISTANCE
):
distance = FRONTLINE_MIN_CP_DISTANCE
return distance
def _build_segments(self) -> None:
"""Create line segments for the frontline"""
control_point_ids = "|".join(
[str(self.control_point_a.id), str(self.control_point_b.id)]
) # from_cp.id|to_cp.id
reversed_cp_ids = "|".join(
[str(self.control_point_b.id), str(self.control_point_a.id)]
)
complex_frontlines = self.theater.frontline_data
if (complex_frontlines) and (
(control_point_ids in complex_frontlines)
or (reversed_cp_ids in complex_frontlines)
):
# The frontline segments must be stored in the correct order for the distance algorithms to work.
# The points in the frontline are ordered from the id before the | to the id after.
# First, check if control point id pair matches in order, and create segments if a match is found.
if control_point_ids in complex_frontlines:
point_pairs = pairwise(complex_frontlines[control_point_ids].points)
for i in point_pairs:
self.segments.append(FrontLineSegment(i[0], i[1]))
# Check the reverse order and build in reverse if found.
elif reversed_cp_ids in complex_frontlines:
point_pairs = pairwise(
reversed(complex_frontlines[reversed_cp_ids].points)
)
for i in point_pairs:
self.segments.append(FrontLineSegment(i[0], i[1]))
# If no complex frontline has been configured, fall back to the old straight line method.
else:
self.segments.append(
FrontLineSegment(
self.control_point_a.position, self.control_point_b.position
)
)
@staticmethod
def load_json_frontlines(
theater: ConflictTheater,
) -> Optional[Dict[str, ComplexFrontLine]]:
"""Load complex frontlines from json"""
try:
path = Path(f"resources/frontlines/{theater.terrain.name.lower()}.json")
with open(path, "r") as file:
logging.debug(f"Loading frontline from {path}...")
data = json.load(file)
return {
frontline: ComplexFrontLine(
data[frontline]["start_cp"],
[Point(i[0], i[1]) for i in data[frontline]["points"]],
)
for frontline in data
}
except OSError:
logging.warning(
f"Unable to load preset frontlines for {theater.terrain.name}"
)
return None