First version

This commit is contained in:
FlightControl 2019-04-06 13:04:28 +02:00
parent 59974ea33e
commit 4abdad5f35
3 changed files with 1225 additions and 100 deletions

File diff suppressed because it is too large Load Diff

View File

@ -136,6 +136,13 @@ function AI_FORMATION:New( FollowUnit, FollowGroupSet, FollowName, FollowBriefin
self.FollowUnit = FollowUnit -- Wrapper.Unit#UNIT
self.FollowGroupSet = FollowGroupSet -- Core.Set#SET_GROUP
self.FollowGroupSet:ForEachGroup(
function( FollowGroup )
self:E("Following")
FollowGroup.Following = true
end
)
self:SetFlightRandomization( 2 )
self:SetStartState( "None" )
@ -906,6 +913,31 @@ function AI_FORMATION:SetFlightRandomization( FlightRandomization ) --R2.1
end
--- This releases the air unit in your flight from the formation flight.
-- @param #AI_FORMATION self
-- @param Wrapper.Group#GROUP FollowGroup FollowGroup.
-- @return #AI_FORMATION
function AI_FORMATION:ReleaseFormation( FollowGroup )
FollowGroup.Following = false
return self
end
--- This joins up the air unit in your formation flight.
-- @param #AI_FORMATION self
-- @param Wrapper.Group#GROUP FollowGroup FollowGroup.
-- @return #AI_FORMATION
function AI_FORMATION:JoinFormation( FollowGroup )
FollowGroup.Following = true
return self
end
--- Stop function. Formation will not be updated any more.
-- @param #AI_FORMATION self
-- @param Core.Set#SET_GROUP FollowGroupSet The following set of groups.
@ -960,109 +992,112 @@ function AI_FORMATION:onenterFollowing( FollowGroupSet ) --R2.1
--- @param Wrapper.Group#GROUP FollowGroup
-- @param Wrapper.Unit#UNIT ClientUnit
function( FollowGroup, Formation, ClientUnit, CT1, CV1, CT2, CV2 )
if FollowGroup.Following == true then
FollowGroup:OptionROTEvadeFire()
FollowGroup:OptionROEReturnFire()
local GroupUnit = FollowGroup:GetUnit( 1 )
local FollowFormation = FollowGroup:GetState( self, "FormationVec3" )
if FollowFormation then
local FollowDistance = FollowFormation.x
local GT1 = GroupUnit:GetState( self, "GT1" )
if CT1 == nil or CT1 == 0 or GT1 == nil or GT1 == 0 then
GroupUnit:SetState( self, "GV1", GroupUnit:GetPointVec3() )
GroupUnit:SetState( self, "GT1", timer.getTime() )
else
local CD = ( ( CV2.x - CV1.x )^2 + ( CV2.y - CV1.y )^2 + ( CV2.z - CV1.z )^2 ) ^ 0.5
local CT = CT2 - CT1
local CS = ( 3600 / CT ) * ( CD / 1000 ) / 3.6
local CDv = { x = CV2.x - CV1.x, y = CV2.y - CV1.y, z = CV2.z - CV1.z }
local Ca = math.atan2( CDv.x, CDv.z )
FollowGroup:OptionROTEvadeFire()
FollowGroup:OptionROEReturnFire()
local GroupUnit = FollowGroup:GetUnit( 1 )
local FollowFormation = FollowGroup:GetState( self, "FormationVec3" )
if FollowFormation then
local FollowDistance = FollowFormation.x
local GT1 = GroupUnit:GetState( self, "GT1" )
local GT2 = timer.getTime()
local GV1 = GroupUnit:GetState( self, "GV1" )
local GV2 = GroupUnit:GetPointVec3()
GV2:AddX( math.random( -Formation.FlightRandomization / 2, Formation.FlightRandomization / 2 ) )
GV2:AddY( math.random( -Formation.FlightRandomization / 2, Formation.FlightRandomization / 2 ) )
GV2:AddZ( math.random( -Formation.FlightRandomization / 2, Formation.FlightRandomization / 2 ) )
GroupUnit:SetState( self, "GT1", GT2 )
GroupUnit:SetState( self, "GV1", GV2 )
local GD = ( ( GV2.x - GV1.x )^2 + ( GV2.y - GV1.y )^2 + ( GV2.z - GV1.z )^2 ) ^ 0.5
local GT = GT2 - GT1
-- Calculate the distance
local GDv = { x = GV2.x - CV1.x, y = GV2.y - CV1.y, z = GV2.z - CV1.z }
local Alpha_T = math.atan2( GDv.x, GDv.z ) - math.atan2( CDv.x, CDv.z )
local Alpha_R = ( Alpha_T < 0 ) and Alpha_T + 2 * math.pi or Alpha_T
local Position = math.cos( Alpha_R )
local GD = ( ( GDv.x )^2 + ( GDv.z )^2 ) ^ 0.5
local Distance = GD * Position + - CS * 0.5
-- Calculate the group direction vector
local GV = { x = GV2.x - CV2.x, y = GV2.y - CV2.y, z = GV2.z - CV2.z }
-- Calculate GH2, GH2 with the same height as CV2.
local GH2 = { x = GV2.x, y = CV2.y + FollowFormation.y, z = GV2.z }
-- Calculate the angle of GV to the orthonormal plane
local alpha = math.atan2( GV.x, GV.z )
local GVx = FollowFormation.z * math.cos( Ca ) + FollowFormation.x * math.sin( Ca )
local GVz = FollowFormation.x * math.cos( Ca ) - FollowFormation.z * math.sin( Ca )
-- Now we calculate the intersecting vector between the circle around CV2 with radius FollowDistance and GH2.
-- From the GeoGebra model: CVI = (x(CV2) + FollowDistance cos(alpha), y(GH2) + FollowDistance sin(alpha), z(CV2))
local CVI = { x = CV2.x + CS * 10 * math.sin(Ca),
y = GH2.y - ( Distance + FollowFormation.x ) / 5, -- + FollowFormation.y,
z = CV2.z + CS * 10 * math.cos(Ca),
}
-- Calculate the direction vector DV of the escort group. We use CVI as the base and CV2 as the direction.
local DV = { x = CV2.x - CVI.x, y = CV2.y - CVI.y, z = CV2.z - CVI.z }
-- We now calculate the unary direction vector DVu, so that we can multiply DVu with the speed, which is expressed in meters / s.
-- We need to calculate this vector to predict the point the escort group needs to fly to according its speed.
-- The distance of the destination point should be far enough not to have the aircraft starting to swipe left to right...
local DVu = { x = DV.x / FollowDistance, y = DV.y, z = DV.z / FollowDistance }
-- Now we can calculate the group destination vector GDV.
local GDV = { x = CVI.x, y = CVI.y, z = CVI.z }
local ADDx = FollowFormation.x * math.cos(alpha) - FollowFormation.z * math.sin(alpha)
local ADDz = FollowFormation.z * math.cos(alpha) + FollowFormation.x * math.sin(alpha)
local GDV_Formation = {
x = GDV.x - GVx,
y = GDV.y,
z = GDV.z - GVz
}
if self.SmokeDirectionVector == true then
trigger.action.smoke( GDV, trigger.smokeColor.Green )
trigger.action.smoke( GDV_Formation, trigger.smokeColor.White )
if CT1 == nil or CT1 == 0 or GT1 == nil or GT1 == 0 then
GroupUnit:SetState( self, "GV1", GroupUnit:GetPointVec3() )
GroupUnit:SetState( self, "GT1", timer.getTime() )
else
local CD = ( ( CV2.x - CV1.x )^2 + ( CV2.y - CV1.y )^2 + ( CV2.z - CV1.z )^2 ) ^ 0.5
local CT = CT2 - CT1
local CS = ( 3600 / CT ) * ( CD / 1000 ) / 3.6
local CDv = { x = CV2.x - CV1.x, y = CV2.y - CV1.y, z = CV2.z - CV1.z }
local Ca = math.atan2( CDv.x, CDv.z )
local GT1 = GroupUnit:GetState( self, "GT1" )
local GT2 = timer.getTime()
local GV1 = GroupUnit:GetState( self, "GV1" )
local GV2 = GroupUnit:GetPointVec3()
GV2:AddX( math.random( -Formation.FlightRandomization / 2, Formation.FlightRandomization / 2 ) )
GV2:AddY( math.random( -Formation.FlightRandomization / 2, Formation.FlightRandomization / 2 ) )
GV2:AddZ( math.random( -Formation.FlightRandomization / 2, Formation.FlightRandomization / 2 ) )
GroupUnit:SetState( self, "GT1", GT2 )
GroupUnit:SetState( self, "GV1", GV2 )
local GD = ( ( GV2.x - GV1.x )^2 + ( GV2.y - GV1.y )^2 + ( GV2.z - GV1.z )^2 ) ^ 0.5
local GT = GT2 - GT1
-- Calculate the distance
local GDv = { x = GV2.x - CV1.x, y = GV2.y - CV1.y, z = GV2.z - CV1.z }
local Alpha_T = math.atan2( GDv.x, GDv.z ) - math.atan2( CDv.x, CDv.z )
local Alpha_R = ( Alpha_T < 0 ) and Alpha_T + 2 * math.pi or Alpha_T
local Position = math.cos( Alpha_R )
local GD = ( ( GDv.x )^2 + ( GDv.z )^2 ) ^ 0.5
local Distance = GD * Position + - CS * 0.5
-- Calculate the group direction vector
local GV = { x = GV2.x - CV2.x, y = GV2.y - CV2.y, z = GV2.z - CV2.z }
-- Calculate GH2, GH2 with the same height as CV2.
local GH2 = { x = GV2.x, y = CV2.y + FollowFormation.y, z = GV2.z }
-- Calculate the angle of GV to the orthonormal plane
local alpha = math.atan2( GV.x, GV.z )
local GVx = FollowFormation.z * math.cos( Ca ) + FollowFormation.x * math.sin( Ca )
local GVz = FollowFormation.x * math.cos( Ca ) - FollowFormation.z * math.sin( Ca )
-- Now we calculate the intersecting vector between the circle around CV2 with radius FollowDistance and GH2.
-- From the GeoGebra model: CVI = (x(CV2) + FollowDistance cos(alpha), y(GH2) + FollowDistance sin(alpha), z(CV2))
local CVI = { x = CV2.x + CS * 10 * math.sin(Ca),
y = GH2.y - ( Distance + FollowFormation.x ) / 5, -- + FollowFormation.y,
z = CV2.z + CS * 10 * math.cos(Ca),
}
-- Calculate the direction vector DV of the escort group. We use CVI as the base and CV2 as the direction.
local DV = { x = CV2.x - CVI.x, y = CV2.y - CVI.y, z = CV2.z - CVI.z }
-- We now calculate the unary direction vector DVu, so that we can multiply DVu with the speed, which is expressed in meters / s.
-- We need to calculate this vector to predict the point the escort group needs to fly to according its speed.
-- The distance of the destination point should be far enough not to have the aircraft starting to swipe left to right...
local DVu = { x = DV.x / FollowDistance, y = DV.y, z = DV.z / FollowDistance }
-- Now we can calculate the group destination vector GDV.
local GDV = { x = CVI.x, y = CVI.y, z = CVI.z }
local ADDx = FollowFormation.x * math.cos(alpha) - FollowFormation.z * math.sin(alpha)
local ADDz = FollowFormation.z * math.cos(alpha) + FollowFormation.x * math.sin(alpha)
local GDV_Formation = {
x = GDV.x - GVx,
y = GDV.y,
z = GDV.z - GVz
}
if self.SmokeDirectionVector == true then
trigger.action.smoke( GDV, trigger.smokeColor.Green )
trigger.action.smoke( GDV_Formation, trigger.smokeColor.White )
end
local Time = 60
local Speed = - ( Distance + FollowFormation.x ) / Time
local GS = Speed + CS
if Speed < 0 then
Speed = 0
end
-- Now route the escort to the desired point with the desired speed.
FollowGroup:RouteToVec3( GDV_Formation, GS ) -- DCS models speed in Mps (Miles per second)
end
local Time = 60
local Speed = - ( Distance + FollowFormation.x ) / Time
local GS = Speed + CS
if Speed < 0 then
Speed = 0
end
-- Now route the escort to the desired point with the desired speed.
FollowGroup:RouteToVec3( GDV_Formation, GS ) -- DCS models speed in Mps (Miles per second)
end
end
end,

View File

@ -84,6 +84,7 @@ __Moose.Include( 'Scripts/Moose/AI/AI_Cap.lua' )
__Moose.Include( 'Scripts/Moose/AI/AI_Cas.lua' )
__Moose.Include( 'Scripts/Moose/AI/AI_Bai.lua' )
__Moose.Include( 'Scripts/Moose/AI/AI_Formation.lua' )
__Moose.Include( 'Scripts/Moose/AI/AI_Escort.lua' )
__Moose.Include( 'Scripts/Moose/AI/AI_Cargo.lua' )
__Moose.Include( 'Scripts/Moose/AI/AI_Cargo_APC.lua' )
__Moose.Include( 'Scripts/Moose/AI/AI_Cargo_Helicopter.lua' )